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Abstract: The lattice Green's function method is employed to analyze the resistance of a 
triangular network consisting of identical resistors in both perfect and perturbed scenarios, 
where a single interstitial resistance is added. In the perfect lattice scenario, all resistors are 
assumed to have equal resistance, and the network is considered ideal with no 
imperfections. To calculate the lattice Green's function and resistance of the perturbed 
lattice, Dyson's equation is utilized. This equation relates the perturbed and unperturbed 
Green's function and the interstitial resistance value. To validate the dependability of the 
lattice Green's function method in predicting the behavior of intricate networks, the 
accuracy of the computed values is evaluated by comparing them with the measured values 
for an infinite triangular network. 
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1. Introduction 

The lattice Green's function (LGF) is a 
significant aspect of the study of condensed 
matter physics and solid-state physics, 
particularly when dealing with impure solids [1]. 
It is utilized in various fields such as quantum 
mechanics, quantum field theories, and classical 
field theories. In quantum theory, the problem 
involves solving linear operator equations while 
taking into account specific boundary conditions. 
Green first introduced the fundamental concepts 
of Green’s function (GF) in potential theory, 
where he focused on solving Laplace's and 
Poisson's equations with different boundary 
conditions. Additionally, LGF is a critical tool in 
investigating the statistical mechanics of the 
spherical model [2]. Furthermore, the utilization 
of (LGFs) in physics presents a wide range of 
compelling benefits that permeate various 
aspects of condensed matter physics. These 
functions exhibit their remarkable versatility by 
finding applications in a diverse array of 
problems, spanning from lattice vibrations and 
luminescence to diffusion in solids and the 

dynamic behavior of spin waves [3]. 
Furthermore, LGFs play a crucial role in the 
theory of random walks on lattices [4] and in 
complex calculations of effective resistance in 
resistor networks [5]. These diverse applications 
highlight the indispensable nature of LGFs in 
exploring and understanding condensed matter 
phenomena. 

Despite their utility, LGFs have certain 
limitations. These include their reliance on 
simplifying assumptions, the computational 
challenges associated with large systems, and 
their primary applicability to systems with 
translational symmetry [6]. Nevertheless, LGFs 
remain a powerful tool for analyzing quantum 
particles on lattices, offering significant insights 
into condensed matter physics and related fields. 

For decades, electric circuit theorists have 
tackled the well-known problem of computing 
the resistance between two nodes in a network of 
resistors. This problem has been extensively 
studied since the time of Kirchhoff in 1847 and 
continues to be of interest today [7]. A variety of 



Article  Ajoor et al. 

 566

techniques have been developed over time to 
calculate the effective resistance between any 
two arbitrary sites in a resistor network [8-10]. 
Kirchhoff's work on electric networks, which 
dates back over 150 years, laid the groundwork 
for this research. Atkinson and Steewijk 
developed the approach originally used to 
compute the resistance between any two 
arbitrary nodes in an infinite lattice of identical 
resistors with square, triangular, hexagonal, and 
hypercubic geometries, as outlined in reference 
[11]. Jeng [12] introduced a novel approach that 
maps a random walk problem onto a resistor 
network, enabling the calculation of effective 
resistance between any two nodes in an infinite 
two-dimensional square lattice of unit resistors. 

Cserti [5] proposed an alternative method 
leveraging the lattice Green's function (LGF) 
instead of using the superposition of current 
distributions. Expanding on this work, Cserti et 
al. [13] investigated perturbed networks by 
removing a bond (resistor) from a perfect lattice. 
They expressed the resistance between arbitrary 
nodes in terms of the resistance in the 
unperturbed lattice. 

In an innovative contribution, Wu [14] 
presented a method for determining the effective 
resistance between any two nodes in a resistor 
network, applicable to both finite and infinite 
networks. Wu's approach uses the eigenvalues 
and eigenfunctions of the Laplacian matrix 
associated with the network. Furthermore, Wu 
derived equations tailored to one-, two-, and 
three-dimensional networks with various 
boundary conditions to compute the resistance. 

