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Abstract: In this paper, we investigate the LRS Bianchi Type-II universe filled with 
pressureless cold dark matter and non-interacting new holographic dark energy in the 
framework of general relativity. To obtain the deterministic solution of Einstein’s field 
equations, we assume the scalar of expansion to be proportional to the eigenvalue of the 
shear tensor. The expressions for some parameters of cosmological importance are obtained 
and physical and geometrical properties of the model are discussed. The correspondence 
between the new holographic dark energy and quintessence scalar field model is also 
established by comparing their equations of state and densities. Our results are consistent 
with the recent cosmological observations. 
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1. Introduction 

In the last part of the twentieth century, two 
teams of astronomers, one led by A. G. Riess [1] 
and the other by S. Perlmutter [2, 3], 
independently reported that our universe is 
currently passing through a phase of accelerated 
expansion. Since then several cosmological 
observations like Cosmic Microwave 
Background (CMB) [4, 5], Large Scale Structure 
(LSS) [6-9], Planck collaboration results [10], 
Baryon Acoustic Oscillations (BAO) [11] as 
well as improved measurements of supernovae 
have confirmedcosmic acceleration. In the 
framework of standard cosmology, an exotic 
component that exerts large negative pressure, 
dubbed dark energy (DE), is needed to explain 
this acceleration. The most natural candidate for 
dark energy is found to be the cosmological 
constant Λ with an equation of state ߱ = −1. 
But from a theoretical point of view [12-16], the 
cosmological constant facesthe fine-tuning and 
cosmic coincidence problems. Therefore, various 
dynamical dark energy scenarios such as 
quintessence [17-19], phantom [20, 21], tachyon 

[22, 23], k-essence [24], dilatonic ghost 
condensate [25], braneworld models [26], etc. 
have been proposed in the literature. 

The holographic principle, a quantum 
gravitational principle, has provided an 
alternative perspective on the issue of dark 
energy. Within this framework, a new significant 
contender for dark energy has emerged, known 
as holographic dark energy.The holographic 
principle was first put forwardby G.’t Hooft [27] 
to explain the thermodynamics of black hole 
physics. It states that the number of degrees of 
freedom directly related to entropy of a system 
scales with the enclosing surface area of the 
system and not with its volume. Fischler and 
Susskind [28] applied this principle to the 
cosmological context and stated that the 
gravitational entropy within a closed surface 
should not be always larger than the particle 
entropy that passes through the past lightcone of 
that surface. Since then, a number of authors 
[29-33] have proposed various choices of IR 
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cutoff or second-order geometrical 
invariants,which led to new problems in physics. 
Granda and Oliveros [34] proposed a new 
holographic dark energy density of the form 
ேுாߩ ≈ ଶܪߙ +  is the Hubbleܪ where ,ܪ̇ߚ
parameter and ߙ and ߚare constants to be 
determined so as to satisfy the current 
observational data. Granda and Oliveros [35] 
also established a correspondence between this 
new holographic dark energy with quintessence, 
tachyon, k-essence, and dilaton dark energy 
models. In recent times, Santhi et al. [36] have 
studied Bianchi type VI0 space-time with 
anisotropic modified holographic Ricci dark 
energy in the Brans–Dicke theory of gravity. 
Rao and Prasanthi [37] have studied Bianchi 
type-III and LRS Bianchi type-I models filled 
with matter and modified holographic Ricci dark 
energy in the framework of the Saez-Ballester 
scalar-tensor theory of gravitation. Katore and 
Kapse [38] have studied the anisotropic and 
homogeneous Bianchi type-VI0 universe filled 
with dark matter and holographic dark energy in 
the framework of general relativity and Lyra’s 
geometry. Saridakis [39] has presented a model 
of holographic dark energy in which the infrared 
cutoff is determined by both the Ricci and the 
Gauss-Bonnet invariants. This model offers the 
advantage of having a holographic dark energy 
density that remains unaffected by the future or 
past evolution of the universe, relying solelyon 
its current features. Ghaffari [40] has studied the 
cosmological dynamics of holographic dark 
energy in a DGP braneworld in which the 
holographic parameter c2 is slowly varying with 
time. In this model, it is shown that for the two 
famous IR cutoffs,namely the Hubble radius and 
the Granda-Oliveros cutoff, there is a transition 
from a deceleration phase to an accelerated one 
for the universe. Srivastava et al. [41] have 
investigated holographic dark energy with a new 
infrared cutoff of Granda and Oliveros in 
Bianchi type-III anisotropic model with the dark 
matter and established a correspondence between 
k-essence scalar field and their new holographic 
dark energy model. By considering the time-
varying deceleration parameter, Dixit et al. [42] 
have investigated Tsallis holographic dark 
energy in the framework of the FRW universe. 
Bhattacharjee [43] has studied the dynamics of 
Tsallis holographic dark energy and Rényi 
holographic dark energy prescribed by a non-
linear interaction in the FRW space-time and for 

