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Abstract: The propagation and overtaking collision of dust acoustic multi-soliton in a 
dusty plasma consisting of kappa-distributed electrons, Boltzmann-distributed ions, and 
negatively charged dust grains has been investigated. In the Theoretical study, we use the 
reductive perturbation method to derive the Korteweg–De Vries (KdV) equation. Using the 
Hirota bilinear method, we have found four-soliton and five-soliton solutions of the KdV 
equation. It is observed that the dust charge variation coefficients are significantly affected 
by the spectral indices of the electrons. We discovered that plasma systems with variable-
charged dust grains support the formation of solitons with greater amplitude.  Our results 
help understanding the nonlinear phenomena that form in the magnetospheres of Saturn 
and Comet Halley as well as in interstellar dusty plasma.  
Keywords: Dusty plasma, Overtaking collision, Dust charge variation, Korteweg–De Vries 
(KdV) equation, Hirota bilinear method. 
 

 
Introduction 

Over the past three decades, numerous wave 
patterns, interconnected structures along with 
different instabilities in dusty plasmas, and 
interaction mechanisms between dust grains and 
plasma components have attracted the interest of 
both theoretical and experimental researchers. 
Their aim being to gain a comprehensive 
understanding of how these patterns behave in 
different plasma environments, including 
planetary rings, the interstellar medium, 
cometary tails, the surfaces of Mars and the 
Moon, and the polar mesosphere of Earth [1-3].  

Dusty plasma consists of ordinary plasma 
components, namely electrons and ions, along 
with charged solid grains. These grains are 
introduced through various mechanisms, such as 
the collection of plasma particles, 
photoionization, and secondary electron 
emission [1].  

Because of the high charge and large mass of 
the grains relative to ions and electrons, either 

new or modified wave patterns and instabilities 
emerge in dusty plasmas, including the dust 
acoustic (DA) waves, the dust lattice (DL), 
waves the DIA solitary waves [4], DA solitary 
waves [5], and the DL solitary waves [6]. 

In collisionless plasmas, the plasma 
components are obeying the velocity distribution 
function that deviates from the Maxwellian 
distribution. It is observed that the particle 
velocity distribution function in normal plasma 
has a high-energy tail [7]. This distribution 
function is more suitable than the Maxwellian 
distribution, for it describes particle velocity 
distributions and is known as the generalized 
Lorentzian or the kappa distribution. This 
distribution accurately describes particles with 
higher velocities when the kappa parameter has 
specific and small values, and it is given as 
follows [8]: 

(ݒ)݂ = ቂ1 + ௩మ

(௞ఏ)మቃ
ି(௞ାଵ)

  .         (1) 
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The kappa distribution has a power-law tail 
for velocities greater than thermal velocity ߠ and 
specific values of the spectral index ݇. In limit 
→ ∞ , the kappa distribution approximates a 
Maxwellian distribution.  

Kundu et al. [9] investigated the effect of a 
two-temperature ion on the head-on collision of 
dust acoustic solitary waves (DASWs) in an 
unmagnetized dusty plasma with single 
electrons, two-temperature ions, and variable 
dust charge. They found that the phase shift is 
affected by dust charge fluctuation. Varghese et 
al. [10] studied dust acoustic solitary waves 
(DASW) in a plasma consisting of two 
components, namely electrons described by 
kappa distributions and ions described by 
Maxwellian distributions, and dust particles with 
varying charges. The Kadomtsev–Petiashvili 
(KP) equation was used in their study. They 
found that amplitudes increase when charges on 
the dust particles vary. Rabia Amour and 
Mouloud Tribeche [11] used Tsallis statistical 
mechanics to study variable charges on dust 
acoustic solitary waves. They showed the effect 
of electron nonextensive parameter (ݍ) on the 
shape of the dust acoustic solitons in dusty 
plasma. They noticed that for −1 < ݍ < +1 the 
soliton pulse amplitude increases while its width 
is narrowed as ݍ → 1. In the case ݍ > 1 the 
opposite result was obtained as electron 
nonextensivity makes the solitary structure more 
spiky. S. Gh. Dezfuly and D. Dorranian [12] 
used the reductive perturbation method to derive 
the Zakharov–Kuznetsov (ZK) equation. They 
investigated the effect of the magnetic field, 
nonthermal ions, and variable dust electric 
charge on the nonlinear dust acoustic solitary 
waves in a magnetized dusty plasma. They found 
that the amplitude of the soliton wave increased 
and eventually stabilized with an increase in the 
rate of dust charge variation relative to plasma 
potential. Moreover, they proved that the 
external magnetic field influences the shape of 
the solitons. Kabalan et al. [13] investigated the 
effect of the structure parameter on overtaking 
collision between two solitons and three solitons 
in a strongly coupled dusty plasma system 
consisting of Maxwellian electrons, ions, and 
dust grains charged with a negative charge. They 
found that the amplitude and width of the soliton 
increase with an increase of the structure 
parameter and decrease with an increase of the 
coupling parameter. Modeling results on pulsar 
wind by Singh et al. [14] showed that the 

concentration of positrons, relativistic factor, and 
superthermality of electrons and positrons have a 
significant influence on the dynamical evolution 
of IASW pulses. Kaur et al. [15] used the 
reductive perturbation method to derive  the 
Korteweg–De Vries (KdV), modified KdV 
(mKdV), and the Gardner equations. Their 
investigation focused on unmagnetized plasma 
composed of a positive warm ion fluid, two 
temperature electrons obeying kappa type 
distribution and penetrated by a positive ion 
beam. The researches assert that their findings 
are important in understanding the properties of 
nonlinear perturbations that arise in Saturn’s 
magnetosphere, solar wind, pulsar 
magnetosphere, and other astronomical plasma 
environments.  

No work has been reported in the study of the 
overtaking collision of four and five dust 
acoustic solitary waves (DASW) in a five-
component cometary plasma. The present study 
aims to narrow this gap. To achieve this goal, we 
begin by utilizing the findings presented by 
Varghese et al. [10] to calculate the parameters 
ଵߛ ,  .ଶ which measure the change of dust chargeߛ
Subsequently, we develop a simulation to 
demonstrate the effect of the changing dust 
charge on the interaction of four and five 
solitons in a cometary plasma environment 
containing two types of electrons and two types 
of ions. Next, the reductive perturbation method 
is applied to derive  the Korteweg–De Vries 
(KdV) equation. After that, we use the Hirota 
bilinear method to obtain multi-solitons 
solutions. We rely on computer modeling using 
the Maple program to show the time 
development of the propagation and interaction 
of solitons. 

