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1. Introduction 

Derived from the semi-classical Bohr-
Summerfield quantization rules [1] of old 
quantum theory and the Wentzel-Kramer-
Brillouin (WKB) approximation, an improved 
quantization method was developed in 2005 by 
Ma and Xu [2, 3]. Five years later, this method 
was refined by Qiang and Dong [4], making it 
even simpler and leading to its recognition as the 
proper quantization rule. Both rules are 
expressed in one- and three-dimensional spaces 
for non-relativistic quantum mechanics and can 
be used to estimate the exact eigenvalues of the 
Schrôdinger equation for exactly solvable 
quantum systems. These exact rules have 
received much attention from researchers and 
have been the subject of numerous works [5-8]. 
This interest is motivated by the wish to find 
exact solutions to the nonrelativistic Schrödinger 
wave equation.  

The method has also been extended to the 
relativistic Klein-Gordon (K.G.) wave function, 
which describes spin-zero bosonic particles in 
the presence of two types of potentials: the scalar 
 ,potentials. Recently (ݔ)ܸ and vector (ݔ)ܵ
considerable interest has been directed towards 
applying exact nonrelativistic methods to solve 
relativistic problems. This approach involves 
reducing the relativistic K.G. wave function to a 
Shrödinger-like equation by imposing specific 
conditions on the scalar and vector potentials. 
Moreover, several significant works have studied 
the exact bound states of the Klein-Gordon 
equation, by assuming that the scalar and the 
vector potentials are of equal magnitudes and 
equal to some typical potentials [9-18].  
Examples of such potentials include Scarf-type 
potentials, the Rosen-Morse potential, the 
exponential screened Coulomb potential plus 
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Yukawa, the Hylleraas potential, the Pöschl-
Teller, the Pöschl-Teller II, the Eckart potential, 
and others. This assumption simplifies the 
calculations and allows for the determination of 
exact relativistic bound state solutions. Similarly, 
the case of unequal scalar and vector potentials 
has been the focus of several studies [19–23], 
where the vector potential ܸ(ݔ) is considered 
distinct from the scalar ܵ(ݔ), with the two 
potentials often related through specific 
algebraic relations. In some instances, these 
studies yield approximate analytical bound state 
solutions. 

 In the context of these two conditions, 
researchers have employed various exact 
methods developed in non-relativistic quantum 
mechanics such as Nikiforov-Uvarov (Nu) [24], 
the Asymptotic Iteration Method (AIM) [25, 26] 
(which transforms the Schrödinger equation into 
a well-known hypergeometric or second-order 
homogenous linear differential equation), and 
supersymmetry [27], among others. 

Within the framework of quantization 
techniques, we have been largely inspired by the 
studies cited above and especially the works 
proposed by H. Sun [19] and W. C. Qiang [20]. 
The authors investigated a nonrelativistic 
improved quantization rule applied to resolve the 
Klein-Gordon wave function with mixed unequal 
vector and scalar potentials. They applied this 
rule to obtain exact relativistic energies for the 
harmonic oscillator, Morse, and Rosen-Morse II 
potentials.  

The aim of this study is to develop the 
relativistic Qiang-Dong proper quantization rule 
able to deal with the s-wave Klein-Gordon 
equation. This is an attempt to test the reliability 
of this method by applying it to recalculate the 
relativistic energy spectrum for a class of well-
known hyperbolic potentials such as Rosen-
Morse II, Pöschl-Teller, Pöschl-Teller II, Scarf 
II, and Eckart [28-30]. In the first approach, we 
consider the case of equal scalar–vector 
potentials. This set of interaction models has 
been classified into two families of potentials, as 
noted by Grandati [30]: the harmonic oscillator 
plus a linear and nonlinear extension is 
considered a perturbative term. These two 
families are known as harmonic and isotonic 
oscillators. In the second approach, we extend 
the study to the general case where the mixed 
unequal magnitudes scalar and vector potentials 
are considered. To reach results we have to solve 

the Klein-Gordon wave function transformed 
into a non-relativistic Schrödinger-like equation 
and through the Riccati non-linear first-order 
differential equation calculation (which is 
obtained by reducing the schrödinger equation 
via an appropriate transformation). This 
approach allows us to obtain exact analytical 
solutions for the relativistic energy level.  

It is worth noting that other mathematical 
methods, such as the Nikiforov-Uvarov [24] 
(NU) and the Asymptotic Iteration (AIM) 
methods [25, 26], could also be employed. 
However, the proper quantization rule is more 
practical and provides exact solutions without 
approximations for relativistic and non-
relativistic quantum systems described by 
exactly solvable potentials, all while requiring 
relatively simple mathematical calculations.  

The results obtained through this approach 
for various interaction potentials and scenarios 
are then compared with known solutions and 
important aspects of the results are highlighted. 
This paper is organized as follows. In the second 
section, we provide a brief review of the most 
important formulas for the theoretical basis. In 
the third section, an emphasis is put on the 
theoretical basis for the relativistic approach. In 
the fourth section, the approach is applied to the 
set of proposed interaction potentials in cases of 
equal mixed scalar and vector potentials and 
then to the general case of mixed unequal scalar 
and vector potentials within the hyperbolic 
potential class. Finally, the most important 
aspects of the results are summarized in the 
conclusion. 

2. Proper Quantization Rule 
A brief description of the proper quantization 

method is outlined below. For more details about 
this method, one can refer to [4]. The well-
known one-dimensional, non-relativistic, 
stationary Schrödinger equation for a particle of 
mass ݉, using natural unit ℏ = 1, is given by: 
(࢞)࣒૛ࢊ

૛࢞ࢊ + ૛ࡱ]࢓ − (࢞)࣒[(࢞)ࢂ = ૙,          (1) 

It can be transformed into a nonlinear 
differential Riccati equation expressed as: 

ࣘᇱ(࢞) = −૛ࡱ]࢓ − [(࢞)ࢂ − ࣘ૛(࢞),           (2) 

by making the transformation ߶(ݔ) = ଵ
ట(௫)

ௗట(௫)
ௗ௫

. 
The potential ܸ(ݔ) is a piecewise continuous 
real function of the variable (ݔ)߶  .ݔ solution of 
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the Riccati equation is defined as the logarithmic 
derivative of the radial wave Schrödinger 
function ߰(ݔ). The Riccati equation (Eq. 2) 
shows that ߶(ݔ) decreases monotonically with 
respect to ݔ between two turning points ݔ஺ and 
ܧ ஻, whereݔ ≥  increases across a ݔ As .(ݔ)ܸ
node of the wave function, ߶(ݔ) decreases to 
−∞, jumps to +∞, and then decreases again. 
Studying the above one-dimensional 
Schrödinger equation, Ma and Xu [2, 3] 
proposed in 2005 a new exact quantization rule. 
Its integral expression without approximation 
(which means that this rule is exact) is given by: 

∫ ࡮࢞࢞ࢊ(࢞)࢑
࡭࢞ = ∫ + ࣊ࡺ (࢞)ᇲ࢑(࢞)ࣘ

ࣘᇲ(࢞)
࡮࢞,࢞ࢊ

࡭࢞
           (3) 

where ݇(ݔ) = ඥ2݉[ܧ − ܧ with [(ݔ)ܸ ≥  (ݔ)ܸ
is the classical momentum function for the 
energy ܧ between two classical turning points ݔ஺ 
and ݔ஻, which are determined by solving 
ܧ = (஺ݔ)ܸ =  Here,  ݇ᇱ(x) is the   .(஻ݔ)ܸ
derivative of k(x) with respect to x. 