a scale factor evolving with a composite power 
law-exponential form. 

In this paper, we consider a locally 
rotationally symmetric Bianchi Type-II space-
time filled with a mixture of cold dark matter 
and non-interacting new holographic dark 
energy. The paper is organized as follows: In 
Sec. 2, we derive the field equations for the 
Bianchi Type-II metric within the framework of 
general relativity. In Sec. 3, cosmological 
solutions of the field equations are obtained by 
considering the scalar of expansion to be 
proportional to the eigenvalue of the shear 
tensor, which in turn, gives a relation between 
the directional scale factors. In Sec. 4, we study 
some physical and geometrical properties of the 
model. The correspondence between the new 
holographic dark energy and quintessence scalar 
field model is established in Sec. 5 and the paper 
is concluded with a brief discussion in Sec. 6. 

2. Metric and Field Equations 
The LRS Bianchi Type-II space-time can be 

described by the metric [44]: 

ଶݏ݀ = + ଶݐ݀− ݔ݀) ଶܣ − + ଶ(ݕ݀ݖ + ଶݕ݀) ଶܤ
 ଶ )            (1)ݖ݀

where ܣ and B are directional scale factors and 
are functions of the cosmic time ݐ alone.  

We assume the space-time to be filled with a 
mixture of cold dark matter and non-interacting 
new holographic dark energy (NHDE) of density 
  ேுா proposed by Granda and Oliveros [34]ߩ

ேுாߩ = ଶܪߜ)3 + ̇(ܪߚ            (2) 
where ߜ and ߚ are constants. 

Overall energy-momentum tensor can 
therefore be considered to consist of two 
different components ܶ and തܶ  so that in 
natural units (8ܩߨ = 1, ܿ = 1), the Einstein field 
equations may be taken in the form: 

ܴ − ଵ
ଶ 

ܴ ݃ =  − ܶ − തܶ          (3)  

where ܴ  is the Ricci tensor, ܴ, the Ricci scalar 
curvature, and ܶ  and തܶ are the energy-
momentum tensors of pressureless cold dark 
matter.Thus, the new holographic dark energy is 
given by: 

ܶ =              (4)ݑݑߩ 
തܶ = ேுாߩ) ݑݑ(ேுா + + ݃ேுா      (5) 
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Here, ߩ is the energy density of cold dark 
matter, and ߩேுா and ேுா are respectively 
the energy density and pressure of new 
holographic dark energy. 

In comoving coordinates, the Einstein field 
Eq. (3) for the metric in Eq. (1) is obtained as: 

2 ̇


̇


+ ቀ̇


ቁ
ଶ

− ଵ
ସ

మ

ర = ߩ +  ேுா         (6)ߩ

̈


+ ̈


+ ̇


̇


+ ଵ
ସ

మ

ర =  ேுா          (7)−

2 ̈


+ ቀ̇


ቁ
ଶ

− ଷ
ସ

మ

ర =  ேுா          (8)−

where an over dot denotes differentiation with 
respect to ݐ. 