Basic Equations 
In our study, we investigate a five-component 

system of dusty cometary plasma. This system 
consists of variable negatively charged inertial 
dust grains, two components of electrons with 
different temperatures described by kappa 
distributions, lighter (hydrogen) ions, and 
heavier (oxygen) ions. The latter two 
components are modeled by Maxwellian 
distributions. The dust fluid equations that can 
describe this system are given as follows [10]: 
డ௡೏
ப௧

+ ப(௡೏ణ೏)
ப௫

= 0            (2) 
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డణ೏
ப௧

+ ௗߴ
డణ೏
ப௫

= ܼௗ
பΦ
ப௫

            (3) 

డమΦ
డ௫మ = ܼௗ݊ௗ + ݊௦௘ + ݊௖௘ − ݊௟௜  − ݊௛௜          (4) 

where ݊ௗ  is the dust grain number density 
normalized by ݊ௗ଴, ߴௗ is the dust fluid velocity 
normalized by the dust-acoustic speed ܥௗ =
(

௓೏୏ా்೐೑೑

௠೏
)ଵ/ଶ, Φ is the electrostatic potential 

normalized by ௘∅
௄ಳ்೐೑೑

, ௘ܶ௙௙  is the effective 

temperature defined by: 

௘ܶ௙௙ = ௓೏బ௡೏బ

൤೙ೞ೐బ
೅ೞ೐

ା೙೎೐బ
೅೎೐

ା
೙೗೔బ
೅೗೔

ା
೙೓೔బ
೅೓೔

൨
           (5) 

where ܶ temperatures, (݈݅) lighter hydrogen 
ions, (ℎ݅) heavier oxygen ions, (݁ݏ) hotter solar 
electrons, (ܿ݁) colder cometary electrons, (0) 
denotes equilibrium values. 

݊௦௘ and ݊௖௘ described by kappa distribution, 
can be written in a normalized form as [8]: 

݊௦௘ = ௦௘(1ߥ − ఉೞ೐∅
௞ೞ೐ିయ

మ
)ି௞ೞ೐ାభ

మ           (6) 

݊௖௘ = ௖௘(1ߥ − ఉ೎೐∅
௞೎೐ିయ

మ
)ି௞೎೐ାభ

మ            (7) 

݊௟௜ and ݊௛௜ described by the Boltzmann 
distribution, can be written in a normalized form 
as: 

݊௟௜ = μ௟௜ exp(−ݏ௟௜∅)                    (8) 

݊௛௜ = μ௛௜ exp(−ݏ௛௜∅)            (9) 

where ߥ௦௘ = ௡ೞ೐బ
௓೏బ௡೏బ

௖௘ߥ , = ௡೎೐బ
௓೏బ௡೏బ

, μ௟௜ = ௡೗೔బ
௓೏బ௡೏బ

, 

μ௛௜ = ௡೓೔బ
௓೏బ௡೏బ

௦௘ߚ , =
்೐೑೑

ೞ்೐
௖௘ߚ , =

்೐೑೑

೎்೐
௟௜ݏ , =

்೐೑೑

்೗೔
, 

௛௜ݏ =
்೐೑೑

்೓೔
. Time and space variable are 

normalized respectively by ߱௣ௗ = (௡೏బ௓೏
మ௘మ

௠೏
)ଵ/ଶ 

and ߣ஽ = ( ୏ా்೔
௡೏బ௓೏௘మ)ଵ/ଶ ' where ߱௣ௗ  is the plasma 

frequency, ߣ஽ is dust Debye length, whereas K୆, 
݊ௗ଴, ݁, ݉ௗ are the Boltzmann constant, the 
unperturbed dust grain number density, the 
electron charge, and dust grain mass, 
respectively. The dust charge variable ܳௗ is 
determined by the charge current balance 
equation as follows [17-18]: 
డொ೏
డ௧

+ ௗߴ
డொ೏
డ௫

= ௖௘ܫ + ௖௘ܫ + ௟௜ܫ + ௛௜ܫ  .       (10) 

Since electrons are faster than ions, the dust 
grain is generally negatively charged. For the 
calculation of currents, we assume that the 

potential of the grain is negatively related to the 
plasma potential. Thus, the negative dust grains 
will attract ions and repel the electrons. The 
current of ions and electrons are defined as 
follows [19-21]: 

௟௜ܫ = ଶ݊௟௜݁ට଼௄ಳ்೗೔ܽߨ
గ௠೗೔

ቀ1 − ௘∅೛

௄ಳ்೗೔
ቁ

௛௜ܫ = ଶ݊௛௜݁ට଼௄ಳ்೓೔ܽߨ
గ௠೓೔

ቀ1 − ௘∅೛

௄ಳ்೓೔
ቁ⎭

⎬

⎫
        (11) 

௖௘ܫ = ଶ݊௖௘݁ට଼௄ಳܽߨ− ೎்೐
గ௠೐

 ௰(௞೎೐ାଵ)

௰ቀ௞೎೐ିభ
మቁ

 ௞೎೐

௞೎೐

య
మ  (௞೎೐ିଵ)

ቆ1 − ௘∅೛

௄ಳ ೎்೐ቀ௞೎೐ିయ
మቁ

ቇ
ି௞೎೐ାଵ

௦௘ܫ = ଶ݊௦௘݁ට଼௄ಳܽߨ− ೞ்೐
గ௠೐

 ௰(௞ೞ೐ାଵ)

௰ቀ௞ೞ೐ିభ
మቁ

 ௞ೞ೐

௞ೞ೐

య
మ  (௞ೞ೐ିଵ)

ቆ1 − ௘∅೛

௄ಳ ೞ்೐ቀ௞ೞ೐ିయ
మቁ

ቇ
ି௞ೞ೐ାଵ

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  

(12)  
∅௣ denotes the dust particle surface potential 

related to the plasma potential. Comparison of 
the characteristic time of micrometer-sized dust 
grains motion ~10ିଷ ݏ and the dust charging 
time ~10ି଼ݏ, it appears that the motion of the 
dust grains is not so rapid that the contribution of 
the electron current to the surface of the grain is 
equal to that ions current. The balance equation 
is written as follows: 
௖௘ܫ + ௦௘ܫ + ௟௜ܫ + ௛௜ܫ = 0        (13) 

Substituting (6-9) and (11-12) into (13) and 
make some mathematical calculations, we obtain 
the following equation: 
௟௜ߙ ௟௜(1ߜ  − (ߖ௟௜ݏ exp(−∅) + ௛௜ߙ ௛௜(1ߜ  −

(ߖ௛௜ݏ exp(−∅) − ௞(௖௘)ܤ   ቆ1 −

ఉ೎೐అ
ቀ௞೎೐ିయ

మቁ
ቇ

ି௞೎೐ାଵ

 ቆ1 − ఉ೎೐∅
௞೎೐ିభ

మ
ቇ

ି௞೎೐ାభ
మ

−

௦௘ߜ௦௘ߙ ௞(௦௘)ܤ   ቆ1 − ఉೞ೐అ
ቀ௞ೞ೐ିయ

మቁ
ቇ

ି௞ೞ೐ାଵ

 ቆ1 −

ఉೞ೐∅
௞ೞ೐ିభ

మ
ቇ

ି௞ೞ೐ାభ
మ

= 0          (14)  

where:  

௞(௖௘)ܤ = ௰(௞೎೐ାଵ)

௰ቀ௞೎೐ିభ
మቁ

 ௞೎೐

௞೎೐

య
మ  (௞೎೐ିଵ)

,  
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௞(௦௘)ܤ = ௰(௞ೞ೐ାଵ)

௰ቀ௞ೞ೐ିభ
మቁ

 ௞ೞ೐

௞ೞ೐

య
మ  (௞ೞ೐ିଵ)