Since ߶(ݔ) decreases monotonically, and 
(஺ݔ)߶ > (஻ݔ)߶ ,0 < 0 in the region where 
ܧ ≥  the number of nodes ܰof the ,(ݔ)ܸ
logarithmic derivative ߶(ݔ) is larger by one than 
the number ݊ of the wave function ߰(ݔ). Here, ݊ 
represents the quantum number in that region. 
The term ܰߨ is the contribution from the nodes 
of the wave function. The integral term 
∫ థ(௫)௞ᇲ(௫)

థᇲ(௫)
௫ಳ ݔ݀

௫ಲ
 is called the quantum 

correction. Ma and Xu [2, 3] found that this term 
is independent of the number of nodes of the 
wave function ߰(ݔ) for all exactly solvable 
potentials. They proposed that the quantum 
correction term can be calculated from its ground 
state as 

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞ = ࣊ࡺ + ∫ ࣘ૙(࢞)࢑૙

ᇲ (࢞)
ࣘ૙

ᇲ (࢞)
࡮૙࢞࢞ࢊ

࡭૙࢞
.       (4) 

With this approach, it should be mentioned 
that it is necessary to calculate two complicated 
integrals. To simplify this improved quantization 
method, Qiang and Dong proposed a proper 
quantization rule [4], given by: 

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

− ∫ ࡮૙࢞࢞ࢊ(࢞)૙࢑
࡭૙࢞

=  (5)          ,࣊࢔

with ݇଴(ݔ) = ඥ2݉[ܧ଴ −  is the [(ݔ)ܸ
momentum for the ground state. By considering 
ܰ = 1, i.e., ݊ = 0, the complicated quantum 
correction term becomes: 

∫ ࣘ૙(࢞)࢑૙
ᇲ (࢞)

ࣘ૙
ᇲ (࢞)

࡮૙࢞࢞ࢊ
࡭૙࢞

= ∫ ࡮૙࢞࢞ࢊ(࢞)૙࢑
࡭૙࢞

−  (6)         .࣊

By substituting this equation into Eq. (4), the 
Qiang-Dong proper quantization rule, as stated 
in Eq. (5), is found. It consists of calculating the 
first integral ∫ ݇௡(ݔ)݀ݔ௫ಳ

௫ಲ
 and then replacing the 

energy levels ܧ௡ in the result with the ground 
energy expression ܧ଴ determined by resolving 
the Riccati equation (Eq. 2) in order to obtain the 
second integral. This simplifies the calculation of 
the previously complex integrals. 

Obviously, this new exact quantization rule 
has been generalized to 3ܦ for the Schrödinger 
equation by making the replacements ݔ →  and ݎ
(ݔ)ܸ → V′(ݎ). The 3D expression is written as:  

∫ ࡮࢘࢘ࢊ(࢘)࢔࢑
࡭࢘

− ∫ ࡮૙࢘࢘ࢊ(࢘)૙࢑
࡭૙࢘

=   (7)          .࣊࢔

In the following section, we will apply the 
Qiang-Dong proper quantization rule to the 
relativistic Klein-Gordon equation. This will 
allow us to derive simple analytical expressions 
for various potentials in the hyperbolic class, as 
well as for the general cases of harmonic and 
isotonic potentials. 

3. Reformulation of the Relativistic 
Proper Quantization rule 
It should be pointed out that in relativistic 

quantum mechanics, the well-known Klein-
Gordon equation plays a significant role in 
nuclear and high-energy physics. This relativistic 
wave equation is crucial for describing the 
dynamics of spinless (zero-spin) bosonic 
particles in the presence of a strong potential 
field. Moreover, it provides corrections to non-
relativistic quantum mechanics in extreme 
conditions. The relativistic equation requires the 
introduction of two different types of potentials: 
the scalar potential ܵ(ݔ) and the time-component 
 called Lorentz vector potential which (ݔ)ܸ
couples to the space-time scalar potential ܵ(ݔ) 
by considering respectively the four-vector linear 
momentum operator and the scalar rest-mass ݉. 
For more details, one can consult the work of 
Alhaidari et al. [31]. The spatially one-
dimensional, time-independent Klein Klein-
Gordon [32-35] equation for a spinless particle 
of rest mass ݉ in the presence of mixed vector 
 is written as(ݔ)ܵ and scalar potentials (ݔ)ܸ



Article  Benchiheub, Berrehail and Grar 

 520

(࢞)࣒૛ࢊି
૛࢞ࢊ + ૛࢓ ቂ൫࢓ + ൯૛(࢞)ࡿ

− ࢔ࡱ) −

૛ቃ((࢞)ࢂ (࢞)࣒ = ૙.            (8) 

We keep the constant of Planck ℏ = 1 and 
the velocity of light ܿ = 1 throughout the rest of 
this work. ܧ௡ denotes the total relativistic energy 
of a spinless particle for a bound state ݊. This 
equation can be reformulated as a Schrödinger 
equation for unequally mixed potentials ܸ(ݔ) 
and ܵ(ݔ),  expressed as 
(࢞)࣒૛ࢊ

૛࢞ࢊ + ૛࢔,ࢌࢌࢋࡱൣ࢓ − (࢞)࣒൧(࢞)ࢌࢌࢋࢂ = ૙,     (9) 
    

where ܧ௘௙௙,௡ = ൫ா೙
మି௠మ൯
ଶ௠

 and ௘ܸ௙௙(ݔ) =
ൣ௏మିௌమିଶ(ா೙௏(௫)ା௠ௌ(௫))൧

ଶ௠
 denote, respectively, the 

effective energy of a particle and effective 
potential. 

When assuming that the scalar potential ܵ(ݔ) 
and the vector potential ܸ(ݔ) are equal, i.e., 
(ݔ)ܸ =  the relativistic wave function in ,(ݔ)ܵ
Eq. (8) transforms into a non-relativistic wave 
function equation as 
(࢞)࣒૛ࢊ

૛࢞ࢊ + ૛ൣ࢓൫࢔ࡱ
૛ − ૛൯࢓ − ૛(࢔ࡱ +

(࢞)࣒൧(࢞)ࢂ(࢓ = ૙,          (10)  
where ଵ

ଶ௠
௡ܧ)

ଶ − ݉ଶ) = ௘௙௙,௡ and ଵܧ
௠

௡ܧ) +
(ݔ)ܸ (݉ = ௘ܸ௙௙(ݔ). 

When the Schrôdinger equation, given by Eq. 
(9), is reduced to the nonlinear differential 
equation of the first order, the Riccati equation 
for the ground state becomes:  
૙ࣘࢊ
࢞ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙ − ൧(࢞)ࢌࢌࢋࢂ − ࣘ૙
૛,        (11) 

by performing the transformation ߶଴(ݔ) =
ଵ

ట(௫)
ௗట(௫)

ௗ௫
. It is easier to find solutions from the 

resolution of this equation than to find them 
from the radial Schrödinger equation. 

Based on the fact that Eqs. (1) and (9) are 
equivalent, we can deduce that the proper 
quantization rule for the relativistic Klein-
Gordon is identical to the non-relativistic proper 
quantization rule. It is expressed as:  

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

− ∫ ࡮૙࢞࢞ࢊ(࢞)૙࢑
࡭૙࢞

=   (12)        ,࣊࢔

with ݇௡ = ඥ2݉[ܧ௘௙௙,௡ − ௘ܸ௙௙(ݔ)], in the region 
௘௙௙,௡ܧ ≥ ௘ܸ௙௙(ݔ) and is analogous to the 
classical momentum between ݔ஺ < ݔ < ஻ݔ  ஺ݔ .

and ݔ஻ are the two turning points (ݔ஺ <  (஻ݔ
determined by calculating ܧ௘௙௙,௡ = ௘ܸ௙௙(ݔ), 
where ௘ܸ௙௙(ݔ) is the effective solvable potential. 

As pointed out in [19], the physical 
interpretation of this new quantization rule 
remains incomplete. However, the formal 
derivation sheds light on the understanding of 
relativistic quantum systems. The calculations 
proposed below represent our contribution to 
extending the scope of existing calculations to 
include a broader range of interaction models. 
This effort aims to provide additional insights 
and data to support the formalism. 

While these interaction models are primarily 
mathematical frameworks, they can often serve 
as first approximations for more complex 
physical situations. For instance, the Pöschl-
Teller double-ring-shaped Coulomb potential has 
been effectively utilized as a candidate in nuclear 
and molecular physics [14]. 

4. Bound States Solutions 
In this section, we apply the Qiang-Dong 

proper quantization rule (Eq. 12) to determine 
the bound states of bosons by solving the 
relativistic Klein-Gordon wave function for five 
exactly solvable hyperbolic interaction models. 
These potentials are classified into two 
categories: the harmonic oscillator and the 
isotonic oscillator. First, we consider the case of 
equal mixed scalar ܵ(ݔ) and vector ܸ(ݔ) 
potentials chosen to be equal to the hyperbolic 
interaction potentials type: ܸ(ݔ) = (ݔ)ܵ =

௜ܸ௡௧௘௥(ݔ), where ௜ܸ௡௧௘௥(ݔ) is the considered 
interaction potential for each case. Secondly, by 
assuming unequal mixed scalar-vector potentials, 
the solution of relativistic Klein Gordon is 
discussed in the case of the first class 
representing the harmonic potentials. Here, we 
assume that the scalar and vector potentials 
couple proportionally. 

