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Abstract: This article introduces a modified version of the Lorentz transformation
equations that transform spacetime coordinates between two inertial frames when the
relative motion between them occurs along the X-, Y-, and Z-directions, and represents an
extension of the one-dimensional Lorentz transformation equations to three spatial
dimensions. Making use of the invariance of the spacetime interval, the paper demonstrates
that an event in the spacetime continuum can be represented by six coordinates, of which
the first three represent the spatial coordinates, and the remaining three represent the time
coordinates. By employing the notion of a position six-vector, the correct matrix form of
the Lorentz transformation equations of order 6 x 6 has been thoroughly developed. In
addition, the D’Alembert operator, the basic ingredient of the wave equation, is shown to
be form-invariant under the modified Lorentz transformation equations. Furthermore, the
relativistic velocity addition formulas, as well as the Lorentz transformations of linear
momentum and energy, have been theoretically analyzed on the basis of the extended
Lorentz transformations. Finally, the particular purpose of this work is to present equal and
opposite relativistic spacetime coordinate transformation equations between inertial frames,
which properly allow for the formulation of the correct matrix form of the Lorentz
transformation equations in terms of the position six-vector.

Keywords: Four-vector, Lorentz transformation equations, Minkowski space, Special

relativity.

Introduction

This paper presents the matrix form of the
three-dimensional (3D) Lorentz transformation
equations; therefore, it is recommended to read
Ref. [1] in advance, which discusses spacetime
coordinate transformations when the motion
between inertial frames takes place in 3D space.

The Lorentz transformation, which is
considered the backbone of the special theory of
relativity, is a well-known and powerful
theoretical tool for providing an accurate
explanation of spatial and temporal phenomena
occurring in the realm of relativistic mechanics.
The Lorentz transformation equations were
invented by Voigt [2] in 1887, adopted by
Lorentz [3] in 1904, and further analyzed by
Poincaré [4] in 1905. Einstein [5] likely derived
them directly from Voigt’s work. The
contemporary  version of the Lorentz
transformation equations, when the motion

between inertial frames is one-dimensional (1D)
along a single X-axis, is defined as follows:

¢ t-
r=r—t=—Sy=y2=2z (1)

v v

f1—c—2 f1—c—2
Here, (x,y,zt)and (X,y,Z,t) are the

spacetime coordinates measured in the rest and
moving frames of reference, respectively.
Equation (1) in four-vector form can be
represented as follows:

%1 =y +ipxy), %y =y (x4 — ipxy), %, =
Xg, X3 = X3}, Q)
Here: (fllf2lf3lf4) = (fl y: Z_, iCD:

(x11x25x31x4) = (xlylZl lCt): p = v/cly =

1/{1— p2.
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Various derivations of Egs. (1) and (2) can be
found in the literature, such as in the works of
Feynman et al. [6] and Landau and Lifshitz [7].
If we examine Eq. (1) carefully, it becomes
evident that the transformation of time ¢ depends
only on a single spatial coordinate, x. Thus, Eq.
(1) clearly fails to relate y and 2z space
coordinates to the time coordinate ict, as it is
formulated on the basis of one-dimensional
motion between inertial frames. Fortunately, a
recently published article [1] formulates the
correct Lorentz transformation equations, also
known as 3D Lorentz transformations, for the
case in which the motion between inertial frames
takes place along the X-, Y-, and Z-directions.
These transformations are of the following form

X Y———
_ x2+y2+2z2 x2+y2 422
X = 02 V= 02
1-Z 1-2
c c | 3
vtz ’ ( )
Z—— v [x2+y2+22
_ x2+4+y2422  _ _ t_C72
Z= ,t=
v2 v2
1-— 1-—
2 2

Equation (3) above represents an extended
version of the one-dimensional Lorentz
transformation equations to three spatial
dimensions when there is simultaneous relative
motion along the X-, Y-, and Z-axes. These
three-dimensional transformations treat each
spatial coordinate on equal footing, and the
transformation of time t depends equally on the
X-, Y-, and Z-coordinates. In Ref. [1], the 3D
transformations were formulated to explain the
phenomenon of space contraction; however, in
the present work, the same 3D transformations
are retrieved to construct the correct matrix form
of the Lorentz transformation equations. Based
on the contents of our work, an event in the
spacetime continuum can be represented by six-
vectors (X1, X3, X3, X4, X5, Xg) out of which the
first three denote the space coordinates and the
last three denote the time coordinates. The 3D
Lorentz transformation given in Eq. (3),
expressed in terms of six-vectors, takes the
following form:

X =y(x + iPx4),\
X2 =y (xy +ipxs), |
X3 =y (x5 + ipxe) }
X =y (xy —ipx), |’
X5 = y(xs — ipxy),
X6 =y (x¢ — ipx3)
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4)
|
)

It should be noted that Egs. (1) and (2)
represent spacetime coordinate transformations
when the relative motion between inertial frames
is aligned along a single X-axis, whereas Egs.
(3) and (4) represent spacetime coordinate
transformations when the relative motion
between inertial frames takes place along the X-,
Y-, and Z-directions. In concise terms, this work
develops the three-dimensional Lorentz
transformations, namely Eq. (3), by considering
simultaneous relative motion along the X-, Y-,
and Z-directions, and also presents their
formulation in terms of six-vectors, namely Eq.
4).

Albert Einstein and Henri Poincaré
considered the concept of three-dimensional time
many years ago, such that space and time would
possess the same dimensionality. At present,
many authors in works [8—12] introduce
multidimensional time in order to provide better
explanations of quantum mechanics and spin.
Some time ago, Recami and Mignani [13],
Pappas [14], Guy [15], and Weinberg [16] added
two extra time coordinates to the four-
dimensional spacetime coordinates to interpret
imaginary quantities in superluminal Lorentz
transformations. In Ref. [17], three-dimensional
time is also proposed, along with the
replacement of the Lorentz transformation by
vector Lorentz transformations. The author of
Article [18] obtained a general subluminal
Lorentz transformation in six-dimensional
spacetime. Paper [19] explains the phenomenon
of time dilation on the basis of a special theory
of ether. In Work [20], it was shown that the
existence of a universal frame of reference in
which light propagates remains an unresolved
problem in physics. Paper [21] presents a
method for parameterizing new Lorentz
spacetime coordinates based on coupled
parameters. Article [22] introduces an innovative
method for deriving infinitely many dynamics in
relativistic mechanics. The author of Article [23]
describes a Lorentz-invariant extension of
Newton’s second law. The authors of Works [24,
25] propose an original method for deriving
transformation equations for kinematics with a
universal reference system. The author of Work
[26] provides a mathematical interpretation of
the Lorentz transformation equations between
inertial frames of reference moving in two
spatial dimensions. Reference [27] demonstrates
the phenomenon of space contraction along the
X-, Y-, and Z-directions by introducing relative
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motion between inertial frames in three-
dimensional space. Reference [28] gives a
detailed explanation of time dilation and the
relativity of simultaneity in two- and three-
dimensional space.

The structure of this paper is organized as
follows. In the next Section, we introduce the
transformation equations along the X-, Y-, and
Z-axes when the motion between coordinate
systems takes place in three-dimensional space.
In the subsequent Section, we develop new
modified three-dimensional spacetime
transformation equations for the X-, Y-, and Z-
axes. In the Section that follows, we formulate
the exact matrix form of the Lorentz
transformations by introducing the notion of six-
vectors. Next, we discuss the invariance of the
spacetime interval and the D’ Alembert operator
under the six new Lorentz transformation
equations. In the following Section, we develop
formulas for relativistic velocity addition and for
the transformation of momentum and energy on
the basis of the extended three-dimensional

2. Methods

2.1 Transformation Equations between Inertial
Frames

Consider two inertial reference frames, K and
K', with relative velocity v between them along
the radius vector r in 3D space, as shown in Fig.
1. The Cartesian space coordinates of a point P
are (x,y,z)and (%,y,2Z)in frames K and K'
respectively while the respective corresponding
polar coordinates of the same point are
(r,a,B) and (7, a, B). Here, the angles a and 8
are the same for observers in both the K and K'
systems due to symmetric space contraction in
the X-, Y-, and Z-directions. If the motion
between the frames of reference occurs in three
dimensions of space, then simultaneous space
contraction takes place in the X-, Y-, and Z-
directions by the same Lorentz factor, which
consequently keeps the angles a and § identical
in both frames of reference. For further details, it
is strongly recommended to consult Ref. [1].