௟௜ߙ , = ට்೗೔ ௠೐
௠೗೔ ೎்೐

, 

௛௜ߙ = ට்೓೔ ௠೐
௠೓೔ ೎்೐

ߖ , = ௘∅೛

௄ಳ்೐೑೑
௟௜ߜ , =

μ೗೔
ఔ೎೐

௛௜ߜ , =
μ೓೔
ఔ೎೐

, 

௦௘ߜ = νೞ೐
ఔ೎೐

௦௘ߙ , = ට ೞ்೐  

೎்೐
 

The normalized dust charge obtained from: 

ܼௗ = అ
అబ

           (15) 

where ߖ଴ = ∅)ߖ = 0) is the surface potential 
on the dust particle with 
respect to the plasma potential at infinity 
(∅ =  ଴ can be determined by substitutingߖ .(0
∅ = 0 into Eq. (14) as: 

௟௜ߙ ௟௜(1ߜ  − (଴ߖ௟௜ݏ + ௛௜(1ߜ ௛௜ߙ − (଴ߖ௛௜ݏ  −

௞(௖௘)ܤ   ቆ1 − ఉ೎೐అ
ቀ௞೎೐ିయ

మቁ
ቇ

ି௞೎೐ାଵ

−

௦௘ߜ௦௘ߙ ௞(௦௘)ܤ   ቆ1 − ఉೞ೐అ
ቀ௞ೞ೐ିయ

మቁ
ቇ

ି௞ೞ೐ାଵ

         (16) 

Substituting (15) into (12), ∅, ܼௗ are 
expanded in powers of ߝ, we obtain: 

ܼௗଵ =  ଵ ∅ଵ            (17)ߛ

ܼௗଶ = ଵ∅ଶߛ + ଶ ∅ଵߛ
ଶ          (18) 

Where  

ଵߛ = − ଵ
అబ

ఊ್
ఊೌ

  

௔ߛ = ଵܣ + ߚଶܣ + ଵ௖௘ߚଷܣ ቆ
௞೎೐ିయ

మ
௞೎೐

ቇ

భ
మ

ቆ
௞೎೐ିభ

మ
௞೎೐ିయ

మ
ቇ ቆ1 −

ఉభ೎೐௦అబ

௞೎೐ିయ
మ

ቇ
ି௞೎೐

+ ଵ௦௘ߚସܣ ቆ
௞ೞ೐ିయ

మ
௞ೞ೐

ቇ

భ
మ

ቆ
௞ೞ೐ିభ

మ
௞ೞ೐ିయ

మ
ቇ ቆ1 −

ఉభೞ೐௦అబ

௞ೞ೐ିయ
మ

ቇ
ି௞ೞ೐

  

௕ߛ = ଵ(1ܣ − (଴ߖݏ + 1)ߚଶܣ − (଴ߖݏߚ +

ଵ௖௘ߚଷܣ ቆ
௞೎೐ିయ

మ
௞೎೐

ቇ

భ
మ

ቆ
௞೎೐ିభ

మ
௞೎೐ିయ

మ
ቇ ቆ1 −

ఉభ೎೐௦అబ

௞೎೐ିయ
మ

ቇ
ି௞೎೐ାଵ

+

ଵ௦௘ߚସܣ ቆ
௞ೞ೐ିయ

మ
௞ೞ೐

ቇ

భ
మ

ቆ
௞ೞ೐ିభ

మ
௞ೞ೐ିయ

మ
ቇ ቆ1 − ఉభೞ೐௦అబ

௞ೞ೐ିయ
మ

ቇ
ି௞ೞ೐ାଵ

  

where:  

ݏ = ௟௜ߤ , ߚ = ఓ೓೔
௦

, ଵ௖௘ߚ = ௦೎೐
௦

, ଵ௦௘ߚ = ௦ೞ೐
௦

  

ଶߛ = ଵ
ଶఅబ

௦(ఊ೎భାఊ೎మାఊ೎య)
ఊೌ

  

௖ଵߛ = ଵ(1ܣ − (଴ߖݏ + ଶ(1ߚଶܣ − (଴ߖݏߚ −

ଵ௖௘ߚଷܣ
ଶ ቆ

௞೎೐ିయ
మ

௞೎೐
ቇ

భ
మ

൭
ቀ௞೎೐ିభ

మቁቀ௞೎೐ାభ
మቁ

ቀ௞೎೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభ೎೐௦అబ

௞೎೐ିయ
మ

ቇ
ି௞೎೐ାଵ

−

ଵ௦௘ߚସܣ
ଶ ቆ

௞ೞ೐ିయ
మ

௞ೞ೐
ቇ

భ
మ

൭
ቀ௞ೞ೐ିభ

మቁቀ௞ೞ೐ାభ
మቁ

ቀ௞ೞ೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభೞ೐௦అబ

௞ೞ೐ିయ
మ

ቇ
ି௞ೞ೐ାଵ

  

௖ଶߛ =

଴ߖଵߛ2 ቌܣଵ + ଶߚଶܣ −

ଵ௖௘ߚଷܣ
ଶ ቆ

௞೎೐ିయ
మ

௞೎೐
ቇ

భ
మ

൭
ቀ௞೎೐ିభ

మቁ(௞೎೐ିଵ)

ቀ௞೎೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభ೎೐௦అబ

௞೎೐ିయ
మ

ቇ
ି௞೎೐

−

ଵ௦௘ߚସܣ
ଶ ቆ

௞ೞ೐ିయ
మ

௞ೞ೐
ቇ

భ
మ

൭
ቀ௞ೞ೐ିభ

మቁ(௞ೞ೐ିଵ)

ቀ௞ೞ೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభೞ೐௦అబ

௞ೞ೐ିయ
మ

ቇ
ି௞ೞ೐

ቍ  

௖ଷߛ =

ଶ(଴ߖଵߛ)− ቌܣଷߚଵ௖௘
ଶ ቆ

௞೎೐ିయ
మ

௞೎೐
ቇ

భ
మ

൭௞೎೐(௞೎೐ିଵ)

ቀ௞೎೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభ೎೐௦అబ

௞೎೐ିయ
మ

ቇ
ି௞೎೐ିଵ

+

ଵ௦௘ߚସܣ
ଶ ቆ

௞ೞ೐ିయ
మ

௞ೞ೐
ቇ

భ
మ

൭௞ೞ೐(௞ೞ೐ିଵ)

ቀ௞ೞ೐ିయ
మቁ

మ ൱ ቆ1 −

ఉభೞ೐௦అబ

௞ೞ೐ିయ
మ

ቇ
ି௞ೞ೐ିଵ

ቍ  

where ܣଵ = ௟௜ߙ ଶܣ ,௟௜ߜ  = ௛௜ߙ ଷܣ ,௛௜ߜ  =  ,௞(௖௘)ܤ
ସܣ = ௦௘ߙ  ௞(௦௘)ܤ௦௘ߜ 

Are physical parameters describing of the 
dust charge variable, when ߛଵ = ଶߛ ,0 = 0 we 
get a fixed dust charge. 
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Derivation of Kdv equations 
Now, we derive the KdV equations from Eqs. 