 Asad et al. [15] examined multiple infinite 
networks of capacitors using the LGF, while 
Hijjawi et al. [16] determined the capacitance of 
infinite networks by removing a single bond 
from a perfect lattice. Asad et al. [17] used the 
superposition principle and charge distribution to 
explore infinite networks of identical capacitors, 
while Cserti et al. [18] developed a general 
method for obtaining the electric resistance 
between any two nodes in an infinite lattice 
structure of resistors that forms a periodic tiling 
of space. Our research aims to investigate the 
impact of adding a single interstitial resistance to 
an infinite network. In this research, we utilized 
the powerful GF method to investigate the 
resistance characteristics of a perfect and infinite 
triangular network consisting of identical 
resistors. The results obtained through this 
approach highlight the intrinsic symmetry 

present in the lattice structures. By deriving 
recurrence relations, we precisely calculated the 
resistances between any two arbitrary sites on 
the infinite triangular lattice. For analyzing the 
resistance in a perturbed lattice network, we 
employed the remarkable efficiency and 
elegance of the Dirac notation, which represents 
the pinnacle of problem formulation.  

The article is organized into five sections. 
Section 2 introduces the theoretical framework, 
detailing the formulae that relate the resistance in 
perfect, infinite triangular networks of identical 
resistors to the LGF of the Tight Binding 
Hamiltonian. Section 3 focuses on the LGF and 
resistance in a perturbed infinite triangular 
network, with particular attention to the case of a 
single interstitial resistance. Section 4 applies the 
theoretical concepts to computational models, 
presenting results derived using both analytical 
methods and Circuit Maker software. Finally, 
Section 5 concludes the study by summarizing 
the key findings and insights gained from the 
research. 

2. Perfect Triangular Lattice  
This section outlines the methodology used to 

calculate the LGF and effective resistance in a 
flawless, infinite triangular network composed of 
resistors with uniform resistance R. The notation 
 is employed to indicate the current flowing (ݎ⃗)ܫ
into a specific site ⃗ݎ, while ܸ(⃗ݎ) represents the 
potential at that site [5]. 

∑ ݎ⃗)ܸ ] + ܽ⃗) − ଷ(ݎ⃗)2ܸ
ୀଵ + ݎ⃗)ܸ − ܽ⃗)] =

  (1)             ܴ(ݎ⃗)ܫ− 

Here, ܽ(݅ = 1,2) are the independent primitive 
lattice vectors, each of which has the same 
magnitude ܽ, referred to as the lattice constant. 

If we consider a three-dimensional lattice and 
assign the basis vector |݈〉 to represent the lattice 
point ⃗ݎ, then: 

(ݎ⃗)ܸ = (ݎ⃗)ܫ ݀݊ܽ ⟨ܸ|݈⟩  =  (2)          ⟨ܫ|݈⟩ 

It is assumed that the set of basis vectors|݈〉 is 
complete and orthonormal, meaning that the 
Kronecker delta function is used to define the 
inner product between any two basis vectors, and 
the sum of the outer product of all basis vectors 
gives the identity matrix. By expressing the 
vectors |ܸ〉 and |݈〉 in terms of the lattice basis, it 
is possible to represent these vectors as linear 
combinations of the basis vectors. 
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|ܸ〉 =  ∑ |݈〉 〈݈| ܸ〉 =  ∑ (ݎ⃗)ܸ 〈݈|           (3) 
〈ܫ| =  ∑ |݈〉 〈݈| 〈ܫ =  ∑ (ݎ⃗)ܫ 〈݈|            (4) 

Equation (1) takes the form: 

∑ ∑ [⟨݈ + ݅|݊⟩ ⟨݊|ܸ⟩ −  2⟨݈|݊⟩ ⟨݊|ܸ⟩ +ଷ
ୀଵ

 ⟨݈ − ݅|݊⟩ ⟨݊|ܸ⟩ =   (5)           [ܴ⟨ܫ|݈⟩ − 

Equation (5) may be expressed as:  

∑ ∑ ା,ߜ]
ଷ
ୀଵ − ,ߜ 2  ⟨ܸ|݊⟩ [ି,ߜ + =

 (6)             ܴ⟨ܫ|݈⟩ − 

in which we have utilized: 

(ݎ⃗)ܸ =  ⟨݈|ܸ⟩ =
 ∑ ⟨݈|݊⟩ ⟨݊|ܸ⟩ =  ∑ (ݎ⃗)ܸ ,ߜ           (7) 

Equation (1) is represented using the Dirac 
vector space notation as: 

ܮ  |ܸ〉 =  (8)            〈ܫ| ܴ− 

The operator ܮ  is referred to as the 
Laplacian operator of the unperturbed lattice. 