Lorentz  transformation  equations.  The
conclusion is presented in the final Section.
Zl
% i
P(x,y,2), (1., B)
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FIG. 1. Motion between inertial frames in three-dimensional space.

Consider time measured in the rest frame by
the variable ¢t and in the moving frame by the
variable t. The coordinate axes in the two frames
are parallel and oriented such that frame K' is

moving in three-dimensional space with speed v,
as viewed from frame K. For simplicity, let the
origins of the coordinates in K and K' be
coincident at t = t = 0. If a light source at rest
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at the origin in K is flashed on and off rapidly at
t =t =0, then Einstein’s second postulate
implies that observers in both K and K' will see a
spherical shell of radiation expanding outward
from the respective origins with speed ¢ along
the radius vector r. Breaking up the resultant
velocity of light ¢ into X-component c, =
csinacosff, Y-component ¢, = csinasinp,
and Z-component c, = ¢ cos a allows us to deal
with each direction separately (see Fig. 1).
Hence, the equation of the wavefront of light
along the X-axis in the frame K is given by the
equation:

x%2 — (e t)? =0,

x% — c?t?sin? a cos? f = 0. (%)
where ¢, = csina cos S be the component of
the velocity of light along the X-axis. According
to the constancy of the speed of light, the
component of velocity of light along the X-, Y-,
and Z-directions in the K’ frame should be the
same as in the K frame of reference. Therefore,

in frame K', the equation of wavefront light
along the X-axis is specified by the equation:

fz - (Cxaz = 0!
%% — c?t? sin? a cos? § = 0. (6)
Since both the frames are at the center of the
expanding wavefront at t = t = 0, Egs. (5) and
(6) must be equal.
x% — c?t?sin acos? f =
%% — c?t? sin? a cos? . (7)
Equation (7) represents the wavefront of light
along the X-axis when motion between inertial
frames is in three-dimensional space. Similarly,

the equation of the wavefront of light along the
Y-axis in the frame K is given by the equation:

2
¥ = (eyt)” =0,

y? — c?t?sin asin? g = 0. (8)
where ¢, = csinasinf be the component of
the velocity of light along the Y-axis. Also, in

frame K', the equation of the wavefront of light
along the Y-axis is specified by the equation:

_ -2
72 = (eyf)" =0,
y2 — c?t?sinasin? g = 0. 9)

Since both the frames are at the center of the
expanding wavefront at t = t = 0, Egs. (8) and
(9) must be equal.
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y? — c?t?sin® asin? g =
y2 — c?t? sin® a sin? B. (10)

Equation (10) represents the wavefront of
light along the Y-axis when motion between
inertial frames is in three-dimensional space.
Similarly, the equation of the wavefront of light
along the Z-axis in the frame K is given by the
equation:

z2 — (c,t)?> =0,
z? — c%t? cos? a = 0. (11)

where ¢, = ccosa be the component of the
velocity of light along the Z-axis. Also, in frame
K', the equation of the wavefront of light along
the Z-axis is specified by the equation:

Z_Z - (CZDZ = 0!
72 — c%t? cos? a = 0. (12)

Since both the frames are at the center of the
expanding wavefront at t =t = 0, Egs. (11) and
(12) must be equal.

z? — c?t? cos? a = 7% — c?t? cos? a. (13)

Equation (13) represents the wavefront of
light along the Z-axis when motion between
inertial frames is in three-dimensional space. The
frame K' is moving away from the rest frame K
in such a way that there is relative motion along
the X-, Y-, and Z-directions simultaneously, as
shown in Fig. 1. Let v denote the velocity of the
moving frame along the radius vector r in 3D
space. Breaking up the resultant velocity v into
X-component v, = vsina cosf, Y-component
vy =vsinasinf, and Z-component v, =
vcosa allows us to deal with each direction
separately. Hence, the respective transformation
equations from frame K to K' along the X-, Y-,
and Z-axes are as follows:

X =x—v,t =x—vtsinacosf,
y=y-vt=y—vtsinasinp,
Z=2z—v,t =z—vtcosa.