4.1.  Klein-Gordon Solutions with Mixed Equal 
Scalar and Vector Potentials ܸ(ݔ) =  (ݔ)ܵ

a. Rosen-Morse II Potential 

This potential in one dimension is given by 
[28-30]: 
(࢞)࢘ࢋ࢚࢔࢏ࢂ = − (ࢻା࡭)࡭

(࢞ࢻ)૛ࢎ࢙࢕ࢉ + ૛(࢞ࢻ)ࢎ࢔ࢇ࢚࡮ +

૛࡭ + ૛࡮

૛࡭ , ࢞ ∈ ℝ,          (13)  
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where ܤ ,ܣ, and ߙ are constants, with ܤ < Aଶ. 
All constants are assumed to be positive.  

By making the variable change (ݔ)ݕ =
tanh(ݔߙ),  where ܴ߳ݔ, the derivative with 
respect to ݔ is ௗ௬(௫)

ௗ௫
= 1)ߙ −  ଶ), the potentialݕ

௜ܸ௡௧௘௥(ݔ) can be written in terms of the new 
variable as: 
(࢟)࢘ࢋ࢚࢔࢏ࢂ = ࡭)࡭ + ૛࢟(ࢻ + ૛࢟࡮ + ૛࡮

૛࡭ −    ,࡭ࢻ
(14)  

and the turning points ݕ஺ and ݕ஻, determined 
from ܧ௘௙௙,௡ = ௘ܸ௙௙(ݕ), are: 

࡭࢟  =
࡮ି

(ࢻା࡭)࡭ −

ඨቀ ࡮
ቁ(ࢻା࡭)࡭

૛
+

൤ି࢔,ࢌࢌࢋࡱ࢓(࢔ࡱା࢓)൬࡮૛

൰൨࡭ࢻ૛ି࡭

(ࢻା࡭)࡭(࢓ା࢔ࡱ) ,    (15) 

࡮࢟ =
࡮ି

(ࢻା࡭)࡭ +

ඨቀ ࡮
(ࢻା࡭)࡭

ቁ
૛

+
൤ି࢔,ࢌࢌࢋࡱ࢓(࢔ࡱା࢓)൬࡮૛

൰൨࡭ࢻ૛ି࡭

(ࢻା࡭)࡭(࢓ା࢔ࡱ)
,    (16) 

Similarly, substituting the solution ߶଴ =
ݕܽ− − ܾ (with ܽ > 0, ܾ > 0) derived from the 
relativistic radial wave function ߰(ݔ) defined 
previously, into the nonlinear Riccati equation 
gives: 

൫૚ࢻ − ૛൯࢟ ૙ࣘࢊ
࢟ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙ − ൧(࢟)ࢌࢌࢋࢂ −

ࣘ૙
૛.  

(17)   
From this, the resolution of the equations system 
is obtained. One can find the ground state energy 
 :଴ and the unknown coefficients ܽ and ܾ asܧ

૙,ࢌࢌࢋࡱ = (࢓ା࢔ࡱ)
࢓

ቂ࡭)࡭ + (ࢻ + ቀ࡮૛

૛࡭ − ቁቃࢻ࡭ −
൫࢈૛ାࢇ૛൯

૛࢓
,           (18) 

ࢇ = ቀ− ࢻ
૛

ቁ + ࢻ
૛

ට૚ + ૡ(࢔ࡱା࢓)࡭(࡭ାࢻ)
૛ࢻ ࢈ ࢊ࢔ࢇ  =

૛࡮(࢔ࡱା࢓)
ࢇ

.           (19) 

It appears that we have considered only the 
positive root in the expression for the coefficient 
ܽ. This is because the radial Schrödinger wave 
function ߰(ݔ) decreases exponentially, and the 
logarithmic derivative ߶଴(ݔ) = ଵ

ట(௫)
ௗట(௫)

ௗ௫
 of the 

wave function ߰(ݔ) decreases monotonically 

with respect to energy. This physically 
admissible solution is considered throughout this 
study.  

Between the two turning points ݔ஺ and ݔ஻ 
with ݔ஺ <  ஻, the integral of the momentumݔ

݇௡(ݔ) = ට2݉ൣܧ௘௙௙,௡ − ௘ܸ௙௙(ݕ)൧ is calculated 

as follows: 

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

=
ඥ૛(࢔ࡱା࢓)࡭(࡭ାࢻ)

ࢻ ∫ ඥ(࡭࢟ି࢟)(࢟ି࡮࢟)
(૚ି࢟૛) ࡮࢟,࢟ࢊ

࡭࢟
      (20) 

=
(࢓ା࢔ࡱ)(ࢻା࡭)࡭ඥ૛࣊

ࢻ
−

࣊
૛ࢻ

ቈට(࢔ࡱ + (࢓ ቀ૛࡭૛ − ૝࡮ + ૛ ૛࡮

૛ቁ࡭ − ૛࢔,ࢌࢌࢋࡱ࢓ +

ට(࢔ࡱ + (࢓ ቀ૛࡭૛ + ૝࡮ + ૛ ૛࡮

૛ቁ࡭ − ૛࢔,ࢌࢌࢋࡱ࢓቉.   

(21)  
If we replace ܧ௘௙௙,௡ in Eq. (21) by ܧ௘௙௙,଴ 

given in Eq. (18), we obtain: 

∫ ࡮૙࢞࢞ࢊ(࢞)૙࢑
࡭૙࢞

= (ࢻା࡭)࡭(࢓ା࢔ࡱ)ඥ૛࣊
ࢻ

− ࢇ࣊
ࢻ

.        (22) 

By substituting Eqs. (21) and (22) into proper 
quantization rule, shown in Eq. (12), one can get 
the well-known analytical relativistic energy 
 ௘௙௙,௡ܧ

൫ࡱ૛
࢔ − ૛൯࢓ = − ቂ(࢔ࢻ − ૛(ࢇ + ૝࡮૛(࢔ࡱା࢓)૛

૛(ࢇି࢔ࢻ) ቃ +

૛(࢔ࡱ + (࢓ ቀ࡭૛ + ૛࡮

  ૛ቁ.         (23)࡭

The bound state energies, or eigenvalues, are 
exactly obtained from the quantization rule in 
Eq. (12) with zero orbital angular momentum, 
assuming that the spin-orbit coupling and 
centrifugal term ଵ

௥మ are neglected. Otherwise, an 
approximation approach can be used. It is 
important to note that the exact solutions are 
only found at the fundamental level. Throughout 
the study presented in this paper, the angular 
moment is neglected. 

b. Eckart Potential 

The Eckart potential is written in one 
dimension as [28-30], 

(࢞)࢘ࢋ࢚࢔࢏ࢂ = (ࢻି࡭)࡭
(࢞ࢻ)૛ࢎ࢔࢏࢙ − ૛(࢞ࢻ)ࢎ࢚࢕ࢉ࡮ + ૛࡭ +

૛࡮

૛࡭ , ࢞ ∈ ℝ,           (24)  

where ܣ and ܤ are constants (ܤ >   .(ଶܣ
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By introducing a new variable (ݔ)ݕ =
coth(ݔߙ);  ℝ, where its derivative with respect߳ݔ
to ݔ is ௗ௬

ௗ௫
= 1)ߙ −  (ݔ)ଶ), the potential ௜ܸ௡௧௘௥ݕ

will be reduced to the form: 

(࢟)࢘ࢋ࢚࢔࢏ࢂ = ࡭)࡭ − ૛࢟(ࢻ − ૛࢟࡮ + ૛࡮

૛࡭ +    .࡭ࢻ
(25)   

From ܧ௘௙௙,௡ = ௘ܸ௙௙,௡(ݕ), one can calculate 
the two turning points ݕ஺ =  and (஺ݔߙ)ℎ݊ܽݐ
஻ݕ = tanh(ݔߙ஻) as follows: 