The LGF for a perfect lattice is defined as 
follows [6]: 

ܮ ܩ  =  −1             (9) 

The resistance value between two specific 
sites, ⃗ݎ and ⃗ݎ, can be determined by the 
following formula [5]:  

ܴ(݅, ݆) = ,݅)ܩ] 2ܴ ݅) − ,݅)ܩ  ݆)]        (10) 

where the diagonal and off-diagonal elements of 
the LGF are represented by ܩ(݅, ݅) and ܩ(݅, ݆), 
respectively.  

The definition of the LGF for the triangular 
lattice is as follows [5]: 

,݈)ܩ ݉) = ∫ ௗ௫భ
ଶగ

గ
ିగ  ∫ ௗ௫మ

ଶగ
గ

ିగ   (ೣభశ ೣమ)

ଶ ∑ (ଵି ୡ୭ୱ ௫)య
సభ

    (11) 

By applying Eq. (11), one can express the 
resistance between the origin and the lattice 
point ⃗ݎ = (݈, ݉) in an infinite triangular lattice 
as:  

ܴ(݈, ݉) = ܴ ∫ ௗ௫భ
ଶగ

గ
ିగ  ∫ ௗ௫మ

ଶగ
గ

ିగ  ଵି (ೣభశ ೣమ)

∑ (ଵି ୡ୭ୱ ௫)య
సభ

  (12) 

3. Single Interstitial Resistance in a 
Perfect Lattice 

In this section, the GF technique is employed 
to calculate the resistance of a modified lattice 
known as the perturbed lattice. This lattice is 
created by introducing an additional resistance, 
referred to as an interstitial resistance, between 
the ends of a diagonal bond (⃗ݎ,⃗ݎ). To better 
understand this concept, we examine a triangular 
configuration of identical resistors, denoted by 
R, in which one of the triangular unit cells is 
diagonally shunted by an extra resistance of 
ܴ´ =  ߙ ,as shown in Fig. 1. In this context ,ܴߙ 
represents a constant with specific values. 
Specifically, we consider two values for 0.5 :ߙ 
and 1. 

 
FIG. 1. Perturbation of a triangular lattice of resistors ܴ by inserting an interstitial resistance ܴ´ between the 

endpoints (⃗ݎ,⃗ݎ) of the diagonal bond. 

In order to find the total resistance between 
two endpoints of the interstitial resistance, we 
need to calculate the equivalent resistance. This 
can be done by combining the interstitial 

resistance, represented by ܴ´, with the resistance 
across the diagonal bond (⃗ݎ,⃗ݎ) in an ideal 
lattice, in parallel. The current contribution at 
site ⃗ݎ that results from the diagonal bond 
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 in the perfect lattice is referred to as (ݎ⃗,ݎ⃗)
 :(ݎ⃗)ܫߜ

ܴ(݅ݎ⃗)ܫߜ = ,݅ݎ⃗)ߜ  (݅ݎ⃗)ܸൣ(݅ݎ⃗ −  ܸ൫݆⃗ݎ൯൧ +
,݅ݎ⃗)ߜ  ൯݆ݎ൫ܸ⃗](݆ݎ⃗ −  (13)         [(݅ݎ⃗)ܸ 

The introduction of the interstitial resistance 
ܴ´ between the ends of the diagonal bond 
 (݅ݎ⃗)´ܫߜ results in a current contribution (ݎ⃗,ݎ⃗)
at site ⃗ݎ, which can be expressed as follows:  

(ݎ⃗)´ܫߜ =  ோ ఋூ(⃗)
ோ´           (14) 

Multiply both sides of Eq. (14) by ܴ to get: 