The three equations above are valid only in
classical mechanics, but not in relativistic
mechanics. Therefore, multiplying them by the
Lorentz coefficient y, we get:

X =y(x —vtsinacosp), (14)
y =y(y — vtsinasinp), (15)
Z =y(z — vt cos a). (16)
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Similarly, the respective inverse
transformation equations from frame K' to K
along the X-, Y-, and Z-directions are as follows:

X =X+ vt =X+ vtsinacosp,
y=¥+nt=y+vtsinasinp,
z=Z+v,t =Z+ vtcosa.

where vy, = vsina cos f, v, = vsinasinf and
v, =vcosa are the components of velocity
along the X-, Y-, and Z-directions, respectively.
The above three equations are valid only in
classical mechanics, but not in relativistic
mechanics. Therefore, multiplying them by the
Lorentz coefficient 7, we get:

x = y(x + vtsinacos p), (17)
y =7 + vtsinasinp), (18)
z = y(Z + vt cos ). (19)

Furthermore, the following equations show
the mathematical relationship between Cartesian
coordinates (x,y,z) and polar coordinates
(r,a,B) of point P measured from the K frame
of reference (see Fig. 1).

x =rsinacosp, (20)
y =rsinasinp, (21)
Z =Tcosa. (22)

Squaring both sides of Egs. (20)-(22) and
then adding them, we get:
r2sin? a cos? f + r?sin® asin?f +
r2cos?a = x? +y? + 72,
r2 sin? a (cos? f§ + sin? B) + r? cos? a = x? +
y2 4 22,
r?sin?a +r? cos? a = x? + y? + 72,
r2 =x2 +y?% + 72,

r=.x%+y%+z2 (23)

Also, the following equations show the
mathematical relationship between Cartesian
coordinates (%,y,Z) and polar coordinates
(7, a, B) of point P measured from the K’ frame
of reference (see Fig. 1).

X =7sinacosf, (24)
y =rsinasinp, (25)
Z =T CoS Q. (26)

Squaring both sides of Egs. (24)-(26) and
then adding them, we get:

72 sin? a cos? § + 72 sin® a sin? § +
72 cos? a = x% + y2 + 72,

72 sin? a (cos? f + sin? B) + 72 cos? a = % +
yz +Z_2,

72 sin® a + 72 cos? a = x¥% + y? + Z2,

72 =% +y* + 7%,

7 =x%+y%+ 272 27)
2.2 Lorentz Transformation Equations Along the

X-axis

From Eq. (17), the relativistic transformation
equation along the X-axis is given by the
equation:

x = y(x + vtsinacos B),

Substituting Eq. (14) into the
expression leads to

above

x = yly(x — vtsina cos B) + vt sin a cos ],
X = yyx — yyvtsina cos f + yvt sina cos 3,
yvtsina cos f = yyvtsina cos B — yyx + x,

- . . X X
tsinacospf =ytsmacosﬁ—y7+_—,

yv
t= ﬁ[tsinacosﬁ —%(1 —%)] (28)

Now, substituting Egs. (28) and (14) into Eq.
(7) leads to

2 —c?t?sin®acos? f =

%% — c?t? sin? a cos? B, (29)

X

—c?t?sin®acos? f =
[y(x — vtsina cos B)]? —
y2

———— —|tsinacosf —
sin? a cos? 8 [ ’8

c? sin? a cos? B

2
X 1
-3
(-5
—c?t?sin? acos? f = y%x% —
2y%xvtsina cos B + y2v?t? sin? a cos? § —
c?y?t?sin? a cos? B +
1
2c2y?tsina cos £(1——)—
presmacosp (1
@2(1-3)
yeet s 1 )
—c?t?sin? a cos? f§ = x? [y2 —

c2y? _iz . )
— (1 )_/y) ]+xtsmacosﬁ[ 2y“v +

2c2y?

