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Abstract: We solved the N-dimensional Klein-Gordon equation analytically using the 
Nikiforov-Uvarov method to obtain the energy eigenvalues and the corresponding wave 
function in terms of Laguerre polynomials with the ultra generalized exponential–
hyperbolic potential. The present results are applied for calculating the mass spectra of 
heavy mesons, such as charmonium (ܿܿ̅) and bottomonium (ܾ തܾ), for different quantum 
states. The present work provides excellent results in comparison with experimental data 
with a maximum error of 0.0059ܸ݁ܩ and the works of other researchers. 
Keywords: Ultra generalized exponential–hyperbolic potential, Klein-Gordon equation, 

Heavy mesons, Nikiforov-Uvarov method. 
 

 
1. Introduction 

The solution of the spectral problem for the 
Klein-Gordon equation with spherically 
symmetric potentials is of major concern in 
describing the spectra of heavy mesons. Potential 
models offer a good description of the mass 
spectra of quarkonium systems, such as 
bottomonium and charmonium [1-5]. In 
simulating the interaction for these systems, 
confining-type potentials are generally used. The 
holding potential is the Cornell potential with 
two terms, one of which is responsible for the 
Coulomb interaction of quarks and the other 
corresponds to the confinement of the quark [6]. 
Although this potential, proposed to describe 
quarkonia with heavy quarks, has been used for a 
long time, nevertheless the problem of finding 
the inter-quark potential with exponential-type 

potential still remains incompletely solved. In 
recent times, the solutions of the Schrödinger 
equation (SE) and Klein-Gordon equation (KGE) 
under the quarkonium interaction potential 
model, such as the Cornell or the Killingbeck 
potential, have attracted much interest of 
researchers [7-15]. The KGE with some potential 
can be solved exactly for 0l  , but is insolvable 
for any arbitrary angular momentum quantum 
number 0l  . In this case, several approximate 
techniques are employed in obtaining the 
solution. For instance, such techniques include, 
asymptotic iteration method (AIM) [16] Laplace 
transformation method [17], the Nikiforov-
Uvarov functional analysis (NUFA) method [18-
20], the Nikiforov-Uvarov(NU) method [21-34], 
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the series expansion method (SEM) [35-37], 
WKB approximation [38], among others [39].  

Various exponential-type potentials have 
been studied by many researchers, such as 
Hellmann plus Hulthen potential [40], Kratzer 
plus screened Coulomb potential [25], Yukawa 
potential [41], Hellmann plus Eckart potential 
[29] and many more. The trigonometric 
hyperbolic potential plays a vital role in atomic 
and molecular physics, since it can be used to 
model inter-atomic and inter-molecular forces 
[42, 43]. 

The ultra generalized exponential –hyperbolic 
potential (UGEHP) takes the form [44]: 

(ݎ)ܸ =
௔௘షరഀೝା௕௘షమഀೝ

௥మ +
௖௘షమഀೝିௗ஼௢௦௛(ఎఈ௥)௘షഀೝା௚஼௢௦௘௖௛ఈ௥௘ഀೝ

௥
+ ݂,    (1) 

where , , , , ,   a b c d g and f are potential 
strengths and  is the screening parameter. 
When 1  , then: 
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We carry out a series expansion of the 
exponential terms in Eqs. (1) and (2) up to order 
three, in order to model the potential to interact 
in the quark-antiquark system and substitute the 
results into Eq. (1), which yields: 

20 1
2 3 42( ) ,V r r r

rr
 

                 (3) 

where 
଴ߚ = ܽ + ܾ,

ଵߚ = ߙ4ܽ + ߙ2ܾ + ݀ − ݃,
ଶߚ = ଶߙ2ܿ + ݀ߙ
ଷߚ = ݀)ߙ − ݃),

ସߚ = ଶߙ8ܽ + ଶߙ2ܾ − ߙ2ܿ − ݀ߙ + ߙ݃ + ݂⎭
⎪
⎬

⎪
⎫

. (4) 

The third term of Eq. (3) is a linear term for 
confinement feature and the second term is the 
Coulomb potential that describes the short 
distance between quarks.  