ܴ(ݎ⃗)´ܫߜ =  ோ ఋூ(⃗)ோ
ோ´   

ܴ(ݎ⃗)´ܫߜ =  ோ
ோ´ ݎ⃗)ߜ] , (ݎ⃗)ܸൣ(ݎ⃗ −  ܸ൫⃗ݎ൯൧ +

ݎ⃗)ߜ  , ൯ݎ)[ܸ൫⃗ݎ⃗ −  (15)         [[(ݎ⃗)ܸ 

Using ߜ൫⃗ݎ , ൯ݎ⃗ =  ⟨݅|݆⟩ and (⃗ݎ) =  ⟨݅|ܸ⟩, we 
have: 

ܴ(ݎ⃗)´ܫߜ =  ோ
ோ´ [〈݅|[|݅〉 (〈݅| − 〈݆|)] +

[|݆〉 (〈 ݆| − 〈݅|)] |ܸ〉]         (16) 

Equation (16) may be rewritten as: 

ܴ(ݎ⃗)´ܫߜ =  ൻ݅หܮ´หܸൿ          (17) 

The interstitial resistance gives rise to a 
disturbance in the system, which is represented 
by the mathematical operator ܮ´. 

´ܮ =  ோ
ோ´  (|݅〉 − |݆〉) (〈݅| −  〈݆|) =  ோ

ோ´   |ݔ〉 〈ݔ| 
(18) 

where |ݔ〉 = |݅〉 −  |݆〉  

The current at ⃗ݎ in the perturbed lattice can 
be calculated by Ohm’s law, and the formula for 
this current is: 

ܴ(ݎ⃗)ܫ = ܮ −)  (ݎ⃗)( ܸ  +  (19)        ܴ(ݎ⃗)´ܫߜ 

When we substitute Eq. (17) in Eq. (19), we 
obtain:  

ܴ ⟨ܫ|݅⟩ = ⟨ܸ|ܮ|݅⟩−  + ൻ݅หܮ´หܸൿ         (20) 

We may write: 

〈ܸ| ܮ =  (21)          〈ܫ| ܴ− 

The perturbed lattice has a Laplacian operator 
 which is different from the Laplacian operator ´ܮ
ܮ  of the perfect lattice. Therefore, the Laplacian 
operator of the perturbed lattice can be expressed 
as:  

ܮ = ܮ  ´ܮ −            (22) 

The GF for a lattice that has been perturbed is 
expressed as follows:  

ܩ ܮ =  −1           (23)  

By merging Eq. (22) and Eq. (23), we obtain: 

ܩ = ଵିܮ−  =  (1 + ܩ ଵି(´ܮܩ           (24)  

To determine ܩ, Eq. (24) is expanded into an 
infinite geometric series [18]: 

ܩ = ܩ  − ܩ´ܮܩ  ܩ´ܮܩ´ܮܩ + −
ܩ´ܮܩ´ܮܩ´ܮܩ  + …         (25) 

Due to the uncomplicated nature of the 
perturbation ܮ´, the summation in Eq. (25) can be 
computed accurately, resulting in a particular 
form: 

ܩ = ܩ  −  ቀ ோ
ோ´ቁ ܩ|1 ] 〈ݔ − ቀ ோ

ோ´ቁ ⟨ݔ|ܩ|ݔ⟩ +

 ቀ ோ
ோ´ቁ

ଶ
ଶ(⟨ݔ|ܩ|ݔ⟩) −  ቀ ோ

ோ´ቁ
ଷ

ଷ(⟨ݔ|ܩ|ݔ⟩) +
 …   ܩ |ݔ〉 [

= ܩ  −  ቀ ோ
ோ´ቁ ܩ ] 〈ݔ|  ቀ 1 +  ோ

ோ´ ቁ⟨ݔ|ܩ|ݔ⟩
ିଵ

  ܩ |ݔ〉 [ 

ܩ = ܩ  −  ோீ(|〉ି |〉) (〈|ି 〈|) ீ
ோ´ା ோ (〈|ି 〈|) ீ (|〉ି |〉)

        (26) 

The perturbed LGF can be expressed in terms 
of ܩ as: 