The vanishing of the divergence of Einstein 
tensor yields:  

ܶ,
 + തܶ,

 = 0            (9) 

which gives the continuity equation 

ߩ̇ + ேுாߩ̇ + ߩ) + ேுாߩ + (ேுா ቀ̇


+

2 ̇


ቁ = 0          (10) 

For the metric in Eq. (1), some parameters of 
cosmological importance such as the Hubble 
parameter ܪ, the deceleration parameter ݍ, the 
expansion scalar ߠ, the mean anisotropy 
parameter ܣ, the shear scalar ߪ and the spatial 
volume ܸ are given by: 

ܪ = ଵ
ଷ

ቀ̇


+ 2 ̇


ቁ         (11) 

ݍ =  ௗ
ௗ௧

ቀଵ
ு

ቁ −  1         (12) 

ߠ = ܪ3 = ̇


+ 2 ̇

         (13)  

A୫ = ଵ
ଷ

∑ [ுିு]మ

ுమ
ଷ
ୀଵ =  ଶ

ଽுమ ቀ̇


− ̇


ቁ
ଶ
             (14) 

ଶߪ = ଵ
ଶ

 [∑ ܪ
ଶଷ

ୀଵ − ଵ
ଷ 

θଶ ] = ଷ
ଶ 

A୫ܪଶ            (15) 

ܸ =  ଶ          (16)ܤܣ

3. Cosmological Solutions of the Field 
Equations 

We have four equations, namely Eqs (2) and 
(6) - (8), with five unknowns: A, B, ߩ ,  ேுாߩ
and ேுா. So, one more physical condition 
relating the unknowns is required to obtain an 
exact solution of the field equations. To 
construct the fifth equation, we assume the scalar 
of expansion ߠ to be proportional to the 

eigenvalue ߪଶ
ଶ of the shear tensor ߪ

 so that we 
may consider the relation between the directional 
scale factors as: 

ܣ =            (17)ܤ݈

where ݈ and ݉ are positive constants. 

From Eqs. (7) and (8), we have: 

ܣ̈
ܣ

−
ܤ̈
ܤ

+
ܣ̇
ܣ

ܤ̇
ܤ

− ቆ
ܤ̇
ܤ

ቇ
ଶ

+
ଶܣ

ସܤ = 0 

Using Eq. (17), we obtain: 

(݉ − 1) ̈


+ (݉ − 1)(݉ + 1) ቀ̇


ቁ
ଶ

+
݈ଶܤଶ(ିଶ) = 0         (18) 

which shows that ݉ ≠ 1 

In order to get a solution to this differential 
equation, we consider ̇ܤ as a function of ܤ, and 
then solving (18), we get: 

ܤ̇ = ට మ

ଶ(ଵି)
ଶିଶܤ + ݇ଵିܤଶିଶ       (19) 

where ݇ଵ is a constant of integration. 

From (19), we have: 

ݐ݀ =
ܤ݀

ට మ

ଶ(ଵି)
ଶିଶܤ + ݇ଵିܤଶିଶ

 

Now, using the transformation ܤ = ܶ 
suitably, we obtain the solution in quadrature 
form as: 

ଶݏ݀ = − ௗ்మ

మ
మ(భష)்మషమାభ்షమషమ

+ ݈ଶ ܶଶ (݀ݔ −

+ ଶ(ݕ݀ݖ ܶଶ (݀ݕଶ +  ଶ )        (20)ݖ݀

From Eq. (11), the Hubble parameter for this 
model is obtained as: 

ܪ = ାଶ
ଷ

ቂ మ

ଶ(ଵି) ܶଶିସ + ݇ଵܶିଶିସቃ
భ
మ     (21) 

Other cosmological parameters are obtained 
as: 

ݍ = −1 −
ଷమ(షమ)

(భష)்రିଶభ(ାଶ)൨

ଶ(ାଶ)[ మ
మ(భష)்రାభ]

       (22) 

ߠ = (݉ + 2) ቂ మ

ଶ(ଵି) ܶଶିସ + ݇ଵܶିଶିସቃ
భ
మ  
(23) 

ܣ = ଶ(ିଵ)మ

(ାଶ)మ           (24) 
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ଶߪ = (ିଵ)మ

ଷ
ቂ మ

ଶ(ଵି) ܶଶିସ + ݇ଵܶିଶିସቃ (25) 

ܸ = ݈ܶାଶ          (26) 

Using (21) in (2), we obtain the new 
holographic dark energy density as: 

ேுாߩ = ݇ଶܶଶିସ + ݇ଷܶିଶିସ       (27) 

where, ݇ଶ = ቂఋ(ାଶ)
ଷ

− ݉)ߚ − 2)ቃ మ(ାଶ)
ଶ(ଵି)

 and 

݇ଷ = ቀఋ
ଷ

− ቁߚ ݇ଵ(݉ + 2)ଶ. 