࡭࢟ = ࡮
(ࢻି࡭)࡭

− ૚
૛ ࡮࢟ ∆√ = ࡮

(ࢻି࡭)࡭
+ ૚

૛ √∆,      (26) 

where ∆= ቂ ଶ஻
஺(஺ିఈ)

ቃ
ଶ

+ 4
൤௠ா೐೑೑,೙ି(ா೙ା௠)൬ಳమ

ಲమାఈ஺൰൨

(ா೙ା௠)஺(஺ିఈ)  
is the discriminant of the second-degree 
polynomial. By taking ߶଴ = ݕܽ− − ܾ, with 
ܽ > 0, ܾ > 0, and substituting it into the Riccati 
equation, we obtain: 

൫૚ࢻ − ૛൯࢟ ૙ࣘࢊ
࢟ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙ − ൧ࢌࢌࢋࢂ − ࣘ૙
૛.  
(27)   

From this, we find the solutions  

ࢇ = ቀ− ࢻ
૛

ቁ + ࢻ
૛

ට૚ + ૡ(࢔ࡱା࢓)(ࢻି࡭)࡭
૛ࢻ , ࢈ =

૛(࢔ࡱା࢓)࡮
ࢇ

.          (28)  

The energy in the ground state is given by: 

૙,ࢌࢌࢋࡱ = (࢓ା࢔ࡱ)
࢓

ቀ࡭ࢻ + ૛࡮

૛࡭ + ࡭)࡭ − ቁ(ࢻ −
൫ࢇ૛ା࢈૛൯

૛࢓
.          (29) 

The integral of momentum ݇௡(ݔ) =

ට2݉ൣܧ௘௙௙,௡ − ௘ܸ௙௙൧ between the two turning 

points ݕ஺ and ݕ஻ is calculated as:  

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

=
ඥ૛(࢔ࡱା࢓)(ࢻି࡭)࡭

ࢻ ∫ ඥ(࡭࢟ି࢟)(࢟ି࡮࢟)
(૚ି࢟૛) ࡮࢟ ࢟ࢊ

࡭࢟
      (30) 

=
(ࢻି࡭)࡭(࢓ା࢔ࡱ)ඥ૛࣊

ࢻ
−

࣊
૛ࢻ

ቈට(࢔ࡱ + (࢓ ቀ૛࡭૛ − ૝࡮ + ૛ ૛࡮

૛ቁ࡭ − ૛࢔,ࢌࢌࢋࡱ࢓ +

ට(࢔ࡱ + (࢓ ቀ૛࡭૛ + ૝࡮ + ૛ ૛࡮

૛ቁ࡭ − ૛࢔,ࢌࢌࢋࡱ࢓቉.   

(31) 
Likewise, by replacing ࢔,ࢌࢌࢋࡱ in Eq. (31) 

with ࢌࢌࢋࡱ,૙ given in Eq. (29) and considering the 

proper quantization rule from Eq. (12), one can 
obtain the well-known Eckart relativistic energy: 

൫ࡱ૛
࢔ − ૛൯࢓ = − ቂ(࢔ࢻ − ૛(ࢇ + ૝࡮૛(࢔ࡱା࢓)૛

૛ࢻ૛(ࢇି࢔) ቃ +

૛(࢔ࡱ + (࢓ ቀ࡭૛ + ૛࡮

 ૛ቁ.         (32)࡭

As shown by Grandati [30], these two 
previous hyperbolic interaction models can be 
generalized and are grouped into a single class of 
harmonic interaction potential types. That is, 

௜ܸ௡௧௘௥(ݕ) = ଶݕଶߣ + ݕଵߣ +  ଴, by using theߣ
appropriate change of variable and expressing 
the new variable ݕ in terms of ݔ, i.e, ݔ =  .(ݕ)݂
Here, ߣଶ = ܣ)ܣ ± ଵߣ ,(ߙ = ଴ߣ and  ,ܤ±2 =
஻మ

஺మ ∓  are expressed in terms of the interaction ܣߙ
potential V୧୬୲ୣ୰(y) coefficients for both the 
Rosen-Morse and Eckart interaction models, 
with a sign ± for each case, respectively. The 
derivative of ݕ with respect to ݔ satisfies 
ௗ௬
ௗ௫

= 1)ߙ − ((ݔ)ଶݕ > 0. The corresponding 
relativistic energies take the following form in 
terms of the coefficients ߣଶ,  :଴ߣ ଵ, andߣ

൫࢔ࡱ
૛ − ૛൯࢓ = − ൤(ࢻ࢔ − ૛(ࢇ + ૚ࣅ

૛(࢔ࡱା࢓)૛

૛(ࢇିࢻ࢔) ൨ +
૛(࢔ࡱ + ૙ࣅ)(࢓ +  ૛).         (33)ࣅ

c. Pöschl-Teller Potential 

The Pöschl-Teller potential is expressed in 
one dimension as [28-30], 

(࢞)࢘ࢋ࢚࢔࢏ࢂ = ૛࡭ + ࡭ࢻ૛ା࡮૛ା࡭
(࢞ࢻ)૛ࢎ࢔࢏࢙ − ࡭૛)࡮ +

(ࢻ (࢞ࢻ)ࢎ࢚࢕ࢉ
(࢞ࢻ)ࢎ࢔࢏࢙ , ࡮ > ,࡭ ࢞ > ૙.         (34) 

The introduction of the variable defined by 
(ݔ)ݕ = tanh(ఈ

ଶ
 and its derivative with respect (ݔ

to ݔ: ௗ௬
ௗ௫

= ఈ
ଶ

(1 − (ଶݕ > 0 transforms the 
potential ௜ܸ௡௧௘௥(ݔ) above into 
(࢟)࢘ࢋ࢚࢔࢏ࢂ =

(ࢻା࡮ା࡭)(࡮ା࡭)
૝

૛࢟ + (ࢻା࡮ି࡭)(࡮ି࡭)
૝

૚
૛࢟ +

൫ି࡮૛ା࡭૛ି࡭ࢻ൯
૛

.                (35) 

Let us take a new variable ݕଶ =  The .ݖ
turning points ݖ஺ and ݖ஻ are determined by 
solving ܧ௘௙௙,௡ = ௘ܸ௙௙(ݖ), where: 

࡭ࢠ =
૛ି࢔,ࢌࢌࢋࡱ࢓૛(࢔ࡱା࢓)൫ି࡮૛ା࡭૛ି࡭ࢻ൯

(ࢻା࡮ା࡭)(࡮ା࡭)(࢓ା࢔ࡱ)
− ૚

૛ √∆,   (36)
   

࡮ࢠ =
૛ି࢔,ࢌࢌࢋࡱ࢓૛(࢔ࡱା࢓)൫ି࡮૛ା࡭૛ି࡭ࢻ൯

(ࢻା࡮ା࡭)(࡮ା࡭)(࢓ା࢔ࡱ)
+ ૚

૛ √∆,  (37) 
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with ∆=൤ସ௠ா೐೑೑,೙ିସ(ா೙ା௠)൫ି஻మା஺మିఈ஺൯
(ா೙ା௠)(஺ା஻)(஺ା஻ାఈ)

൨
ଶ

−
ସ(஺ି஻ାఈ)(஺ି஻)
(஺ା஻ାఈ)(஺ା஻)  the discriminate of the second 
order polynomial. The nonlinear Riccati 
equation for the ground state is written with the 
new variable ݕ as: 
ࢻ
૛

൫૚ − ૛൯࢟ ૙ࣘࢊ
࢟ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙(࢞) − ൧(࢟)ࢌࢌࢋࢂ −

ࣘ૙
૛.           (1) 

By substituting the non-linear logarithmic 
derivative of the radial wave function for the 
ground state ߶଴(ݔ) = ݕܽ− + ௕

௬
+ ܿ, (ܽ >

0, and ܾ > 0), into Eq. (38), one has the explicit 
form of ܧ௘௙௙,଴ found as: 

૙,ࢌࢌࢋࡱ = (࢓ା࢔ࡱ)
૛࢓

ቂ൫−࡮૛ + ૛࡭ − ൯࡭ࢻ +
૚
૛

൫(࡭ + ࡭)(࡮ + ࡮ + (ࢻ + ࡭) − ࡭)(࡮ − ࡮ +

൯ቃ(ࢻ − ૛(࢈ିࢇ)

૛࢓
,          (2) 

where the unknown coefficients of the Riccati 
function are given by: 