_1 2 in2 2 2.2 _
” (1 7y)]+t sin® a cos” B (y*v
c?y?),
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After  comparing the  corresponding
coefficients of x?,xt,and t? on both sides, the
following expressions are obtained:

2 c2y? 1 2 _

; o2y, 4 2V (1] =
sina cos [ 2y°v + - (1 7)/)] =0, 31
sin? & cos? B (y?v? — c?y?) =
—c? sin? a cos? B. (32)
Now, Eq. (32) gives

—y*(c* —v?) = =%,

(33)

in
1
yz = v2:
-z
v? 1
vo1-3 (34)

Again, Eq. (31) yields

—v+S(1-2) =0,

144
—v2+c2(1—_i)
” Yy, 0’
v? 1
Z=(1- ﬁ). (35)

Substituting Eq. (34) into Eq. (35) leads to

Now, substituting Eq. (33) into (14) leads to

%= x—vtsinacosf

) (36)

Substituting the value of sin a cos 8 from Eq.
(20) into Eq. (36), and then inserting the value of
r from Eq. (23) into the resulting expression,
yields
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vtx

— X

_ x—vrﬁ x2+y2+72

R G7)
1-5 1=

Equation (37) represents the Lorentz
transformation along the X-axis for the case of
simultaneous relative motion between inertial
frames in three-dimensional space. To obtain the
transformation equation for the time coordinate,
Eq. (35) is substituted into Eq. (28):

t=y|t- o (1-5)]

f=y(t-=2 ), (38)

cZsinacosf

Using the value of r from Eq. (20) and then
substituting Eq. (23), the above expression takes
the form

T vr vy x2+y2+22
i=y(-%) =V(t—c—z)'
v [x2+y2+22

f=—rt — (39)
v
-z
The inverse space-time coordinates along the
X-axis in 3D space can be achieved by
exchanging space-time coordinates and replacing
v by —v in Egs. (37) and (39) as follows:

_ vt

®l

x+
x2+y2+22
x = —— (40)
iz
72 +72 472
Hin
t=—rt— (41)

1-=
c2

2.3 Lorentz Transformation Equations Along the
Y-axis
From Eq. (18), the relativistic transformation
equation along the Y-axis is:

y =y + vtsinasinB),
Substituting Eq. (15) into the
expression leads to

above

y =7[y(y — vtsinasinp) + vtsinasinf],
y = yyy — yyvtsinasin f + yvt sina sin f3,
yvtsinasinf = yyvtsinasinf —yyy +y,

tsina sin =ytsinasinﬁ—%+%,

f=m[tsinasinﬁ—%(l—%)l, 42)

Now, substituting Egs. (42) and (15) into Eq.
(10), we get:
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y? — c?t?sin® asin?f =
y? — c?t? sin? a sin? B, (43)
— c%t?sin® asin?f =

[y(y — vtsinasinp)]? —
_r
sin? a sin? B

y2

c? sin? a sin?

-

—c?t?sin®asin? g =

y2y? — 2y?yvtsinasinf +

y2v2t?sin? asin? B — c?y?t?sin? a sin? § +
2

Zczyztsinasinﬁ% (1 - é) —y2c? i—z(l -

4%
1 )2
—_ )
4%

—c?t?sin? asin? B = y? [yz —

[t sinasinf —

2

y

N

CZ)/Z

1 2 . . 2
2 (1_ﬁ) ]+ytsmasmﬁ[—2y v+
2¢2y2

1 2 win2 ) 2.2 _

” (1 7y)]+t sin” a sin”* B (y*v
c?y?),

After  comparing the  corresponding

coefficients of y?2,yt and t? on both sides, the
following expressions are obtained

- (1-1) o, (44)

v2

. . 2 2c¢2y? (0 1\] _
sina sin 8 [—Zy v+ (1 _y)] =0, (45
sin? a sin? B (y?v? — c?y?) =
—c?sin? a sin? . (46)
On solving the above three equations as done
in Section 2.2, we obtain:

_ 1

y=v= ﬁ 47)
L= (1-5) (48)

Substituting Eq. (47) into Eq. (15) leads to

__y-vtsinasinf

V=" (49)
=

Substituting the value of sin a sin § from Eq.
(21) into Eq. (49), and then putting the value of r

from Eq. (23) into the resulting equation, leads
to

vty

y——2F

_ y_E%X x2+y2+z2

y=rr =t (50)
3 ez

Equation (50) is the Lorentz transformation
equation along the Y-axis when there is the

simultaneous relative motion between inertial
systems in 3D space. To find the equation of
time coordinates, let us use Eq. (48) in Eq. (42):