Using (27) in (6), we get: 

ߩ = ቂ(ାଵ)(ାଶ)మ

ସ(ଵି) − ݇ଶቃ ܶଶିସ +
[݇ଵ(2݉ + 1) − ݇ଷ]ܶିଶିସ        (28) 

From Eq. (8), we get: 

ேுா = (ଶିଷ)(ାଵ)
ସ(ଵି)

݈ଶܶଶିସ + (2݉ +
1)݇ଵܶିଶିସ                       (29) 

Hence, the equation of state (EoS) parameter 
of the NHDE is obtained as: 

߱ேுா = ಿಹವಶ
ఘಿಹವಶ

=
(మషయ)(శభ)

ర(భష) మ்రା (ଶାଵ)భ

మ்రାయ
  
(30) 

The NHDE and cold dark matter density 
parameters are obtained as: 

Ωேுா = ఘಿಹವಶ
ଷுమ =

మ்మషరା య்షమషర

(శమ)మ
య [ మ

మ(భష)்మషరା భ்షమషర]
       (31) 

Ω = ఘ
ଷுమ =

(శభ)(శమ)మ

ర(భష) ିమ൨்మషరା[భ(ଶାଵ)ିయ]்షమషర

(శమ)మ
య  మ

మ(భష)்మషరାభ்షమషర൨
  

(32) 
Hence, the total energy density parameter is 

obtained as: 

Ω = Ωேுா + Ω =
(శభ)(శమ)మ

ర(భష) ்రାభ(ଶାଵ)

(శమ)మ
య  మ

మ(భష)்రାభ൨
  

(33) 

4. Some Physical and Geometrical 
Properties of the Model: 

From Fig. 1, it is clear that initially ݍ is 
positive and decreases as time evolves, and 
approaches −1 asymptotically. The negative 
value of ݍ indicates that the cosmic expansion is 
accelerating at late times. 

From Fig. 2, we see that the new holographic 
dark energy density is a decreasing function of 
time. 

 
FIG 1. Deceleration parameter ݍ vs ܶ graph with 

݉ = 2, ݇ଵ = −1, ݈ = 0.01(in natural units). 

 
FIG 2.New holographic dark energy density 

݉ ேுாvsܶgraph withߩ = 2, ݇ଵ = −1, ݈ = 0.01, ߜ =
1.5, ߚ = 3 (in natural units). 

From Fig. 3, we see that the EoS parameter of 
NHDE is increasing with time, entering 
eventually the quintessence region −1 <
߱ேுா < − ଵ

ଷ
. 

 
FIG 3. The EoS parameter of NHDE ߱ேுா vsܶ graph 

with ݉ = 2, ݇ଵ = −1, ݈ = 0.01, ߜ = 1.5, ߚ = 3 (in 
natural units). 
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Fig. 4 describes the behavior of the total 
energy density. From the graph, we see that it is 
an increasing function of time and has values 
near 1 throughout the evolution of the universe. 
At a certain epoch, the total energy density 
crosses the isotropic background, that is, Ω = 1. 
This shows that the model never reaches the 
isotropic background during late times, although 
it remains near the isotropic background. 

FIG 4. Total energy density parameter Ωvsܶ graph 
with ݉ = 2, ݇ଵ = −1, ݈ = 0.01 (in natural units). 

Also, since ݉ ≠ 1, therefore,ܣ ≠ 0 for all 
݉. Hence, our model is anisotropic throughout 
the evolution. 