ࢇ = ૚
૛

ቀିࢻ
૛

ቁ + ࢻ
૛

ට૚
૝

+ ૛(࢔ࡱା࢓)(࡭ା࡮)(࡭ା࡮ାࢻ)
૛ࢻ ,  (40) 

࢈ = ૚
૛

ቀࢻ
૛

ቁ ± ࢻ
૛

ට૚
૝

+ ૛(࢔ࡱା࢓)(࡮ି࡭)(࡮ି࡭ାࢻ)
૛ࢻ ,     (41) 

and ܿ = 0. This result is adopted throughout the 
rest of the calculations for all the potentials. We 
calculate the first integral quantum momentum 
݇௡ between the two turning points ݖ஺ and ݖ஻ as 
follows: 

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

= ૚
ࢻ

ට(࢔ࡱା࢓)(࡭ା࡮)(࡭ା࡮ାࢻ)
૛

 

∫ ඥ(ࢠ − ࡮ࢠ)(࡭ࢠ − (ࢠ ࢠࢊ
(ࢠ૚ି)ࢠ

࡭ࢆ
࡮ࢆ

,         (42) 

Likewise, replacing ܧ௘௙௙,௡ appearing in the 
last Equation with ܧ௘௙௙,଴ expression Eq. (39), 
the second integral of momentum in the ground 
state is given by: 

= ࣊
ࢻ

ට(࢔ࡱା࢓)(࡭ା࡮)(࡭ା࡮ାࢻ)
૛

 

− ࣊
ࢻ

ඪ(࢔ࡱ + (࢓ ቎
૛࡮−) + ૛࡭ − (࡭ࢻ

+૚/૛ ((࡭ + ࡭)(࡮ + ࡮ + (ࢻ
࡭)+ − ࡭)(࡮ − ࡮ + ((ࢻ

቏ − ૛࢔,ࢌࢌࢋࡱ࢓  

(43) 

∫ ࡮૙࢞࢞ࢊ(࢞)૙࢑
࡭૙࢞

= ࣊
ࢻ

ට(࢔ࡱା࢓)(࡭ା࡮)(࡭ା࡮ାࢻ)
૛

−
࣊
ࢻ

ࢇ) −   (44)           .(࢈

The substitution of the two integral 
expressions in the proper quantization rule, given 
in Eq. (12), yields the relativistic eigenvalues as 

൫ࡱ૛
࢔ − ૛൯࢓ = ࢔ࢻ)− − ࢇ + ૛(࢈ +

૛(࢔ࡱ +  ૛.          (45)࡭(࢓

d. Pöschl-Teller II Potential 

The second Pöschl-Teller potential in one 
dimension is written as [28-30]: 

(࢞)࢘ࢋ࢚࢔࢏ࢂ = ࡭) − ૛(࡮ − (ࢻା࡭)࡭
(࢞ࢻ)૛ࢎ࢙࢕ࢉ +

(ࢻି࡮)࡮
(࢞ࢻ)૛ࢎ࢔࢏࢙ , ࡮ < ,࡭ ࢞ > ૙.         (46) 

With the change of variable (ݔ)ݕ =
tanh(ݔߙ) < 1, while its derivative with respect 
to ݔ is ݕᇱ = 1)ߙ −  the potential ,((ݔ)ଶݕ

௜ܸ௡௧௘௥(ݔ) becomes: 

(࢟)࢘ࢋ࢚࢔࢏ࢂ = ࡭)࡭ + ૛࢟(ࢻ + (ࢻି࡮)࡮
૛࢟ − ૛࡮࡭ −

࡭)ࢻ −   (47)           .(࡮

Next, by introducing the new variable 
ଶݕ =  ஻ areݖ ஺ andݖ the two turning points ,ݖ
determined by solving ܧ௘௙௙,௡ = ௘ܸ௙௙(ݖ): 

࡭ࢠ =
ቀ(࢔ࡱା࢓)൫૛࡮࡭ା(࡮ି࡭)ࢻ൯ା࢔,ࢌࢌࢋࡱ࢓ቁ

૛(࢔ࡱା࢓)࡭(࡭ାࢻ)
− ૚

૛ √∆,  (3) 

࡮ࢠ =
ቀ(࢔ࡱା࢓)൫૛࡮࡭ା(࡮ି࡭)ࢻ൯ା࢔,ࢌࢌࢋࡱ࢓ቁ

૛(࢔ࡱା࢓)࡭(࡭ାࢻ)
+ ૚

૛ √∆,  (4) 

where the discriminant is 

∆= ቈ
ቀ(ா೙ା௠)൫ଶ஺஻ାఈ(஺ି஻)൯ା௠ா೐೑೑,೙ቁ

ଶ(ா೙ା௠)஺(஺ାఈ)
቉

ଶ

− ସ୆(஻ିఈ)
஺(஺ାఈ) . 

We may consider that the Riccati function 
satisfies ߶଴(ݔ) = ݕܽ− + ௕

௬
+ ܿ, (ܽ > 0). By 

substituting it into the next non-linear Riccati 
differential equation in the ground state, we 
have: 

ࢻ ቀ૚ − ቁ(࢞)૛࢟ ૙ࣘࢊ
࢟ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙ −

൧(࢟)ࢌࢌࢋࢂ − ࣘ૙
૛.         (5) 

One can get the unknown coefficients by 
considering the monotonicity of the Riccati 
function between the two turning points: 

ࢇ = ቀ− ࢻ
૛

ቁ + ࢻ
૛

ට૚ + ૡ(࢔ࡱା࢓)࡭(࡭ାࢻ)
૛ࢻ ,       (6) 

࢈ = ࢻ
૛

ࢻ ±
૛

ට૚ + ૡ(࢔ࡱା࢓)(ࢻି࡮)࡮
૛ࢻ ,        (7) 

and the relativistic energy in the ground state is: 
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૙,ࢌࢌࢋࡱ = (࢓ା࢔ࡱ)
࢓

[−૛࡮࡭ − ࡭)ࢻ − (࡮ + ࡭)࡭ +

(ࢻ + ࡮)࡮ − [(ࢻ − ૛(࢈ିࢇ)

૛࢓
.        (8) 

Now we proceed to calculate the integral of 
the momentum ݇௡ between the two turning 
points: 

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

=

∫ ට૛࢔,ࢌࢌࢋࡱൣ࢓ − ࡮࢟࢟ࢊ൧(࢟)ࢌࢌࢋࢂ
࡭࢟

,        (54) 

= ඥ૛(࢔ࡱା࢓)࡭(࡭ାࢻ)
૛ࢻ ∫ ඥ(࡭ࢠିࢠ)(ࢠି࡮ࢠ)

(ࢠ૚ି)ࢠ
࡮ࢆࢠࢊ

࡮ࢆ
,        (55) 

=
(ࢻା࡭)࡭(࢓ା࢔ࡱ)ඥ૛࣊

૛ࢻ
−

(ࢻା࡭)࡭(࢓ା࢔ࡱ)ඥ૛࣊
૛ࢻ

⎣
⎢
⎢
⎢
⎡ඨ

૚
࢓

(࡮ି࡭)ࢻା࡮࡭൤ି૛(࢓ା࢔ࡱ)
ା(ࢻି࡮)࡮ା࡭(࡭ାࢻ)൨ି࢔,ࢌࢌࢋࡱ
૚
࢓

(ࢻା࡭)࡭(࢓ା࢔ࡱ)

−ට(ࢻି࡮)࡮
(ࢻା࡭)࡭ ⎦

⎥
⎥
⎥
⎤

.  