(2) and (4) by employing the reductive 
perturbation method. The independent variables 
are stretched as [23]: 

ߦ = ߝ
భ
మ(ݔ − ;(ݐܿ  ߬ = ߝ

య
మݐ 

డ
డ௫

= ߝ
భ
మ  డ

డక
;  డ

డ௧
= ߝܿ−

భ
మ  డ

డక
+ ߝ

య
మ  డ

డఛ
 
ቑ        (19)  

The dependent variables are expanded as: 

݊ௗ = 1 + ଵ݊ߝ + ଶ݊ଶߝ + ⋯   
ௗߴ = ߝ ଵߴ + ଶߴଶߝ + ⋯          (20) 

Φ = Φଵߝ + ଶΦଶߝ + ⋯   
ܼௗ = 1 + ௗଵܼߝ + ଶܼௗଶߝ + ⋯   
where 0 < ߝ ≪ 1 is a small perturbation 
parameter measuring the strength of 
nonlinearity, substituting (19) (20) into (2) (4) 
and taking the terms in different powers of ߝ, we 
obtain in the lowest order of ߝ

య
మ and ߝ: 

−ܿ డ௡భ
డక

 +  డణభ
డక

= 0          (21) 

−ܿ డణభ
డక

=  డΦభ
డక

          (22) 

݊ଵ + ቀߛଵ +
νೞ೐βೞ೐(ଶ୩ೞ೐ିଵ)

ଶ௞ೞ೐ିଷ
+

ν೎೐β೎೐(ଶ୩೎೐ିଵ)
ଶ௞೎೐ିଷ

+

௟௜μ௟௜ݏ + ௛௜μ௛௜ቁݏ Φଵ = 0           (23) 

By solving equations (18) - (20), we obtain 
the following set of equations: 

݊ଵ = − ቀߛଵ +
νೞ೐βೞ೐(ଶ୩ೞ೐ିଵ)

ଶ௞ೞ೐ିଷ
+

ν೎೐β೎೐(ଶ୩೎೐ିଵ)
ଶ௞೎೐ିଷ

+

௟௜μ௟௜ݏ + ௛௜μ௛௜ቁݏ Φଵ          (24)  

ଵߴ = −ܿ ቀߛଵ +
νೞ೐βೞ೐(ଶ୩ೞ೐ିଵ)

ଶ௞ೞ೐ିଷ
+

ν೎೐β೎೐(ଶ୩೎೐ିଵ)
ଶ௞೎೐ିଷ

+

௟௜μ௟௜ݏ + ௛௜μ௛௜ቁݏ Φଵ          (25)  

where ܿ the phase velocity given as follows: 

ܿ = ඨ
ଵ

ቀఊభା
νೞ೐βೞ೐(మౡೞ೐షభ)

మೖೞ೐షయ ା
ν೎೐β೎೐(మౡ೎೐షభ)

మೖ೎೐షయ ା௦೗೔μ೗೔ା௦೓೔μ೓೔ቁ
   

(26)   

Similarly, We get from the terms of order ߝଶ 
and ߝହ/ଶ: 

−ܿ డ௡మ
డక

+  డ௡భ
డఛ

 + ݊ଵ
డణభ
డక

+ డణమ
డక

+ ଵߴ  డ௡భ
డక

= 0  
         (27)  

−ܿ డణమ
డక

+ డణభ
డఛ

+ ଵߴ  డణభ
డక

=  డΦమ
డక

+ ଵ Φଵߛ
డΦభ
డక

  (28)  

డమΦభ
డకమ =

݊ଶ + ቀߛଵ +
νೞ೐βೞ೐(ଶ୩ೞ೐ିଵ)

ଶ௞ೞ೐ିଷ
+

ν೎೐β೎೐(ଶ୩೎೐ିଵ)
ଶ௞೎೐ିଷ

+

௟௜μ௟௜ݏ + ௛௜μ௛௜ቁݏ Φଶ + ൬−ߛଵ ቀߛଵ +
νೞ೐βೞ೐(ଶ୩ೞ೐ିଵ)

ଶ௞ೞ೐ିଷ
+

ν೎೐β೎೐(ଶ୩೎೐ିଵ)
ଶ௞೎೐ିଷ

+ ௟௜μ௟௜ݏ +

௛௜μ௛௜ቁݏ + ఉೞ೐
మ νೞ೐(ଶ୩ೞ೐ିଵ)మ

ଶ(ଶ୩ೞ೐ିଷ)మ + ఉ೎೐
మ ν೎೐(ଶ୩೎೐ିଵ)మ

ଶ(ଶ୩೎೐ିଷ)మ −
௦೗೔

మ μ೗೔
ଶ

−
௦೓೔

మ μ೓೔
ଶ

+ ଶ൰ߛ ∅ଵ
ଶ          (29)  

By common solution to system of Eqs. (27)-
(29), we obtain the following Korteweg–De 
Vries (KdV) equation for the first-order 
perturbed electrostatic potential Φଵ as follows: 
డΦభ
డఛ

+ Φଵܣ
డΦభ
డక

+ ܤ డయΦభ
డకయ = 0         (30)  

where the nonlinear coefficient ࡭ and the 
dispersion coefficient ࡮ are given by: 

ܣ = − ௖య

ଶ
൬ ଷ

௖ర − ଶఊభ
௖మ + ఉೞ೐

మ νೞ೐(ଶ୩ೞ೐ିଵ)మ

ଶ(ଶ୩ೞ೐ିଷ)మ +
ఉ೎೐

మ ν೎೐(ଶ୩೎೐ିଵ)మ

ଶ(ଶ୩೎೐ିଷ)మ −
௦೗೔

మ μ೗೔
ଶ

−
௦೓೔

మ μ೓೔
ଶ

+   ଶ൰ߛ

ܤ = ௖య

ଶ
  

Multi - solitons Solutions 
For obtain multi -soliton solution of Eq. (30) 

and to study the interaction between them. To do 
so, we shall employ the Hirota bilinear method 
[24]: 

The first step: Using the transformation in Eq. 
(30): 

Φଵ = ଵଶ஻
஺

డమ൫୪୬൫௙(క,ఛ)൯൯
డకమ           (31)  

We get the following equation: 

− క݂ ఛ݂ + ݂ క݂ఛ + ݂ܤ క݂కకక − ܤ4 క݂కక . క݂ +
൫ܤ3 క݂క൯ଶ

= 0          (32)  

By using the Hirota D-operator, we get: 

,݂}కܦఛܦ ݂} = 2൫݂ క݂ఛ − క݂ ఛ݂൯         (33)  

కܦܤ
ସ{݂, ݂} = 2൫݂ܤ క݂కకక − 4B క݂ క݂కక +

)ܤ3 క݂క)ଶ൯           (34) 

Using (33) and (34) in (32), we get the Hirota 
bilinear form: 

൫ܦఛܦక + కܦܤ
ସ൯{݂, ݂} = 0         (35) 
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where D is a binary operator (because it operates 
on a pair of functions) and is called 
the Hirota derivative. 