Researchers in recent times have obtained the 
mass spectrum of the quarkonium systems using 
different techniques [45-47]. For instance, 
Inyang et al. [45] examined heavy quarkonia 

characteristics in the general framework of SE 
with extended Cornell potential using the exact 
quantization rule. Furthermore, Omugbe et al. 
[39] obtained the heavy and heavy-light spectra 
in non-relativistic regime with Killingbeck 
potential plus an inversely quadratic potential 
model using the WKB method. In addition, 
Inyang et al. [46] obtained the Klein-Gordon 
equation solutions for the Yukawa potential 
using the Nikiforov-Uvarov method. The energy 
eigenvalues were obtained both in relativistic 
and non-relativistic regimes. The results were 
applied to calculate heavy-meson masses. 
Therefore, in this present work, we aim at 
studying the KGE with the ultra generalized 
exponential –hyperbolic potential (UGEHP) 
using the NU method to obtain the mass spectra 
of heavy mesons, such as charmonium ( )cc  and 
bottomonium ( )bb . To the best of our 
knowledge, this study is not in literature. The 
study will be carried out in threefold. We will 
first model the potential to interact in the quark-
antiquark system, thereafter we solved the model 
potential with KGE using the NU method and 
finally, the mass spectra are calculated. 

2. Bound State Solution of the Klein-
Gordon Equation with the Ultra 
Generalized Exponential – Hyperbolic 
Potential (UGEHP) 

The Klein-Gordon equation for a spinless 
particle for 1c   in N dimensions is given 
as [46]: 

ቂ−ߘଶ + ܯ) + ଶ((ݎ)ܵ +
(ேାଶ௟ିଵ)(ேାଶ௟ିଷ)

ସ௥మ ቃ ,ݎ)߰ ,ߠ ߮) = ௡௟ܧ] −
,ݎ)ଶ߰[(ݎ)ܸ ,ߠ ߮)            (5) 

where 2  is the Laplacian, M  is the reduced 
mass, nlE  is the energy spectrum, n  and l  are 
the radial and orbital angular momentum 
quantum numbers, respectively. It is well known 
that for the wave function to satisfy the boundary 
conditions, it can be rewritten as:  

   , , ,nl
lm

Rr Y
r

     .           (6) 

The angular component of the wave function 
could be separated leaving only the radial part as 
shown below: 
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ௗమோ(௥)
ௗ௥మ + ቂ൫ܧ௡௟

ଶ − ଶ൯ܯ + ܸଶ(ݎ) − ܵଶ(ݎ) −
(ݎ)௡௟ܸܧ)2 + ((ݎ)ܵܯ −
(ேାଶ௟ିଵ)(ேାଶ௟ିଷ)

ସ௥మ ቃ (ݎ)ܴ = 0 .                  (7) 

Thus, for equal vector and scalar potentials 
( ) ( ) 2 ( )V r S r V r  , Eq. (7) becomes: 

     
ௗమோ(௥)

ௗ௥మ + ቂ൫ܧ௡௟
ଶ − ଶ൯ܯ − ௡௟ܧ)(ݎ)2ܸ + (ܯ −

(ேାଶ௟ିଵ)(ேାଶ௟ିଷ)
ସ௥మ ቃ (ݎ)ܴ = 0 .          (8) 

Upon substituting Eq. (3) into Eq. (8), we 
obtain: 
ௗమோ(௥)

ௗ௥మ +

⎣
⎢
⎢
⎢
⎢
⎡ ൫ܧ௡௟

ଶ − ଶ൯ܯ +

ቆ− ଶఉబ
௥మ + ଶఉభ

௥
− ݎଶߚ2

ଶݎଷߚ2+ − ସߚ2
ቇ ௡௟ܧ) + (ܯ

− (ேାଶ௟ିଵ)(ேାଶ௟ିଷ)
ସ௥మ ⎦

⎥
⎥
⎥
⎥
⎤

(ݎ)ܴ = 0.