(9) 
By replacing ܧ௘௙௙,௡ in the last equation with 

 .௘௙௙,଴ given in Eq. (53) and considering Eqܧ
(12), we obtain the well-known Pöschl-Teller II 
potential relativistic energy spectrum 

൫ࡱ૛
࢔ − ૛൯࢓ = −(૛࢔ࢻ − ࢇ + ૛(࢈ +

૛(࢔ࡱ + ࡭)(࢓ −  ૛.                     (10)(࡮

e. Scarf II Potential 

The second Scarf potential in one 
dimensional is written as [28-30], 

(࢞)࢘ࢋ࢚࢔࢏ࢂ = ૛࡭ + ൫࡮૛ି࡭૛ିࢻ࡭൯
(࢞ࢻ)૛ࢎ࢙࢕ࢉ + ࡭૛)࡮ +

(ࢻ (࢞ࢻ)ࢎ࢔ࢇ࢚
(࢞ࢻ)ࢎ࢙࢕ࢉ

.          (11) 

Let us put ݕ = tanh(ఈ
ଶ

ݔ + ݅ గ
ସ

) and ௗ௬
ௗ௫

=
ఈ
ଶ

(1 −  can then be (ݔ)ଶ). The potential ௜ܸ௡௧௘௥ݕ
rewritten in terms of the variable y as:  
(࢟)࢘ࢋ࢚࢔࢏ࢂ =

(ࢻା࡮࢏ା࡭)(࡮࢏ା࡭)
૝

૚
૛࢟ + (ࢻା࡮࢏ି࡭)(࡮࢏ି࡭)

૝
૛࢟ +

൫࡮૛ା࡭૛ି࡭ࢻ൯
૛

.                (12) 

By defining ݕଶ =  ஺ݖ the two turnings points ,ݖ
and ݖ஻, determined by solving ܧ௘௙௙,௡ = ௘ܸ௙௙(ݖ), 
are given by: 

࡭ࢠ = −
࢔,ࢌࢌࢋࡱ࢓൯ି૛࡭ࢻ૛ି࡭૛ା࡮൫(࢓ା࢔ࡱ)

(ࢻା࡮࢏ି࡭)(࡮࢏ି࡭)(࢓ା࢔ࡱ) − ૚
૛ √∆,   (13) 

࡮ࢠ =
࢔,ࢌࢌࢋࡱ࢓൯ି૛࡭ࢻ૛ି࡭૛ା࡮൫(࢓ା࢔ࡱ)

(ࢻା࡮࢏ି࡭)(࡮࢏ି࡭)(࢓ା࢔ࡱ) + ૚
૛ √∆,      (14) 

where ∆= ൤ଶ(ா೙ା௠)൫஻మା஺మିఈ஺൯ିଶ௠ா೐೑೑,೙
(ா೙ା௠)(஺ି௜஻)(஺ି௜஻ାఈ) ൨

ଶ
−

ସ(஺ା௜஻ାఈ)(஺ା௜஻)
(஺ି௜஻)(஺ି௜஻ାఈ)  is the discriminant of the 
quadratic polynomial. Next, we take ߶଴(ݔ) =
ݕܽ− + ௕

௬
+ ܿ and substitute it into the following 

Riccati equation for the ground state: 
ࢻ
૛

൫૚ − ૛൯࢟ ૙ࣘࢊ
࢟ࢊ

= −૛ࢌࢌࢋࡱൣ࢓,૙ − ൧(࢟)ࢌࢌࢋࢂ −

ࣘ૙
૛.           (15) 

The unknown coefficients ܽ and ܾ and the 
ground state energyEୣ୤୤,଴ are determined as 
follows: 

ࢇ = ૚
૛

ቀ− ࢻ
૛

ቁ + ࢻ
૛

ට૚
૝

+ ૛(࢔ࡱା࢓)(࡮࢏ି࡭)(࡮࢏ି࡭ାࢻ)
૛ࢻ ,   

(16) 

࢈ = ૚
૛

ቀࢻ
૛

ቁ ± ࢻ
૛

ට૚
૝

+ ૛(࢔ࡱା࢓)(࡭ା࡮࢏)(࡭ା࡮࢏ାࢻ)
૛ࢻ ,  (17) 

and 
૙,ࢌࢌࢋࡱ =

૚
૝࢓

࢔ࡱ) + (࢓ ∗

ቈ
࡭) + ࡭)(࡮࢏ + ࡮࢏ + (ࢻ
࡭)+ − ࡭)(࡮࢏ − ࡮࢏ + (ࢻ + ૛൫࡮૛ + ૛࡭ − ൯቉࡭ࢻ −

૛(࢈ିࢇ)

૛࢓
           (18) 

In the region of ݔ஺ < ݔ < ௘௙௙,௡ܧ ஻, whereݔ ≥
௘ܸ௙௙(ݕ), the integral of the momentum ݇௡ =

ඥ2݉(ܧ௘௙௙,௡ − ௘ܸ௙௙(ݕ)) is calculated as:  

∫ ࡮࢞࢞ࢊ(࢞)࢔࢑
࡭࢞

=

ට૚
૛

(ࢻା࡮࢏ି࡭)(࡮࢏ି࡭)(࢓ା࢔ࡱ)

ࢻ ∫ ඥ(࡭ࢠିࢠ)(ࢠି࡮ࢠ)
(ࢠ૚ି)ࢠ

࡮ࢠ ࢠࢊ
࡭ࢠ

   
(66) 

=
గටభ

మ
(ா೙ା௠)(஺ି௜஻)(஺ି௜஻ାఈ)

ఈ
−

గ
ఈ

ඩଵ
ଶ

௡ܧ) + ݉) ቌ
ܣ) − ܣ)(ܤ݅ − ܤ݅ + (ߙ
ଶܣ)2+ + ଶܤ − (ܣߙ +
ܣ) + ܣ)(ܤ݅ + ܤ݅ + (ߙ

ቍ − ௘௙௙;௡ܧ2݉ −

గ
ఈ

ටଵ
ଶ

௡ܧ) + ܣ)(݉ + ܣ)(ܤ݅ + ܤ݅ +  (19)                    .(ߙ

Substituting ܧ௘௙௙,଴ given in Eq. (65) into Eq. 
(67) and considering the proper quantization rule 
in Eq. (12) leads to: 

൫࢔ࡱ
૛ − ૛൯࢓ = ࢻ࢔)− − ࢇ + ૛(࢈ +

૛(࢔ࡱ +  ૛.                     (20)࡭(࢓

As we have noted above, in one-dimensional 
space, these three later potentials form a second 
category of potentials, as pointed out by 
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Grandati [30]. They can be transformed into the 
isotonic oscillator type: ௜ܸ௡௧௘௥(ݕ) = ଶݕଶߣ +
ఓమ
௬మ + ݔ ଴. Using the variable changeߣ →  the ,ݕ

derivative of ݕ satisfies ௗ௬
ௗ௫

= 1)ߙ − ((ݔ)ଶݕ > 0. 
The coefficients ߣଶ > ଶߤ 0 > 0, and, ଴ߣ > 0 are 
expressed as: ߣଶ = ߣ)ߣ + ଶߤ ,(ߙ = ߤ)ߤ ±  ,(ߙ
and ߣ଴ = ߣ)ߙ− ± (ߤ −  ߤ and ߣ with ,ߤߣ2
parameters defined by the interaction potential. 
The relativistic spectrum for this class of 
potentials has the following algebraic form in 
terms of the coefficients ߣଶ,  :ଶ, and λ଴ߤ 

൫࢔ࡱ
૛ − ૛൯࢓ = −(૛࢔ࢻ − ࢇ + ૛(࢈ +

૛(࢔ࡱ + ૛ࣅ)(࢓ + ૛ࣆ +  ૙).        (21)ࣅ

4.2. Klein-Gordon Solutions with Unequal 
Mixture of Scalar and Vector Potentials 
(ݔ)ܸ ≠  for Harmonic Oscillator (ݔ)ܵ
Interaction Type 

Let us now proceed to present an 
investigation of the general situation where 
(࢞)ࢂ =  by considering that the real (ݔ)ܵߚ±
parameter ߚ includes values in the 
range]−1, +1[. Our target is to search for a 
physical interpretation of the relativistic solution 
for a spinless particle obtained under two 
scenarios: where the parameter ߚ = ±1 and 
when ߚ ≠ ±1 with even and uneven 
contribution of the two potentials ܸ(ݔ) and ܵ(ݔ), 
respectively, to the energy spectrum. This 
analysis is conducted for the category of 
harmonic interaction potentials, which is 
modeled by the following interaction potential:   

(࢟)࢘ࢋ࢚࢔࢏ࢂ =
૛࢟૛ࣅ + ࢟૚ࣅ + , ૙ࣅ ,૛ࣅ ܐܜܑܟ , ૚ࣅ < ૙ࣅ
૙ ࢞ ܌ܖ܉ ∈ ℝ.           (70) 