,݅)ܩ ݆) =
,݅)ܩ  ݆) −  ோ[ீ(,)ି ீ(,)][ீ(,)ି ீ(,)]

ோ´ା ଶோ [ீ(,)ି ீ(,)]
  

(27) 
To determine the resistance between two 

positions, ⃗ݎ and ⃗ݎ, we use the relation:  

ܴ(݅, ݆) = ,݅)ܩ ] ܴ ݅) − ,݅)ܩ ݆) − ,݆)ܩ  ݅) +
,݆)ܩ  ݆)]           (28) 

The presence of a perturbation has caused a 
disturbance to the regular pattern of a lattice 
structure, resulting in a loss of its translational 
symmetry, which can be observed by the fact 
that the ܩ(݅, ݅) and ܩ(݆, ݆) are not equal. 
However, ܩ(݅, ݆) remains symmetric, indicating 
that ܩ(݅, ݆) = ,݆)ܩ  ݅). Consequently, Eq. (28) 
can be simplified accordingly. 

ܴ(݅, ݆) = ,݅)ܩ] ܴ ݅) + ,݆)ܩ  ݆) − ,݅)ܩ2  ݆)]     (29) 

Based on Eqs. (27) and (29), it is possible to 
determine the resistance between ⃗ݎ and ⃗ݎ  
using ܩ. 

ܴ(݅, ݆) = ,݅)ܩ] 2ܴ ݅) − ,݅)ܩ  ݆) ] −
 (ோ)మ [ ீ(,)ି ீ(,)ି ீ(,)ା ீ(,)]మ

ோ´ା ଶ ோ [ீ(,)ି ீ(,)]
     (30) 
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Ultimately, by utilizing Eq. (27), it becomes 
feasible to express the earlier equation in terms 
of the resistance of an ideal or perfect lattice, 
denoted as ܴ: 

ܴ൫݅, ݆, ; ܴ´൯ =

 ܴ(݅, ݆) −  [ோ(,)ା ோ(,)ି ோ(,)ି ோ(,)]మ

ସ[ ோ´ା ோ(,)]
  

(31) 
The given equation represents the ultimate 

outcome for the resistance that exists between 
any two lattice positions, ⃗ݎ and ⃗ݎ, within a 
network, whether it be finite or infinite, as long 
as the interstitial resistance is linked between the 
ends of the diagonal bond (݅, ݆). 

Using Eq. (31), it is possible to determine the 
resistance that exists across the interstitial 
resistance.  

ܴ൫݅, ݆, ; ܴ´൯ =
 ܴ(݅, ݆) − [ோ(,)ା ோ(,)ି ି ]మ

ସ[ ோ´ା ோ(,)]
  

ܴ൫݅, ݆, ; ܴ´൯ =  ோ´ ோ(,)
ோ´ା ோ(,)

         (32) 

As previously stated, ܴ(݅, ݆) represents the 
resistance that exists between the ends of the 
diagonal bond (݅, ݆) within a perfect lattice. 
Using Eq. (31), it is possible to demonstrate that 
when ܴ´ approaches infinity, the problem 
simplifies to that of a perfect lattice. The formula 
provided in Eq. (31) holds true for any type of 
lattice configuration in which every individual 
cell contains only one lattice site. 

4. Numerical Results 
This section includes numerical findings for 

both perfect and perturbed triangular lattices. 

4.1 The Perfect Triangular Lattice Network 

Table 1 displays the numerical resistance 
values between the origin and specific nodes, 
along with the calculated resistance values for 
both the infinite and 10 x 10 unperturbed 
triangular lattice. The computational values for 
resistance were obtained through the utilization 
of CIRCUIT MAKER software. 

TABLE 1. The values of the resistance in units of ܴ for infinite and computational values of the 
resistance (10 x 10) perfect triangular lattice. 