  
              (9)  

In order to transform the coordinate from r  
to x in Eq. (9), we set: 

1x
r


 
 .          (10) 

This implies that the 2nd derivative in Eq. (10) 
becomes: 

2 2
3 4

2 2

(r) (x) (x)2d R dR d Rx x
dxdr dx

 
 
.            (11)  

Substituting Eqs. (10) and (11) into Eq. (9), 
we obtain: 
ௗమோ(௫)

ௗ௫మ + ଶ
௫

ௗோ
ௗ௫

+

ଵ
௫ర

⎣
⎢
⎢
⎢
⎢
⎡ ൫ܧ௡௟

ଶ − ଶ൯ܯ +

൭
ଶݔ଴ߚ2− + ݔଵߚ2

− ଶఉమ
௫

+ ଶఉయ
௫మ − ସߚ2

൱ ௡௟ܧ) + (ܯ

− (ேାଶ௟ିଵ)(ேାଶ௟ିଷ)௫మ

ସ ⎦
⎥
⎥
⎥
⎥
⎤

(ݔ)ܴ =

0 .            (12)   

Next, we propose the following 
approximation scheme on the term ఉమ

௫
 and  ఉయ

௫మ . 

Let us assume that there is a characteristic 
radius ݎ଴ of the meson. Then, the scheme is 
based on the expansion of ఉమ

௫
 and ఉయ

௫మ in a power 

series around 0r ; i.e., around ߜ ≡ ଵ
௥బ

, in the x-
space up to the second order. This is similar to 
Pekeris approximation, which helps deform the 
centrifugal term such that the potential can be 
solved by the NU method [47]. 

Setting y x   and around 0y  , it can 
be expanded into a series of powers as: 

1
2 2 2 2 1

1

y
yx y

   
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


          

   

  (13)  

which yields:  
2

2
2 2 3

3 3x x
x



  
 
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        (14) 

Similarly, 
2

3
32 2 3 4

6 8 3x x
x

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  
 
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        (15) 

By substituting Eqs. (14) and (15) into Eq. 
(12), we obtain: 
ௗమோ(௫)

ௗ௫మ + ଶ௫
௫మ

ௗோ(௫)
ௗ௫

+ ଵ
௫ర ߝ−] + ݔߚ − (ݔ)ܴ [ଶݔߛ =

0            (16) 

where 

ߝ− = ቌ
൫ܧ௡௟

ଶ − ଶ൯ܯ − ଺ఉమ
ఋ

௡௟ܧ) + (ܯ

+ ଵଶఉయ
ఋమ ௡௟ܧ) + (ܯ − ௡௟ܧ)ସߚ2 + (ܯ

ቍ

ߚ = ቌ
௡௟ܧ)ଵߚ2 + (ܯ + ଺ఉమ

ఋమ ௡௟ܧ) + (ܯ

− ଵ଺ఉయ
ఋయ ௡௟ܧ) + (ܯ

ቍ

ߛ = ቌ
௡௟ܧ)଴ߚ2 + (ܯ + ଶఉమ

ఋయ ௡௟ܧ) + (ܯ

− ଺ఉయ
ఋర ௡௟ܧ) + (ܯ + (ேାଶ௟ିଵ)(ேାଶ௟ିଷ)

ସ

ቍ
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

.

  

(17) 

Comparing Eq. (16) and Eq. (A1), we obtain: 
2

2

(x) 2 ,  (x)
(x)
(x) 2 ,  (x) 2

x x
x x

x

 

   
 

 


    
   


 .         (18) 

We substitute Eq. (18) into Eq. (A9) to 
obtain: 

  2(x) x k x       
 
.       (19) 
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To determine ݇, we take the discriminant of 
the function under the square root, which yields: 

2 4
4

k  



  .          (20) 

We substitute Eq. (20) into Eq. (19) and have: 

(ݔ)ߨ = ± ቀ ఉ௫
ଶ√ఌ

− ఌ
√ఌ

ቁ.               (21) 

For a physically acceptable solution, we take 
the negative part of Eq. (21) which is required 
for bound-state problems and differentiate. This 
yields:  

(x)
2



   .
 