It represents a class of harmonic oscillator 
potential types, widely used to study atomic and 
molecular interaction and to obtain the bound 
state of the relativistic energy spectrum. This set 
of potentials is related to the harmonic oscillator 
by a small linear perturbation term. The time-
independent Klein-Gordon wave function is 
investigated by considering cases where the 
scalar and vector potentials are coupled as 
unequal functions. Specifically, their ratio is 
assumed to be a constant ߚ, such that ܸ(ݔ) =
,(ݔ)ܵ ߚ −1 < ߚ < 1. We have further shown 
that the time-independent K.G. equation for a 
particle of rest mass ݉ and relativistic energy 
 and vector (ݔ)ܵ ௡, in the presence of scalarܧ

 potentials, can be reduced to a radial (ݔ)ܸ
Schrödinger-like wave function as:  
(࢞)࣒૛ࢊ

૛࢞ࢊ + ૛࢔,ࢌࢌࢋࡱൣ࢓ − (࢞)࣒൧(࢞)ࢌࢌࢋࢂ = ૙,   (71) 

where the effective potential is ௘ܸ௙௙(ݔ) =
ൣ௏మିௌమିଶ(ா೙௏(௫)ା௠ௌ(௫))൧

ଶ௠
 and is dependent on the 

relativistic energy and the effective energy 
௘௙௙,௡ܧ = ൫ா೙

మି௠మ൯
ଶ௠

.  

On the other hand, let us take the scalar 
potential as ܵ(ݔ) =  ܵ଴((ݔ)ݕ +  where ,(ܥ
ܵ଴ and  ܥ are positive constants. The effective 
potential can be expressed with only the scalar 
potential ܵ(ݔ) such as: 

ࢌࢌࢋࢂ = ൫૚ିࢼ૛൯ࡿ૛(࢞)ା૛(࢔ࡱା࢓)(࢞)ࡿ
૛࢓

,         (72) 

where (1 − ଶ)ܵ଴ߚ
ଶ = ,ଶߣ 2ܵ଴൫ܵܥ଴(1 − (ଶߚ +

ߚ௡ܧ) + ݉)൯ = ଵ, and ቀ(1ߣ − ଶܵ଴ܥ(ଶߚ
ଶ +

2ܵ଴ܧ)ܥ௡ߚ + ݉)ቁ =  .଴ߣ

Based on the Sturn-Liouville theorem, the 
logarithmic derivative in the ground state takes 
the linear form ߶଴ = (ݔ)ݕܽ− − ܾ, where 
ܽ, ܾ > 0. Substituting it into the Riccati 
nonlinear differential equation: 
((࢞)࢟)૙ࣘࢊ

࢞ࢊ
= −૛ࢌࢌࢋࡱൣ࢓,૙ − ൧ࢌࢌࢋࢂ − ࣘ૙

૛,        (73) 

and considering the derivative of ݕ with 
respect to ݔ is given by ௗ௬

ௗ௫
= α(1 − yଶ(ݔ)) > 0, 

one can obtain the algebraic formula for the 
constant coefficients ܽ, ܾ, and the energy level 
for the radial function with no nodes (݊ = 0) as 
follows: 

ࢇ = ቀ− ࢻ
૛

ቁ + ࢻ
૛

ට૚ + ૝(૚ିࢼ૛)ࡿ૙
૛

૛ࢻ ,         (74) 

࢈ = ૙ࡿ࡯
૛൫૚ିࢼ૛൯ା(ࢼ࢔ࡱା࢓)ࡿ૙

ࢇ
,         (75) 

૙,ࢌࢌࢋࡱ = ૙ࡿ૛࡯ାࢇࢻ
૛൫૚ିࢼ૛൯ା૛ࡿ࡯૙(ࢼ࢔ࡱା࢓)ି࢈૛

૛࢓
.       (76) 

Now, we are in the position to determine the 
first integral of the momentum ݇௡(ݔ) in the 
region of ݕ஺ < ݕ <  ஻. The resolution of theݕ
known function ܧ௘௙௙,௡ − ௘ܸ௙௙(ݔ) = 0 provides 
explicit expressions of the two turning points ݕ஺ 
and ݕ஻: 

(࡭࢞)࡭࢟ = − ቀࡿ࡯૙൫૚ିࢼ૛൯ା(ࢼ࢔ࡱା࢓)
(૛ࢼ૚ି)૙ࡿ࡯ ቁ − ૚

૛ √∆,    (77) 
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(࡮࢞)࡮࢟ = ቀࡿ࡯૙൫૚ିࢼ૛൯ା(ࢼ࢔ࡱା࢓)
(૛ࢼ૚ି)૙ࡿ࡯ ቁ + ૚

૛ √∆,       (78) 

whereඪ
ቀଶ஼ௌబ(ଵିఉమ)ାଶ(ா೙ఉା௠)

ௌబ(ଵିఉమ) ቁ
ଶ

−4 ൤஼మௌబ
మ(ଵିఉమ)ାଶ஼ௌబ(ா೙ఉା௠)ିଶ௠ா೐೑೑,೙

ௌబ
మ(ଵିఉమ) ൨

 is 

the square root of the discriminant of the 
quadratic equation. Between these two points the 
momentum integral is given as: 

∫ ࢞ࢊ(࢞)࢔࢑ ࡮࢞=
࡭࢞

∫ ඩ૛࢓ ቎࢔,ࢌࢌࢋࡱ −
૛(ିࢼାࡱା࢓)ࡿ૛(࢞)

ା૛(ࢼିࢼ࢔ࡱ૛)
૛࢓

቏࡮࢞
࡭࢞

    ,࢞ࢊ

(79) 
=

૙ࡿ(૛ࢼ૚ି)ට࣊
૛

ࢻ
−

࣊
૛ࢻ

⎣
⎢
⎢
⎡
ඩ

(૚ − ૙ࡿ(૛ࢼ
૛(૚ + ૛(࡯

+૛ࡿ૙(ࢼ࢔ࡱ + ૚)(࢓ + (࡯
−૛࢔,ࢌࢌࢋࡱ࢓

+

ඩ
(૚ − ૙ࡿ(૛ࢼ

૛(૚ − ૛(࡯

−૛ࡿ૙(ࢼ࢔ࡱ + ૚)(࢓ − (࡯
−૛࢔,ࢌࢌࢋࡱ࢓ ⎦

⎥
⎥
⎤
.           (80) 

Likewise, for the quantum number ݊ = 0, the 
second integral of momentum ݇଴(ݔ) 
corresponding to the ground state is calculated 
by replacing the effective energy level 
 ௘௙௙,௡ with the ground effective energyܧ
expression from Eq. (76) into Eq. (80). 
Consequently, the relativistic energy spectrum 
for the harmonic oscillator can be obtained 
algebraically by using the proper quantization 
rule from Eq. (12): 

൫ࡱ૛
࢔ − ૛൯࢓ =

− ቈ(࢔ࢻ − ૛(ࢇ + ૙ࡿ࡯ା(࢓ାࢼ࢔ࡱ)૙ࡿൣ
૛൫૚ିࢼ૛൯൧

૛

૛(ࢇି࢔ࢻ) ቉ +

ൣ൫૚ − ૙ࡿ૛൯ࢼ
૛൫૚ + ૛൯࡯ + ૛ࡿ૙ࢼ࢔ࡱ)࡯ +     ,൧(࢓

(81) 
where we have the principal quantum number n 
= 0, 1, 2, ... 

The obtained results coincide with those 
obtained by Sun [19] when the coefficient ܥ is 
null. In terms of the parameters ߣଶ,  ,଴ߣ  ଵ, andߣ
the above analytical energy spectrum, can be 
reformulated as: 

൫ࡱ૛
࢔ − ૛൯࢓ = − ൥(࢔ࢻ − ૛(ࢇ +

૚ࣅ
૛

૝
૛(ࢇି࢔ࢻ) ൩ +

૛ࣅ] +  ૙ ].           (82)ࣅ

For the specific case when the constant ߚ is 
equal to unity (ߚ = 1), the situation corresponds 
to equally mixed scalar and vector potentials. 
Here, the potential reduces to the perturbative 
term, and the bound state eigenvalues take the 
following form: 

൫ࡱ૛
࢔ − ૛൯࢓ = − ቂ(࢔ࢻ − ૛(ࢇ +

૛[(࢓ା࢔ࡱ)૙ࡿ]

૛(ࢇି࢔ࢻ) ቃ + [૛ࡿ૙࢔ࡱ)࡯ +  (83)                   .[(࢓

It is remarkable that a formal quasi-total 
equivalence is observed between the expressions 
in Eq. (83), Eq. (82), Eq. (81), and that deduced 
from Eq. (33). It is important to recall that Eq. 
(33) was obtained separately by solving the 
Klein-Gordon equation for a spinless particle 
under the assumption of an equal mixture of 
scalar and vector potentials. Consequently, it can 
be concluded that the exact algebraic relativistic 
energy spectrum does not undergo significant 
changes, even in the presence of a perturbative 
term in the interaction model. This suggests that 
the perturbative term has minimal influence on 
the energy spectrum. 