The site (݅, ݆) The values of  ܴ(݅, ݆) ̸ܴ 
infinite 10 x 10 

(1, 0) 0.3333 0.3371 
(2, 0) 0.4614 0.4771 
(3,0) 0.5362 0.5749 
(4,0) 0.5892 0.6713 
(5,0) 0.6302 0.8386 
(6,0) 0.6637 0.8682 
(7,0) 0.6920 0.8735 
(8,0) 0.7166 0.9141 
(9,0) 0.7382 0.9501 

(10,0) 0.7576 0.9827 
(-1,0) 0.3333 0.3371 
(-2,0) 0.4614 0.4771 
(-3,0) 0.5362 0.5749 
(-4,0) 0.5892 0.6713 
(-5,0) 0.6302 0.8386 
(-6,0) 0.6637 0.8682 
(-7,0) 0.6920 0.8735 
(-8,0) 0.7166 0.9141 
(-9,0) 0.7382 0.9501 
(-10,0) 0.7576 0.9827 
(1,1) 0.3333 0.3366 
(2,2) 0.4614 0.4764 
(3,3) 0.5362 0.5786 
(4,4) 0.5892 0.6953 
(5,5) 0.6302 0.9562 
(6,6) 0.6637 0.9993 
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The site (݅, ݆) The values of  ܴ(݅, ݆) ̸ܴ 
infinite 10 x 10 

(7,7) 0.6920 1.0397 
(8,8) 0.7166 1.1269 
(9,9) 0.7382 1.2095 

(10,10) 0.7576 1.2888 
(-1,-1) 0.3333 0.3366 
(-2,-2) 0.4614 0.4764 
(-3,-3) 0.5362 0.5786 
(-4,-4) 0.5892 0.6953 
(-5,-5) 0.6302 0.9562 
(-6,-6) 0.6637 0.9993 
(-7,-7) 0.6920 1.0397 
(-8,-8) 0.7166 1.1269 
(-9,-9) 0.7382 1.2095 

(-10,-10) 0.7576 1.2888 
 

4.2 Single Interstitial Resistance 

Within this section, we utilize Eq. (31) to 
compute the resistance that exists between the 
origin and a specific point ݆ = (݆௫ , ݆௬) within a 
triangular array of resistors. This array includes 
additional interstitial resistance that connects to 
one of the unit-cell triangles in a diagonal 
manner.  

ܴ൫݆௫ − ݅௫ , ݆௬ − ݅௬; ܴ´൯ =  ܴ൫݆௫ − ݅௫ , ݆௬ −
 ݅௬൯ −   

[ோ൫ೣି ೣ,ି ൯ା ோ൫ೣି ೣ,ି ൯
ି ோ൫ೣି ೣ,ି ൯ି ோ(ೣିೣ,ି )]

మ

ସ [ோ´ାோ(ೣି ೣ,ି ) ]
        (33)  

Suppose we add a shunt resistance (ܴ´ = ଵ
ଶ

 ܴ) 
between the points ݅ = (0,0) and ݆ = (1, −1). 
in a triangular lattice. Using the formula and 
resistance values from Table 1, the total 
resistance between nearest neighbors in the 
modified infinite triangular lattice was 
calculated. The results are presented in Table 2. 
Additionally, Tables 2 and 3 summarize the 
computed resistance values for both the infinite 
lattice and the 10 × 10 perturbed networks. 

TABLE 2. Equivalent resistances in terms of ܴ between (0,0) and sites ݆ = (݆௫ , ݆௬) for an infinite 
perturbed triangular lattice. ܴ´ = 0.5 ܴ is introduced between the sites ݅ = (0,0) and ݆ =
(1, −1). 

The site (݅, ݆) The values of  ோ(,)
ோ

 The site (݅, ݆) The values of  ோ(,)
ோ

 
infinite infinite 

(0,0) 0 (0,0) 0 
(1,0) 0.29997 (-1,0) 0.31735 
(2,0) 0.39753 (-2,0) 0.43764 
(3,0) 0.47982 (-3,0) 0.50931 
(4,0) 0.53896 (-4,0) 0.56070 
(5,0) 0.58377 (-5,0) 0.60070 
(6,0) 0.61976 (-6,0) 0.63357 
(7,0) 0.64972 (-7,0) 0.66137 
(8,0) 0.67557 (-8,0) 0.68569 
(9,0) 0.69808 (-9,0) 0.70692 

(10,0) 0.71829 (-10,0) 0.72624 
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TABLE 3. As in Table 2. but for 10 x 10 perturbed triangular lattice. 