        (22) 

By substituting Eqs. (18) and (22) into Eq. 
(A7), we have: 

2(x) 2 xx  
 

  
 
.        (23) 

Differentiating Eq. (23). we have: 

(x) 2 


   .          (24) 

By using Eq. (A10), we obtain: 

ߣ = ఉమିସఊఌ
ସఌ

− ఉ
ଶ√ఌ

 .                      (25) 

And using Eq. (A11), we obtain: 

2
n

n n n


   .          (26) 

Equating Eqs. (25) and (26) and substituting 
Eqs. (4) and (17) yield the energy eigenvalue 
equation of the UGEHP in the relativistic limit 
as: 

ଶܯ − ௡௟ܧ
ଶ = ଺൫ଶ௖ఈమାఈௗ൯

ఋ
௡௟ܧ) + (ܯ

− ଵଶఈ(ௗି௚)
ఋమ ௡௟ܧ) + (ܯ

+2 ൬8ܽߙଶ + ଶߙ2ܾ − ߙ2ܿ
݀ߙ− + ߙ݃ + ݂ ൰ ௡௟ܧ) + (ܯ

+ ଵ
ସ

⎣
⎢
⎢
⎢
⎢
⎡ ଶ(ସ௔ఈାଶ௕ఈାௗି௚)(ா೙೗ାெ)

ାల൫మ೎ഀమశഀ೏൯൫ಶ೙೗శಾ൯
ഃమ ିభలഀ(೏ష೒)൫ಶ೙೗శಾ൯

ഃయ

௡ାభ
మାඩ

భ
రିଶ(௔ା௕)(ா೙೗ାெ)ାమ൫మ೎ഀమశഀ೏൯

ഃయ (ா೙೗ାெ)

ିలഀ(೏ష೒)
ഃర (ா೙೗ାெ)ା(ಿశమ೗షభ)(ಿశమ೗షయ)

ర ⎦
⎥
⎥
⎥
⎥
⎤

ଶ

.

  

(27) 

 

2.1 Non-relativistic Limit 

In this sub-section, we consider the non-
relativistic limit of Eq. (27). Considering a 

transformation of the form: 2

2
nlM E 

 


 

and nl nlM E E   , where   is the reduced 
mass, and substituting it into Eq. (27), we have 
the non-relativistic energy eigenvalue equation 
as: 

௡௟ܧ = ଵଶఈ(ௗି௚)
ఋమ − ଺൫ଶ௖ఈమିఈௗ൯

ఋ
ߙ8ܽ)2− + ଶߙ2ܾ − ߙ2ܿ − ݀ߙ + ݃ߙ + ݂)

− ℏమ

଼ఓ

⎣
⎢
⎢
⎢
⎢
⎡ రഋ

ℏమ(ସ௔ఈାଶ௕ఈାௗି௚)

ା భమഋ
ഃమℏమ൫ଶ௖ఈమାఈௗ൯ିయమഋഀ

ഃయℏమ(ௗି௚)

௡ାభ
మାඩ

భ
రିరഋ

ℏమ(௔ା௕)ା రഋ
ഃయℏమ(ଶ௖ఈమାఈௗ)ିభమഋഀ

ഃరℏమ(ௗି௚)

ା(ಿశమ೗షభ)(ಿశమ೗షయ)
ర ⎦

⎥
⎥
⎥
⎥
⎤

ଶ

. 

(28)  

The unnormalized wave function in terms of 
Laguerre polynomials is given as: 

1 1

2 2(s) ,s
nl nB s e L

s

 
   



   
  

   
       (29)

  
where nL  is the associated Laguerre 

polynomials and nlB is the normalization 
constant, which can be obtained from: 

2

0

| B ( ) | 1nl r dr



 
         (30)

 

3. Results and Discussion 
3.1 Results 

We calculate the mass spectra of the heavy 
quarkonium system, such as charmonium and 
bottomonium, in 3-dimensional space ( 3N  ) 
that have the quark and anti-quark flavors, using 
the following relation [48]: 

32 N
nlM m E   ,          (31) 

 
where m  is the quarkonium bare mass and 

3N
nlE 

 stands for the energy eigenvalues. By 
substituting Eq. (28) into Eq. (31), we obtain the 
mass spectra for UGEHP as: 
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ܯ = 2݉ + ଵଶఈ(ௗି௚)
ఋమ − ଺൫ଶ௖ఈమିఈௗ൯