To get a four-solitons solution of KdV 
equation we insert ݂ = 1 + ଵ݂ + ଶ݂ + ଷ݂ + ସ݂ 
where ଵ݂ = ݁ఏభ + ݁ఏమ + ݁ఏయ + ݁ఏర. To 
determine ଶ݂, ଷ݂ and ସ݂ we  perform some 
mathematical calculations getting thereby the 
following relationships: 

ଶ݂ = ܽ(1,2)݁ఏభାఏమ + ܽ(1,3)݁ఏభାఏయ +
ܽ(1,4)݁ఏభାఏర + ܽ(2,3)݁ఏమାఏయ +
ܽ(2,4)݁ఏమାఏర + ܽ(3,4)݁ఏయାఏర  

ଷ݂ = ܾ(1,2,3)݁ఏభାఏమାఏయ + ܾ(1,2,4)݁ఏభାఏమାఏర +
ܾ(1,3,4)݁ఏభାఏయାఏర + ܾ(2,3,4)݁ఏమାఏయାఏర  

ସ݂ = ܿ(1,2,3,4)݁ఏభାఏమାఏయାఏర   

where:  

ܽ(1,2) = (௞భି௞మ)మ

(௞భା௞మ)మ, ܽ(1,3) = (௞భି௞య)మ

(௞భା௞య)మ,  

ܽ(1,4) = (௞భି௞ర)మ

(௞భା௞ర)మ, ܽ(2,3) = (௞మି௞య)మ

(௞మା௞య)మ,  

ܽ(2,4) = (௞మି௞ర)మ

(௞మା௞ర)మ, ܽ(3,4) = (௞యି௞ర)మ

(௞యା௞ర)మ 

ܾ(1,2,3) = ܽ(1,2) ܽ(1,3) ܽ(2,3),  
ܾ(1,3,4) = ܽ(1,3) ܽ(1,4) ܽ(3,4),  

ܾ(2,3,4) = ܽ(2,3) ܽ(2,4) ܽ(3,4),  
ܿ(1,2,3,4) =

ܽ(1,2) ܽ(1,3) ܽ(1,4) ܽ(2,3) ܽ(2,4) ܽ(3,4)  
Substituting in Eq. (31), we get the four-

soliton solution as follows: 

Φଵ = ଵଶ஻
஺

డమ

డకమ  ൛lnൣ1 + ݁ఏభ + ݁ఏమ + ݁ఏయ + ݁ఏర +

ܽ(1,2)݁ఏభାఏమ + ܽ(1,3)݁ఏభାఏయ +
ܽ(1,4)݁ఏభାఏర + ܽ(2,3)݁ఏమାఏయ +
ܽ(2,4)݁ఏమାఏర + ܽ(3,4)݁ఏయାఏర +
ܾ(1,2,3)݁ఏభାఏమାఏయ + ܾ(1,2,4)݁ఏభାఏమାఏర +
ܾ(1,3,4)݁ఏభାఏయାఏర + ܾ(2,3,4)݁ఏమାఏయାఏర +
ܿ(1,2,3,4)݁ఏభାఏమାఏయାఏర൧ൟ         (36)  

௜ߠ = ݇௜ିܤభ
యߦ − ݇௜

ଷ߬ − ∆௜; ݅ = 1,2, 3, 4,  

∆ଵ= ∓ ଶ஻
భ
య

௞భ
 ݈݊ ቤට ௖(ଵ,ଶ,ଷ,ସ)

௔(ଶ,ଷ) ௔(ଶ,ସ) ௔(ଷ,ସ)ቤ; 

∆ଶ= ∓ ଶ஻
భ
య

௞మ
 ݈݊ ቤට ௖(ଵ,ଶ,ଷ,ସ)

 ௔(ଵ,ଷ) ௔(ଵ,ସ) ௔(ଷ,ସ)ቤ;  

∆ଷ= ∓ ଶ஻
భ
య

௞య
 ݈݊ ቤට ௖(ଵ,ଶ,ଷ,ସ)

 ௔(ଵ,ଶ) ௔(ଵ,ସ) ௔(ଶ,ସ)ቤ; 

∆ସ= ∓ ଶ஻
భ
య

௞ర
 ݈݊ ቤට ௖(ଵ,ଶ,ଷ,ସ)

 ௔(ଵ,ଶ) ௔(ଵ,ଷ) ௔(ଶ,ଷ)ቤ  

To get a five-solitons solution of KdV 
equation we insert ݂ = 1 + ଵ݂ + ଶ݂ + ଷ݂ + ସ݂ +

ହ݂ where ଵ݂ = ݁ఏభ + ݁ఏమ + ݁ఏయ + ݁ఏర + ݁ఏఱ  . By 
conducting mathematical calculations, we obtain 
the following relationships to determine  ଶ݂, 

ଷ݂,  ସ݂ and ହ݂ : 

ଶ݂ = ܽ(1,2)݁ఏభାఏమ + ܽ(1,3)݁ఏభାఏయ +
ܽ(1,4)݁ఏభାఏర + ܽ(1,5)݁ఏభାఏఱ +
ܽ(2,3)݁ఏమାఏయ + ܽ(2,4)݁ఏమାఏర +
ܽ(2,5)݁ఏమାఏఱ + ܽ(3,4)݁ఏయାఏర +
ܽ(3,5)݁ఏయାఏఱ + ܽ(4,5)݁ఏరାఏఱ  

ଷ݂ = ܾ(1,2,3)݁ఏభାఏమାఏయ + ܾ(1,2,4)݁ఏభାఏమାఏర +
ܾ(1,2,5)݁ఏభାఏమାఏఱ + ܾ(1,3,4)݁ఏభାఏయାఏర +
ܾ(1,3,5)݁ఏభାఏయାఏఱ + ܾ(1,4,5)݁ఏభାఏరାఏఱ +
ܾ(2,3,4)݁ఏమାఏయାఏర + ܾ(2,3,5)݁ఏమାఏయାఏఱ +
ܾ(2,4,5)݁ఏమାఏరାఏఱ + ܾ(3,4,5)݁ఏయାఏరାఏఱ  

ସ݂ =
ܿ(1,2,3,4)݁ఏభାఏమାఏయାఏర +
ܿ(1,2,3,5)݁ఏభାఏమାఏయାఏఱ +
ܿ(1,2,4,5)݁ఏభାఏమାఏరାఏఱ +
ܿ(1,3,4,5)݁ఏభାఏయାఏరାఏఱ +
ܿ(2,3,4,5)݁ఏమାఏయାఏరାఏఱ   

ହ݂ = ݀(1,2,3,4,5)݁ఏభାఏమାఏయାఏరାఏఱ   

where:  

ܽ(1,2) = (௞భି௞మ)మ

(௞భା௞మ)మ, ܽ(1,3) = (௞భି௞య)మ

(௞భା௞య)మ,  

ܽ(1,4) = (௞భି௞ర)మ

(௞భା௞ర)మ, ܽ(1,5) = (௞భି௞ఱ)మ

(௞భା௞ఱ)మ,  

ܽ(2,3) = (௞మି௞య)మ

(௞మା௞య)మ, ܽ(2,4) = (௞మି௞ర)మ

(௞మା௞ర)మ,  

ܽ(2,5) = (௞మି௞ఱ)మ

(௞మା௞ఱ)మ, ܽ(3,4) = (௞యି௞ర)మ

(௞యା௞ర)మ,  

ܽ(3,5) = (௞యି௞ఱ)మ

(௞యା௞ఱ)మ, ܽ(4,5) = (௞రି௞ఱ)మ

(௞రା௞ఱ)మ 

ܾ(1,2,3) = ܽ(1,2) ܽ(1,3) ܽ(2,3),  

ܾ(1,3,4) = ܽ(1,3) ܽ(1,4) ܽ(3,4),  
ܾ(1,3,5) = ܽ(1,3) ܽ(1,5) ܽ(3,5),  

ܾ(1,2,4) = ܽ(1,2) ܽ(1,4) ܽ(2,4),  
ܾ(1,2,5) = ܽ(1,2) ܽ(1,5) ܽ(2,5),  

ܾ(1,4,5) = ܽ(1,4) ܽ(1,5) ܽ(4,5),  
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ܾ(2,3,4) = ܽ(2,3) ܽ(2,4) ܽ(3,4),  
ܾ(2,3,5) = ܽ(2,3) ܽ(2,5) ܽ(3,5),  