To analyze the effect of the parameter ߚ on 
the energy spectrum, we calculate the energy 
numerically using Eq. (81). We vary the value of 
 and we consider the results for the first four ߚ
states (݊ = 0, 1, 2, and 3). The results are plotted 
in Fig. 1. Part (a) of the figure pertains to the 
case ݊ = 0 where we have a peculiar behavior. 
Indeed, the particle/antiparticle states (black and 
red curves, respectively) are completely 
indistinguishable within the interval [1,1−] ߚ 
and come apart only in the intervals [−1, −1.4] 
and [1,1.4]. Beyond the points ߚ =  1.4 or 
ߚ = −1.4, no root exists for Eq. (81). It is 
remarkable that the values of the ratio ߚ beyond 
1 and below −1 are able to suppress the 
degeneracy that is complete in the 
interval [−1,1]. Parts (b) and (c) of the same 
figure illustrate, respectively, the 
particle/antiparticle states for ݊ = 1,2 and 3. The 
curves on the two panels are quite similar but the 
results in the negative and positive ߚ intervals 
are inverted. We can observe that for positive 
values of the real parameter (ࢼ > 0), the 
increasing energy levels correspond to the 
ascending quantum number ݊ (part c of the 
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figure). Likewise, the decreasing eigenenergies 
levels correspond to the ascending quantum 
number ࢔ when ࢼ < 0 (part (b) of the figure). 
This is identified, respectively, with the particle 
and antiparticle behavior in the energy-bound 
spectrum for the states ݊ = 1, 2, and 3. 

Part (b) of the figure between [−1, +1], 
shows that the trend of the energy levels appears 
from the upper side of the positive energy 
spectrum, which can be associated with particle 
energy levels. It is remarkable that the particle is 
not confined by the potential in a repulsive 
vector potential. In fact, the particle presents 
bound states solutions for ߚ < 0, as long as an 
attractive vector and scalar potentials are 
applied. As we can see, for the case in which 
ߚ > 0, and for high energy in the presence of a 
repulsive vector potential and an attractive scalar 
one, the particle becomes unstable. From part c 
of the figure and for ߚ between [−1, +1], it is 
clear that the trend of energy levels emerges 
from the bottom side of the spectrum, for 
negative energy values. One can identify them 
with anti-particle levels. In fact, the antiparticle 
is confined by the potential, by means of the 
attractive vector potential. For ߚ < 0, the 
antiparticle is unstable as long as the vector 
potential is repulsive and the scalar one is 
attractive. For ߚ > 0 the vector and the scalar 
potentials are attractive. Consequently, the 
antiparticle presents bound-state solutions. 

One can remark that the energy spectrum is 
either positive or negative in the region of 
< ߚ 0 and ߚ < 0 respectively. This may 
involve the passage from particle to antiparticle 
and vice versa. Therefore, under the 
consideration that ܸ(ݔ) =  the energy ,(ݔ)ܵ±
spectrum is positive (corresponding to ܸ(ݔ) =
(ݔ)ܸ or negative (corresponding to ((ݔ)ܵ+ =
 includes only one area of the full ((ݔ)ܵ−
spectrum but not both for each choice of the 
potential. In addition, we can notice that the 
difference between levels ݊ = 2 and ݊ = 3 is 
getting smaller and smaller but with no 
intersection point between the two curves. These 
two levels could not be degenerate for any value 
of ߚ. Conversely, we can have points of the 
intersection between the level ݊ = 1 and the two 
other levels giving rise to cases of degeneracy.  

The isotonic oscillator interaction type, the 
second class of hyperbolic potentials is very 
useful to study the dynamics of nonlinear 
systems. The isotonic oscillator takes a form 

similar to a harmonic oscillator with the 
centrifugal barrier considered as a small 
perturbation in the inverse-square singular form 

(࢟)࢘ࢋ࢚࢔࢏ࢂ = ૛࢟૛ࣅ + ૛ࣆ
૛࢟ +  ૙,          (84)ࣅ

where ߣଶ, ଶߤ , and ߣ଴ are positive constants. 

The resolution of the Klein-Gordon wave 
function in the presence of unequal scalar-vector 
potentials by supposing that the vector and the 
scalar potentials are constrained by the relation: 
(ݔ)ܸ = ,(ݔ)ܵߚ −1 < ߚ < 1, can be found by 
the approximation methods. This consideration 
cannot provide an exact bound state solution by 
using the proper quantization rule. 

 
FIG. 1. Energy spectrum versus the scalar/vector 

potential ratio and for different values of the quantum 
number n. (a) for the ground state (݊ = 0), (b) for 

matter states (݊ = 1, 2, and 3), and (c) is for 
antimatter states (݊ = 1, 2 and 3). For the numerical 

calculations, we consider ߙ = 2, ܥ = 10.0, ݉ =
1, and ܵ଴ = 1. 

5. Conclusion  
In this work, the relativistic proper 

quantization rule provides exact relativistic 
bound state energies for a particle with zero spin, 
via the resolution of the relativistic Klein-
Gordon equation. This is achieved by 
considering the formal similarity existing 
between the Schrödinger equation and the Klein-
Gordon wave function. We applied this rule with 
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equal scalar and vector potential to study exactly 
solvable hyperbolic interaction models (shape 
invariant potentials) that are known to be good 
candidates to study atomic molecular and 
nuclear physics. The results are achieved through 
a simple and easy calculation of the Riccati first-
order differential equation without solving the 
Schrödinger equation. The relativistic energy 
expressions provided by this rule are compared 
with the well-known solutions of the Klein-
Gordon equation using other more complicated 
methods and are found to be identical. As 
mentioned above this set of potentials can be 
classified into two interaction model types: the 
harmonic oscillator and the isotonic oscillator. 
Both types have an extension to the harmonic 
oscillator. We studied the first category by 
considering the more general case when the 
scalar and vector potentials are connected with 
an unbalanced potential contribution. One can 
notify that the extension represents a 
perturbative term that has no effect on the closed 
form of energy expression. By changing the sign 
of the real parameter ߚ, the migration from 
particle to antiparticle and vice versa is possible 
involving a change of the sign of the 

eigenenergies. It becomes possible also to 
suppress the degeneracy in the ground states 
allowing us to locate the particle. 

Appendix 
For the calculations of the momentum ݇(ݔ) 

integral, we have used the following integral 
formulas [36-39]: 

∫ ௗ௭
ඥ(௭ି௭ಲ)(௭ಳି௭)

௓ಳ
௓ಲ

= ,ߨ ஺ݖ ≺   ஻ݖ

∫ ௗ௭
(௖௭ାௗ)ඥ(௭ି௭ಲ)(௭ಳି௭)

௓ಳ
௓ಲ

=
గ

ඥ(ௗା௖௭ಲ)(ௗା௖௭ಳ)
, ஺ݖ) ≺ ,஻ݖ ܿ ≠ 0)  

∫ ඥ(௭ି௭ಲ)(௭ಳି௭)ௗ௭
௭(ଵି௭)

௓ಳ
௓ಲ

= ஻ݖ஺ݖ√−ቂߨ + 1 −

ඥ(1 − ஺)(1ݖ −   ஻)ቃݖ

∫ ඥ(௭ି௭ಲ)(௭ಳି௭)
(ଵି௭మ) ௓ಳݖ݀

௓ಲ
=

గ
ଶ

ቂ2 − ඥ(1 − ஺)(1ݖ − (஻ݖ −

ඥ(1 + ஺)(1ݖ + ,஻)ቃݖ (−1 ≺ ஺ݖ ≺ ஻ݖ ≺ 1) 
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