ఋ
ߙ8ܽ)2− + ଶߙ2ܾ − ߙ2ܿ − ݀ߙ + ݃ߙ + ݂)

− ℏమ

଼ఓ

⎣
⎢
⎢
⎢
⎢
⎡ రഋ

ℏమ(ସ௔ఈାଶ௕ఈାௗି௚)

ା భమഋ
ഃమℏమ൫ଶ௖ఈమାఈௗ൯ିయమഋഀ

ഃయℏమ(ௗି௚)

௡ାభ
మାඩ

భ
రିరഋ

ℏమ(௔ା௕)ା రഋ
ഃయℏమ(ଶ௖ఈమାఈௗ)ିభమഋഀ

ഃరℏమ(ௗି௚)

ା(ಿశమ೗షభ)(ಿశమ೗షయ)
ర ⎦

⎥
⎥
⎥
⎥
⎤

ଶ

. 

(32) 

3.2 Discussion of Results 

We calculate the mass spectra of charmonium 
and bottomonium for states from 1S, 2S, 1P, 2P, 
3S, 4S, 1D, 2D, and 1F, by using Eq. (32). The 
free parameters of Eq. (32) were then obtained 
by solving two algebraic equations by inserting 
experimental data of mass spectra for 2 , 2S P  in 
the case of charmonium. In the case of 
bottomonium, the values of the free parameters 
in Eq. (32) are calculated by solving two 
algebraic equations, which were obtained by 
inserting experimental data of mass spectra for
1 , 2S S .  

The experimental data was taken from [49]. 
For bottomonium bb  and charmonium cc  
systems, we adopt the numerical values of these 
masses as bm   4.823GeV  and cm   1.209

GeV  [50]. Then, the corresponding reduced 
masses are b   2.4115GeV  and c  0.6045
GeV , respectively. We note that the 
calculations of mass spectra of charmonium and 
bottomonium are in good agreement with 
experimental data and works of other 
researchers, in Refs. [7, 48] as presented in 
Tables 1 and 2. In order to test for the accuracy 
of the predicted results determined numerically, 
we used a Chi-squared function to determine the 
error between the experimental data and the 
theoretically predicted values. The maximum 
error in comparison with the experimental data is 
found to be 0.0059GeV . We plotted the 
variation of mass spectra energy with respect to 
potential strengths, reduced mass    and 

screening parameter   , respectively. In Figs. 1 
and 2, the mass spectra energy increases as the 
potential strength increases for different quantum 
numbers. In Fig. 3, it is observed that the mass 
spectra energy decreases exponentially as the 
reduced mass increases for various angular 
quantum numbers; a divergence is noticed when

0.1  . Finally, an increase in mass spectra 
energy is observed as the screening parameter 
increases.    

 

TABLE 1. Mass spectra of charmonium in  GeV .  

ቌ
ܽ = ,ܸ݁ܩ22.17885− ܾ = ,ܸ݁ܩ13.73217 ܿ = ,ଶܸ݁ܩ10.73524

݀ = ,ଵିܸ݁ܩ3.010241 ݃ = 10.64213, ݂ = ,ଷܸ݁ܩ0.05
ߙ = 0.01, ߜ = ,ܸ݁ܩ1.00252   ݉௖ = ,ܸ݁ܩ1.209 ܰ = 3, ℏ = 1, ߤ = ܸ݁ܩ0.6045

ቍ 

State Present work [7] [48] Experiment [49] 
1S 3.096 3.096 3.096 3.096 
2S 3.686 3.686 3.672 3.686 
1P 3.526 3.255 3.521 3.525 
2P 3.767 3.779 3.951 3.773 
3S 4.040 4.040 4.085 4.040 
4S 4.262 4.269 4.433 4.263 
1D 3.768 3.504 3.800 3.770 
2D 4.034 - - 4.159 
1F 4.162 - - - 
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TABLE 2. Mass spectra of bottomonium in  GeV . 