ܾ(2,4,5) = ܽ(2,4) ܽ(2,5) ܽ(4,5),  
ܾ(3,4,5) = ܽ(3,4) ܽ(3,5) ܽ(4,5)  
ܿ(1,2,3,4) =

ܽ(1,2) ܽ(1,3) ܽ(1,4) ܽ(2,3) ܽ(2,4) ܽ(3,4), 

ܿ(1,2,3,5) =
ܽ(1,2) ܽ(1,3) ܽ(1,5) ܽ(2,3) ܽ(2,5) ܽ(3,5), 

ܿ(1,2,4,5) =
ܽ(1,2) ܽ(1,4) ܽ(1,5) ܽ(2,4) ܽ(2,5) ܽ(4,5), 

ܿ(1,3,4,5) =
ܽ(1,3) ܽ(1,4) ܽ(1,5) ܽ(3,4) ܽ(3,5) ܽ(4,5), 

ܿ(2,3,4,5) =
ܽ(2,3) ܽ(2,4) ܽ(2,5) ܽ(3,4) ܽ(3,5) ܽ(4,5), 

݀(1,2,3,4,5)  =
ܽ(1,2) ܽ(1,3) ܽ(1,4) ܽ(1,5) ܽ(2,3)   

     ܽ(2,4) ܽ(2,5) ܽ(3,4) ܽ(3,5) ܽ(4,5) 
Substituting in Eq. (31), we get the five - 

soliton solution as follows: 

Φଵ = ଵଶ஻
஺

డమ

డకమ  ൛lnൣ1 + ݁ఏభ + ݁ఏమ + ݁ఏయ + ݁ఏర +

݁ఏఱ + ܽ(1,2)݁ఏభାఏమ + ܽ(1,2)݁ఏభାఏమ +
ܽ(1,3)݁ఏభାఏయ + ܽ(1,4)݁ఏభାఏర +
ܽ(1,5)݁ఏభାఏఱ + ܽ(2,3)݁ఏమାఏయ +
ܽ(2,4)݁ఏమାఏర + ܽ(2,5)݁ఏమାఏఱ +
ܽ(3,4)݁ఏయାఏర + ܽ(3,5)݁ఏయାఏఱ +
ܽ(4,5)݁ఏరାఏఱ + ܾ(1,2,3)݁ఏభାఏమାఏయ +
ܾ(1,2,4)݁ఏభାఏమାఏర + ܾ(1,2,5)݁ఏభାఏమାఏఱ +
ܾ(1,3,4)݁ఏభାఏయାఏర + ܾ(1,3,5)݁ఏభାఏయାఏఱ +
ܾ(1,4,5)݁ఏభାఏరାఏఱ + ܾ(2,3,4)݁ఏమାఏయାఏర +
ܾ(2,3,5)݁ఏమାఏయାఏఱ + ܾ(2,4,5)݁ఏమାఏరାఏఱ +
ܾ(3,4,5)݁ఏయାఏరାఏఱ +
ܿ(1,2,3,4)݁ఏభାఏమାఏయାఏర +
ܿ(1,2,3,5)݁ఏభାఏమାఏయାఏఱ +
ܿ(1,2,4,5)݁ఏభାఏమାఏరାఏఱ +
ܿ(1,3,4,5)݁ఏభାఏయାఏరାఏఱ +
ܿ(2,3,4,5)݁ఏమାఏయାఏరାఏఱ +
݀(1,2,3,4,5)݁ఏభାఏమାఏయାఏరାఏఱ൧ൟ        (37)  

where:  

௜ߠ = ݇௜ିܤభ
యߦ − ݇௜

ଷ߬ − ∆௜
′ ; ݅ = 1,2, 3, 4, 5  

∆ଵ
′ =

∓ ଶ஻
భ
య

௞భ
 ݈݊ ቤට ௗ(ଵ,ଶ,ଷ,ସ)

௔(ଶ,ଷ) ௔(ଶ,ସ) ௔(ଶ,ହ) ௔(ଷ,ସ) ௔(ଷ,ହ) ௔(ସ,ହ)ቤ  

∆ଶ
′ =

∓ ଶ஻
భ
య

௞మ
 ݈݊ ቤට ௗ(ଵ,ଶ,ଷ,ସ,ହ)

 ௔(ଵ,ଷ) ௔(ଵ,ସ) ௔(ଵ,ହ)௔(ଷ,ସ) ௔(ଷ,ହ) ௔(ସ,ହ)ቤ  

∆ଷ
′ =

∓ ଶ஻
భ
య

௞య
 ݈݊ ቤට ௗ(ଵ,ଶ,ଷ,ସ,ହ)

 ௔(ଵ,ଶ) ௔(ଵ,ସ)௔(ଵ,ହ) ௔(ଶ,ସ)௔(ଶ,ହ)௔(ସ,ହ)ቤ  

∆ସ
′ =

∓ ଶ஻
భ
య

௞ర
 ݈݊ ቤට ௗ(ଵ,ଶ,ଷ,ସ,ହ)

 ௔(ଵ,ଶ) ௔(ଵ,ଷ) ௔(ଵ,ହ)௔(ଶ,ଷ) ௔(ଶ,ହ)௔(ଷ,ହ)ቤ  

∆ହ
′ =

∓ ଶ஻
భ
య

௞ఱ
 ݈݊ ฬට ௗ(ଵ,ଶ,ଷ,ସ,ହ)

 ௔(ଵ,ଶ) ௔(ଵ,ଷ) ௔(ଵ,ସ)௔(ଶ,ଷ)௔(ଶ,ସ)௔(ଷ,ସ)
ฬ  

Discussion and Conclusion 
In this section, numerical analysis has been 

performed to study the properties overtaking 
collision of four-solitons and five-solitons under 
the influence of dust charge variation with other 
fixed physical parameters. The results of the 
Rosetta spacecraft observations of Comet 
67P/Churyumov–Gerasimenko were used [16]. 
The effect of dust charge variation coefficients 
on phase shifts and time evolution of multi-
solitons is demonstrated in the following section. 