The site (݅, ݆) The values of  ோ(,)
ோ

 The site (݅, ݆) The values of  ோ(,)
ோ

 
10 x 10 lattice 10 x 10 lattice 

(0,0) 0 (0,0) 0 
(1,0) 0.2842 (1,1) 0.3117 
(2,0) 0.3858 (2,2) 0.4380 
(3,0) 0.4879 (3,3) 0.5354 
(4,0) 0.5871 (4,4) 0.6505 
(5,0) 0.7540 (5,5) 0.9111 
(6,0) 0.8008 (6,6) 0.9737 
(7,0) 0.8639 (7,7) 1.0584 
(8,0) 0.9326 (8,8) 1.1388 
(9,0) 0.9967 (9,9) 1.2162 

(10,0) 1.1082 (10,10) 1.3254 
(-1,0) 0.3214 (-1,-1) 0.3117 
(-2,0) 0.4527 (-2,-2) 0.4380 
(-3,0) 0.5471 (-3,-3) 0.5354 
(-4,0) 0.6424 (-4,-4) 0.6505 
(-5,0) 0.8097 (-5,-5) 0.9111 
(-6,0) 0.8394 (-6,-6) 0.9737 
(-7,0) 0.9152 (-7,-7) 1.0584 
(-8,0) 0.9871 (-8,-8) 1.1388 
(-9,0) 1.0545 (-9,-9) 1.2162 
(-10,0) 1.1198 (-10,-10) 1.3254 

 

We will now examine the impact of the 
interstitial resistance, denoted as ܴ´ =  ܴ, which 
is connected between the points ݅ = (0,0) and 

݆ = (−1, 1). The outcome of this analysis is 
presented in Tables 4 and 5. 

TABLE 4: As in Table 2, but at ܴ´ = ܴ. 

The site (݅, ݆) The values of  ோ(,)
ோ

 The site (݅, ݆) The values of  ோ(,)
ோ

 
infinite infinite 

(0,0) 0 (0,0) 0 
(1,0) 0.32333 (-1,1) 0.31247 
(2,0) 0.44655 (-2,0) 0.42148 
(3,0) 0.51939 (-3,0) 0.50096 
(4,0) 0.57139 (-4,0) 0.55780 
(5,0) 0.61176 (-5,0) 0.60118 
(6,0) 0.64487 (-6,0) 0.63624 
(7,0) 0.67286 (-7,0) 0.66558 
(8,0) 0.69728 (-8,0) 0.69096 
(9,0) 0.71865 (-9,0) 0.71312 
(10,0) 0.73800 (-10,0) 0.73303 

TABLE 5. As in Table 2, but for 10 x 10 perturbed triangular lattice at ܴ´ =  ܴ. 

The site (݅, ݆) The values of  ோ(,)
ோ

 The site (݅, ݆) The values of  ோ(,)
ோ

 
10 x 10 lattice 10 x 10 lattice 

(0,0) 0 (0,0) 0 
(1,0) 0.3268 (1,1) 0.3203 
(2,0) 0.4612 (2,2) 0.4512 
(3,0) 0.5567 (3,3) 0.5503 
(4,0) 0.6524 (4,4) 0.6660 
(5,0) 0.8197 (5,5) 0.9267 
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The site (݅, ݆) The values of  ோ(,)
ோ

 The site (݅, ݆) The values of  ோ(,)
ோ

 
10 x 10 lattice 10 x 10 lattice 

(6,0) 0.8402 (6,6) 0.9646 
(7,0) 0.8897 (7,7) 1.0040 
(8,0) 0.9244 (8,8) 1.0902 
(9,0) 0.9649 (9,9) 1.1717 
(10,0) 0.9935 (10,10) 1.2499 
(-1,0) 0.3025 (-1,-1) 0.3203 
(-2,0) 0.4173 (-2,-2) 0.4512 
(-3,0) 0.5179 (-3,-3) 0.5503 
(-4,0) 0.6161 (-4,-4) 0.6660 
(-5,0) 0.7832 (-5,-5) 0.9267 
(-6,0) 0.8114 (-6,-6) 0.9646 
(-7,0) 0.8291 (-7,-7) 1.0040 
(-8,0) 0.8717 (-8,-8) 1.0902 
(-9,0) 0.9126 (-9,-9) 1.1717 

(-10,0) 0.9607 (-10,-10) 1.2499 
 

Figure 2 displays the resistances of both an 
infinite and a 10 x 10 perfect triangular lattice as 
a function of ݆௫. The figure illustrates the 
resistance within the infinite triangular lattice, 

which exhibits symmetry under the 
transformation (݊, ݉) = (݉, ݊) due to the 
lattice's inversion symmetry. 