ቌ
ܽ = ,ܸ݁ܩ20.99857− ܾ = ,ܸ݁ܩ13.6254385 ܿ = ,ଶܸ݁ܩ13.73524

݀ = ,ଵିܸ݁ܩ4.110240 ݃ = 11.542130,     ݂ = ,ଷܸ݁ܩ0.05
ߙ = 0.01, ߜ = ,ܸ݁ܩ1.00252 ݉௖ = ,ܸ݁ܩ4.823 ܰ = 3, ℏ = 1, ߤ = ܸ݁ܩ2.4115

ቍ 

State Present work [7] [48] Experiment[49] 
1S 9.460 9.460 9.4620 9.460 
2S 10.023 10.023 10.027 10.023 
1P 9.761 9.619 9.9630 9.899 
2P 10.261 10.114 10.299 10.260 
3S 10.355 10.355 10.361 10.355 
4S 10.579 10.567 10.624 10.580 
1D 9.998 9.864 10.209 10.164 
2D 10.206 - - - 
1F 10.109 - - - 

 

 

 
FIG. 1. Variation of mass spectra with potential strength ( )a  for different quantum numbers. 
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FIG. 2. Variation of mass spectra with potential strength ( )b  for different quantum numbers. 

 
FIG. 3. Variation of mass spectra with reduced mass ( )  for different quantum numbers. 
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FIG. 4. Variation of mass spectra with screening parameter ( )  for different quantum numbers. 

 

4. Conclusion 
In this study, we model the adopted ultra 

generalized exponential–hyperbolic potential to 
interact in quark-antiquark system. We obtained 
the approximate solutions of the KGE for energy 
eigenvalues and unnormalized wave function 
using the NU method. We applied the present 
results to compute heavy-meson masses of 
charmonium and bottomonium for different 
quantum states. The results agreed with 
experimental data, with a maximum error of 
0.0059GeV , and works of other researchers. 
Mass spectra variation with potential strengths, 
reduced mass    and screening parameter    
were plotted and discussed.  

APPENDIX A: Review of Nikiforov-
Uvarov (NU) method 

The NU method was proposed by Nikiforov 
and Uvarov [51] to transform Schrödinger-like 
equations into a second-order differential 
equation via a coordinate transformation

( )x x r , of the form: 

   
     

   2 0
x x

x s x
x x

 
  

 
   

 
 (A1) 

where ߪ෤(ݔ) and (ݔ)ߪ are polynomials, at most 
second-degree, and ( )x  is a first-degree 
polynomial. The exact solution of Eq. (A1) can 
be obtained by using the transformation: 

     x x y x  .       (A2) 

This transformation reduces Eq. (A1) into a 
hypergeometric-type equation of the form: 

          0x y x x y x y x          (A3) 

The function ( )x  can be defined as the 
logarithm derivative: 

 
 

 
 

x x
x x

 
 


 ,       (A4) 

with ( )x  being at most a first-degree 

polynomial. The second part of  x being 
( )y x  in Eq. (A2) is the hypergeometric function 

with its polynomial solution given by Rodrigues 
relation as: 

       
n

nnl
n

B dy x x x
x dx

 


         (A5) 
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where nlB  is the normalization constant and 

 x the weight function which satisfies the 
condition below: 

        x x x x           (A6) 

where also: 

     2x x x    .       (A7) 

For bound solutions, it is required that: 
/ ( ) 0x  .        (A8) 

The eigenfunctions and eigenvalues can be 
obtained using the definition of the following 
function  x  and parameter λ, respectively: 

(ݔ)ߨ =
ఙᇲ(௫)ିఛ෤(௫)

ଶ
± ටቀఙᇲ(௫)ିఛ෤(௫)

ଶ
ቁ

ଶ
− (ݔ)෤ߪ +    (ݔ)ߪ݇

(A9) 

and 

 k x    .     (A10) 

The value of k  can be obtained by setting the 
discriminant in the square root in Eq. (A9) equal 
to zero. As such, the new eigenvalues equation 
can be given as: 

ߣ + ݊߬ᇱ(ݔ) + ௡(௡ିଵ)
ଶ

(ݔ)ᇱᇱߪ = 0, (݊ = 0,1,2, . . . ).  
(A11) 
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