Time Evolution of Multi –Solitons: 

Fig. 1 demonstrates time evaluation of the 
interaction of rarefactive four-solitons. When 
solitons are moving in the same direction but at 
different speeds, solitons with larger amplitudes 
tend to have higher speeds.  The velocity of a 
soliton is proportional to its amplitude, while the 
width of a soliton is inversely proportional to the 
square root of its amplitude, which means that 
longer solitons are much thinner than shorter 
solitons. At ߬ = −1 the larger amplitude soliton 
is behind small amplitude soliton. Over time, the 
solitons get closer to each other and merge into a 
single soliton at ߬ = 0. But at ߬ = 1 the solitons 
separate again, and each soliton returns to its 
original shape before the collision. A larger 
amplitude soliton comes to the fore. 
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FIG. 1. Time evolution of four – solitons at different times, ݇ଵ = 1, ݇ଶ = 2, ݇ଷ = 3, ݇ସ = 4.  

  
FIG. 2. Time evolution of five – solitons at different times, ݇ଵ = 1, ݇ଶ = 2, ݇ଷ = 3, ݇ସ = 4, ݇ହ = 5.  

 

It is clear from the figures that the solitons 
regain their original shapes and velocities after 
the collision. 

The effects of dispersion in the plasma 
medium lead to the disintegration of a single 
soliton, with the larger soliton appearing first, 
followed by the smaller soliton, and then the 
even smaller ones.  

Solitons maintain their original profile before 
interaction due to the balance between the effects 
of nonlinearity and dissipation.  Solitons are 
similar in their behavior to particles in that they 
maintain their profiles despite interacting with 
each other.  

Previous investigations on the overtaking and 
head-on collision between solitary waves 
showed that collisions are accompanied by 
deviations known as phase shifts [24, 25]. In 
other words, the trajectories of the solitons after 
the collision deviate from their trajectories 
before the collision.  

The obtained results align with the findings 
reported previously, as well as with the results 
concerning the interaction of two solitons and 
three solitons. [25-28]. 

Soliton Shape Changes 

In this section, we study the effect of varying 
charges on a grain’s surface and the spectral 
indices k௖௘ , k௦௘ on the profile of the interacting 
solitons. Fig.s 3(a) and 4(a) show the change in 

the profile of the four-solitons and five-solitons 
for two different values of k௖௘ , k௦௘ at ߬ = −1 
with varying charge.  

Figs. 3(b) and 4(b) show the changes in the 
form of four-solitons and five-solitons for the 
constant dust charge ߛଵ, ଶߛ = 0 ,  varying dust 
charge ߛଵ, ଶߛ ≠ 0, and fixed values for spectral 
indices k௖௘ , k௦௘ = 3. It was found that there is a 
small increase in the amplitude of the solitons in 
case of varying dust charge. 

The amplitude is sure to increase due to the 
change in nonlinear and dispersive effects under 
the influence of varying dust charges. 
Eventually, a large increase in amplitude causes 
steepening of the dust acoustic solitary waves 
and produces a new type of linear wave called a 
dust acoustic shockwave. These patterns have 
been observed in all comets [29]. 

On the other hand, we found that the 
amplitudes of solitons increase with increasing 
values of spectral indices k௖௘ , k௦௘ (i.e., decrease 
in the superthermality of the two types of 
electrons). 

Both types of high-energy electrons (low 
values of spectral indices) provide more energy 
to the motion of the studied solitons, causing an 
increase in their velocities and, thus, an increase 
in their amplitudes. Similar results have been 
presented in other studies [10, 29].  
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FIG. 3. Four - solitons shape variations for different values of spectral indices k௖௘ , k௦௘ and variable dust charge. 

Other parameters are: ݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௖ܶ௘ = 2 × 10ସ ܭ, ௦ܶ௘ =
2 × 10ହ ܭ, ݉௟௜ = 1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 × 10ସ ܭ, ௛ܶ௜ =

2.8 × 10ସ ܭ. 

  
FIG. 4. Five - solitons shape variations for different values of spectral indices k௖௘, k௦௘ and variable dust charge. 

Other parameters are: ݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௖ܶ௘ = 2 × 10ସ ܭ, ௦ܶ௘ =
2 × 10ହ ܭ, ݉௟௜ = 1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 × 10ସ ܭ, ௛ܶ௜ =

2.8 × 10ସ ܭ. 
 

Figs. 5(a) and 5(b) show the changes in the 
form of four-solitons and five-solitons with 
colder electrons ݊௖௘଴ = 5 ܿ݉ିଷ, ௖ܶ௘ = 2 × 10ସܭ 
as well as without colder electrons ݊௖௘଴ =

0 ܿ݉ିଷ, ௖ܶ௘ =  It was found that the .ܭ0
presence of a new type of electron contributes to 
a decrease in the amplitude of solitons. 

 
FIG. 5. Four- and five - solitons shape variations for different values of n௖௘଴, T௖௘ and variable dust charge. Other 

parameters are: ݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௦ܶ௘ = 2 × 10ହ ܭ, ݉௟௜ =
1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 × 10ସ ܭ, ௛ܶ௜ = 2.8 × 10ସ ܭ, ݇௦௘ =

2.  
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Phase Shifts 
The results of the simulation of the 

interaction between solitons showed that each 
soliton maintains its original shape before the 
reaction. This fact has been demonstrated in 
previous studies for the interaction of two- 
solitons and three-solitons and in this work for 
the interaction of four-solitons and five-solitons.  

Fig. 6 shows the phase shift changes ∆ଵ 
(݇ଵ = 1) against k௖௘ for a constant dust charge 
ଵߛ , ଶߛ = 0 and a varying dust charge ߛଵ , ଶߛ ≠ 0. 

It has been shown that the phase shifts increase 
with increasing k௖௘. On the other hand, it is 
shown that for large values of k௖௘, the phase 
shifts are significantly increased in the case 
ଵߛ , ଶߛ ≠ 0. 

The phase shift of the soliton occurs as a 
result of the consumption of its energy during 
the collision. In other words, the consumption of 
the energy of the soliton during the reaction 
increases with the increase of spectral indices 
and varying dust charges. 

 
FIG. 6. Variation of the phase shift ∆ଵ against the spectral indices k௖௘ for ߛଵ , ଶߛ  = 0 and ߛଵ, ଶߛ  ≠ 0. Other 

parameters are: ݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௖ܶ௘ = 2 × 10ସ ܭ, ௦ܶ௘ = 2 ×
10ହ ܭ, ݉௟௜ = 1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 × 10ସ ܭ, ௛ܶ௜ = 2.8 ×

10ସ ܭ, ݇௦௘ = 2, ݇ଵ = 1. 
 

Figs. 7 and 8 show the phase shifts changes 
against the spectral indices k௖௘ for four-solitons 
(݇ଵ = 1, ݇ଶ = 2, ݇ଷ = 3, ݇ସ = 4) and five-
solitons (݇ଵ = 1, ݇ଶ = 2, ݇ଷ = 3, ݇ସ = 4, ݇ହ =
5). 

We noted that the phase shifts of small 
solitons are greater than that of large solitons. 
The reason is that the large solitons force the 
small ones to delay in appearance after the 
collision. This result is consistent with previous 
experimental and theoretical work [25-29]. 