 
FIG. 2. The total resistance in terms of ܴ of the infinite (squares) and 10 x 10 (circles) perfect triangular lattices 

between (0,0) and (݆௫ , 0) as functions of ݆௫. 

Figures 3 and 4 present the calculated 
theoretical resistances for perfect and perturbed 
infinite triangular lattices, respectively. The 
resistance calculations take into account the 
interstitial resistances and are plotted as a 
function of ݆௫  from the origin to the site (݆௫ , 0). 

In Figs. 5 and 6, the total resistance is plotted 
against ݆௫ for 10 x 10 perturbed lattices. The 
perturbed lattice has a consistently lower 
resistance compared to the perfect (ideal) lattice, 
as shown by the negative value of the second 
term in Eq. (31). 
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FIG. 3. The resistance of the infinite triangular lattice, both perturbed and perfect, is determined in units of R. 

The calculation is done between two sites: ⃗ݎ = (0,0) and ⃗ݎ = (݆௫ , 0) as a function of ݆௫. The interstitial 
resistance ܴ´ = ܴ is inserted between ⃗ݎ = (0, 0) and ⃗ݎ = (−1, +1). 

 

 
FIG. 4. As in Fig. 3, but the interstitial resistance ܴ´ = ோ

ଶ
 is inserted between ⃗ݎ = (0,0) and ⃗ݎ = (+1, −1). 
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FIG. 5 As in Fig. 3, but for 10 x 10 triangular lattice and the interstitial resistance ܴ´ = ܴ is added between 

ݎ⃗ = (0,0) and ⃗ݎ = (−1, +1).  

 
FIG. 6. As in Fig. 3, but for 10 x 10 triangular lattice and the interstitial resistance ܴ´ = ܴ 2⁄  is added between 

ݎ⃗ = (0,0) and ⃗ݎ = (+1, −1).  

The implemented grid provides the recorded 
resistance values depicted in Figs. 2 and 5. This 
indicates that employing a mesh composed of 10 
× 10 elements allows for effective examination 
of the equivalent resistance. However, when 
approaching the boundary, the measured 
resistance surpasses the calculated value, which 
can be attributed to the influence of the edge 
effect. Furthermore, it can be observed from 
Figs. 3‒6 that the resistance approaches that of 
the perfect lattice when the distance between 

sites ⃗ݎ = (0,0) and ⃗ݎ = (݆௫ , 0) is increased. 
However, it is important to note that the 
resistance symmetry is lost as ݆௫ → −݆௫, due to 
the disruption of translational symmetry in the 
perturbed lattice. 

In brief, the values obtained for the perfect 
triangular lattice exhibit strong agreement with 
bulk values derived from different calculation 
methods. Specifically, the results are in 
remarkable alignment with those obtained using 
Cserti's method [5], Atkinson and Steenwijk's 
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method [11], and Igor's method [19]. This 
consistency enhances the credibility of our 
measurements, confirming their accuracy and 
reliability. 

5. Conclusions 
The resistance of a triangular network 

between two random sites in an infinite resistor 
network has been determined through both 
theoretical and computational methods, for both 
the perfect and perturbed scenarios. 

Our observations indicate that in both the 
perfect and perturbed finite networks, the 
effective resistance between any two nodes is 
higher than that in the corresponding infinite 
network. If the interstitial resistance is greater 
(smaller) than R, then the effective resistance 
between any two nodes in the perturbed lattice is 
greater (smaller) than that in the perfect lattice. 
Moreover, the theoretical resistance values for 
both the perfect and perturbed lattices agree with 
those obtained from computational methods 
using Circuit Maker. 
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