It is also clear that at ܶ = 0, ܸ = 0 and the 
other parameters ܪ,  ,ଶ all diverge. Henceߪ and ߠ
the universe characterised by our model evolves 
with initial Big Bang type singularity and goes 
on expanding asܶ → ∞.  

5. Correspondence between New 
Holographic Dark Energy and 
Quintessence Scalar Field Model 

In this section, we compare the EoS 
parameters and the energy densities for the new 
holographic dark energy and quintessence scalar 
field ߶whose actionis given by [45]: 

ܵ = ∫ ݀ସݔඥ−݃[− ଵ
ଶ

߲݃ ߶ ߲߶ − ܸ(߶)]      (34) 

where ܸ(߶)is the quintessence potential of 
thescalar field ߶. The Lagrangian density for the 
quintessence model is: 

ℒథ = − ଵ
ଶ

߲݃߶ ߲߶ − ܸ(߶)  

and the energy-momentum tensor of the 
quintessence field is 

ܶ
(థ) = ߲߶ ߲߶ − ݃ ቂଵ

ଶ
݃ఈఉ߲ఈ߶ ఉ߲߶ + ܸ(߶)ቃ  

The energy density and pressure for the 
quintessence scalar field ߶ are given by: 

థߩ = − ܶ
(థ) = ଵ

ଶ
߶̇ଶ + ܸ(߶)        (35) 

థ = ܶ
(థ) = ଵ

ଶ
߶̇ଶ − ܸ(߶)        (36) 

Thus, the equation of state for the 
quintessence scalar field߶ is: 

߱థ =
ഝ

ఘഝ
= థ̇మିଶ(థ)

థ̇మାଶ(థ)
         (37) 

Now from (30) and (37), we get: 
(మషయ)(శభ)

ర(భష) మ்రା(ଶାଵ)భ

మ்రାయ
= థ̇మିଶ(థ)

థ̇మାଶ(థ)
       (38) 

Again comparing (27) and (35), we get: 

݇ଶܶଶିସ + ݇ଷܶିଶିସ = ଵ
ଶ

߶̇ଶ + ܸ(߶)       (39) 

From Eq. (38), we get: 
ଵ
ଶ

߶̇ଶ =
(మషయ)(శభ)

ర(భష) మ்రା(ଶାଵ)భାమ்రାయ

మ்రାయି(మషయ)(శభ)
ర(భష) మ்రି(ଶାଵ)భ

ܸ(߶)  

  (40) 
From (39) and (40), the potential term ܸ(߶)is 

derived as: 

ܸ(߶) = ଵ
ଶ

ቂ݇ଶܶଶିସ + ݇ଷܶିଶିସ −
(ଶିଷ)(ାଵ)

ସ(ଵି) ݈ଶܶଶିସ − (2݉ + 1)݇ଵܶିଶିସቃ  
(41) 

This type of potential function may be 
responsible for the accelerated expansion of the 
universe. 

6. Conclusion 
In this paper, we study the LRS Bianchi 

Type-II universe filled with pressureless cold 
dark matter and non-interacting new holographic 
dark energy (NHDE). To obtain an exact 
solution of Einstein’s field equations, we assume 
the scalar of expansion ߠ to be proportional to 
the eigenvalue of the shear tensor ߪ

 which 
gives the relation between the directional scale 
factors as ܣ =  , where ݈ and ݉ are positiveܤ݈
constants. Physical and geometrical properties of 
some cosmological parameters of our model are 
discussed. We find that: 
 The universe evolves with a Big Bang 

singularity and goes on expanding with time. 
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 The early universe is decelerating (ݍ > 0) 
while the present as well as the future 
universe is accelerating (ݍ < 0). 

 Although the universe is close to isotropic 
background, it remains anisotropic 
throughout its evolution. 

 The new holographic dark energy density 
decreases with time. 

 The EoS parameter of the model approaches 
the quintessence region −1 < ߱ுா < − ଵ

ଷ
at 

late times. 

We also find the correspondence between the 
new holographic dark energy and the 
quintessence scalar field and reconstruct the 
quintessence scalar potential. 
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