 
FIG. 7. Variation of the phase shift of Four - solitons against the spectral indices k௖௘ for ݇ଵ = 1, ݇ଶ = 2, ݇ଷ =
3, ݇ସ = 4. Other parameters are: ݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௖ܶ௘ = 2 ×
10ସ ܭ, ௦ܶ௘ = 2 × 10ହ ܭ, ݉௟௜ = 1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 ×

10ସ ܭ, ௛ܶ௜ = 2.8 × 10ସ ܭ, ݇௦௘ = 2 
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FIG. 8. Variation of the phase shift of five-solitons against the spectral indices k௖௘ for ݇ଵ = 1, ݇ଶ = 2, ݇ଷ =

3, ݇ସ = 4, ݇ହ = 5 . Other parameters are: 
݊ௗ଴ = 0.05 ܿ݉ିଷ, ܼௗ଴ = 200, ݊௛௜଴ = 0.5 ܿ݉ିଷ, ݊௟௜଴ = 4.95 ܿ݉ିଷ, ௖ܶ௘ = 2 × 10ସ ܭ, ௦ܶ௘ = 2 × 10ହ ܭ, ݉௟௜ =

1.67 × 10ିଶସ ݃, ݉௛௜ = 16 × 1.67 × 10ିଶସ ݃, ݉௘ = 9.1 × 10ିଶ଼ ݃, ௟ܶ௜ = 8 × 10ସ ܭ, ௛ܶ௜ = 2.8 × 10ସ ܭ, ݇௦௘ =
2. 

 

Conclusions 
In this study, we investigated the overtaking 

collision of dust acoustic multi-soliton in a dusty 
plasma consisting of variable negatively charged 
inertial dust grains, components of electrons with 
different temperatures described by kappa 
distributions, a lighter (hydrogen) ion 
component, and a heavier (oxygen) ion 
component. As a first step, we have derived  the 
Korteweg–De Vries (KdV) equation. Next,  
applying the Hirota direct method, we have 
presented four-soliton and five-soliton solutions 
of the KdV equation. Moreover, we used the 
results of the observations of Comet 
67P/Churyumov–Gerasimenko to model two 
types of electrons: the hotter solar electrons, on 
the one hand,  and the colder cometary electrons, 
on the other. It has been observed that a larger 
soliton moves faster, approaches a smaller 
solitons, and recovers its original shape and 
speed after the collision. The amplitude of four-
soliton and five-soliton increases when the 
charges on the dust particles vary. The phase 
shift of solitons increases with increasing of 
spectral indices. The increase is significant when 

the charges on the dust particles vary for large 
values of spectral indices.  

The presence of new superthermal 
components in the plasma contributes to a 
significant modification of the surface charge of 
the dust grains, which leads to a decrease in the 
amplitude of oscillation. 

Hirota's method differs from previous studies 
in terms of the type of collision it focuses on. 
Specifically, Hirota's method examines the 
overtaking collision of multi-solitons, whereas 
the Poincaré–Lighthill–Kuo method analyzes 
head-on collisions between solitons. [29]. Both 
methods agree on the relationship between the 
phase shifts of solitons and the cube root of the 
dispersion coefficient ܤ, as well as their 
amplitudes. This study is important for 
understanding many nonlinear phenomena in 
space and astronomical plasma environments, 
including cometary dusty plasma, Saturn’s rings, 
and interstellar clouds [30, 18]. 

Acknowledgments 
This study was supported by Tishreen 

University.  
  



Article  Kabalan, Ahmad and Asad 

 180

References: 
[1] Goertz, C.K., Rev. Geophys., 27 (1989) 271. 

[2] Goertz, C.K., Rev. Geophys., 27 (2) (1989) 
21. 

[3] Havnes, O., Melanso, F., Hoz, C.L. and 
Aslaksen, T., Phys. Scripta, 45 (5) (1992) 
433. 

[4] Melands, F., Phys. Plasmas, 3 (11) (1996) 11. 

[5] Amin, M.R., Morfill, G.E. and Shukla, P.K., 
physical review, 58 (5) (1998) 6. 

[6] Mamun, A.A.  and Shukla, P.K., Phys. of 
Plasmas, 10 (11) (2003) 8.  

[7] Pierrard, V., Lazar, M., Solar Phys., 267 
(2010) 21. 

[8] Hau, L.N. and Fu, W.Z., Phys. Plasmas, 14 
(2007) 110702. 

[9] Kundu, S.K., Chatterjee, P. and Ghosh, U.N., 
Astrophys Space Sci., 340 (2012) 5. 

[10] Varghese, A., Saritha, A.C., Willington, 
N.T., Michael, S. and Sreekala, M.S., J. 
Astrophys. Astr., 41 (11) (2020). 

[11] Amour, R. and Tribeche, M., Phys. 
Plasmas, 17 (2010) 063702. 

[12] Dezfuly, S.Gh. and Dorranian, D., Contrib. 
Plasma Phys., 53 (8) (2013) 8. 

[13] Kabalan, N., Ahmad, M. and Asad, A., 
Advances in Mathematical Phys., 2020 
(2020) 9. 

[14] Singh, K., Kakad, A., Kakad, B. and Saini, 
N.S., Monthly Notices of the Royal 
Astronomical Society, 500 (2) (2021) 8. 

[15] Kaur, N., Singh, K. and Saini, N.S., Phys. of 
Plasmas, 24 (2017) 092108.  

[16] Eriksson, A.I., Engelhardt, I.A.D., André, 
M., Boström, R., Edberg, N.J.T., Johansson, 
F.L. and Odelstad, E., Astronomy & 
Astrophysics, 605 (15) (2018) 14. 

 

 

 

 

 

 

[17] Su, C.H. and Mirie, R.M., J. Fluid Mech., 
98 (1980) 509. 

[18] Bandyopadhyay, P., Prasad, G., Sen, A. and 
Kaw, P.K., Phys. Rev. Lett., 101 (2008) 
065006. 

[19] Klein, U. and Kerp, J., "Argelander", 
(Institut fur Astronomie, Bonn, 2008). 

[20] Dorranian, D. and Sabetkar, A., Phys. 
Plasmas, 19 (2012) 013702. 

[21] Naeem, I., Ehsan, Z., Mirza, A.M. and 
Murtaza, G., Phys. of Plasmas, 27 (2020) 
043703. 

[22] Abid, A.A., Ali, S., Du, J. and Mamun, 
A.A., Phys. Plasmas, 22 (2015) 084507. 

[23] Singh, K., Sethi, P. and Saini, N.S., Phys. of 
Plasmas, 25 (2018) 033705. 

[24] Hirota, R., "The Direct Method in 
Soliton Theory", (Cambridge Tracts in 
Mathematics, No. 155, 2004). 

[25] Boruah, A., Sharma, S.K., Nakamura, Y. 
and Bailung, H., Phys. of Plasmas, 23 (9) 
(2016) 7.  

[26] Asita, S. and Prasanta, C., Astrophys. Space 
Sci., 353 (2014) 8. 

[27] Roy, K., Maji, T.K. and Ghorui, M.K., 
Astrophys Space Sci., 352 (2014) 6.  

[28] Mandal, G., Roy, K., Paul, A., Saha, A. and 
Chatterjee, P., Z. Naturforsch., 70 (2015) 8.  

[29] Naeem, I., Ehsan, Z., Mirza, A.M. and 
Murtaza, G., 2001 (1) (2020) 09374. 

[30] Goertz, C.K., Linhua-Shan and Havnes, O., 
Geophys. Res. Lett., 15 (84) (1988). 