=y[t -ty (-5
t=y (¢~ momaamg) G

Using the value of r from Eq. (21) and then
substituting Eq. (23), the above expression takes
the form

- vr vy x2+y2+22
t=V(t—c—z)=V<t—c—z)'
v [x2+y2+22
- S
t=:————4%;——. (52)
ez
Here, it should be noted that the

transformation equation of time, namely Eq.
(52), is exactly the same as Eq. (39). Hence, the
transformation equation of time is the same for
X- and Y-directions. The inverse space
coordinates along the Y-axis in 3D space can be
achieved by exchanging space-time coordinates
and replacing v by —v in Eq. (50) as follows:

_ vty
y

+7
xX2+y2+72 (53)

102
C2

y:

2.4 Lorentz Transformation Equations Along the
Z-axis

From Eq. (19), the relativistic transformation
equation along the Z-axis is given by the
equation:

z=7(Z+ vtcosa),

Substituting Eq. (16) into the above

expression leads to

z =y[y(z — vt cos a) + vt cos a],
Z = yyz — yyvt cos a + yvt cos a,
yvtcosa = yyvtcosa — yyz + z,

fcosa =ytcosa —E+ =
v yv
F—_Y _Z(1_-L
t= [t cosa —- (1 )_/y)]. (54)
Now, substituting Egs. (54) and (16) into Eq.
(13) leads to

z? — c?t? cos? a = 722 — c?t? cos® a (55)

z? — c?t? cos? a = [y(z — vt cos @)]? —
v [t cosa — Z(1 — i)]2

cos?a v Yy

c?cos? a
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272 —2y%zvtcosa +

c?y?t? cos® a +

z? — c?t?cos? a = y
v2v?t? cos® a —

2¢2y2t cos a = (1—y—) yzczz( _VL)
c2y 2(1_i)2]+

4
Ztcosa[ 2y v+2€ v’ (1_ﬁ)]+

z? —c?t?cos’a =z [y

t? cos? a (y?v? — ¢ V)

After  comparing the  corresponding
coefficients of z2,zt and t? on both sides, the
following expressions are obtained:

2_ci(,_ 1 2 _
cosa[ 2y%v X (1 - W)] =0, (57)
cos? a (y?v? yz) = —c? cos? a. (58)

On solving the above three equations as done
in Section 2.2, we obtain:

_ 1

Y=Y =T7— (59)
1__
’UZ
5=01-3) (60)
Substituting Eq. (59) into Eq. (16) leads to
_ _ z-vtcosa

zZ = ﬁ, (61)
ez

Substituting the value of cos a from Eq. (22)
into Eq. (61) and then putting the value of r from
Eq. (23) into the obtained equation leads to

vtz

vz
_vtz 2492472
- — (62)

- : :
v v
1-= RS

Equation (62) is the Lorentz transformation
equation along the Y-axis when there is the
simultaneous relative motion between inertial
systems in 3D space. To find the equation of
time coordinates, let us substitute Eq. (60) into
Eq. (54):

t= y[t_vczszx(l _%)]'

t=y(t-52), (63)

c2cosa

Using the value of r from Eq. (22) and then
substituting Eq. (23), the above expression takes
the form

- vr vy x2+y2+22
i=y(-%) =V(t—c—z)'
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F— — (64)
Here, it should be noted that the

transformation equation of time, namely Eq.
(64), is exactly the same as Eq. (39) and Eq.
(52). Hence, the transformation equation of time
is the same for the X-, Y-, and Z-directions. The
inverse space coordinates along the Y-axis in 3D
space can be achieved by exchanging space-time
coordinates and replacing v by —v in Eq. (62) as
follows.

T———
xX2+y2+72 (65)

2.5 Lorentz Transformation Equations Along
Radial Line

In previous sections, we have derived the
Lorentz transformation equations along the X-,
Y-, and Z-directions. Now we wish to find the
relativistic space-time transformation formulas
relating radius vectors r and 7 along the radial
line OP. In Fig. 1, the moving frame K' and the
emitted pulse of light are moving along the
radial line OP with the velocity v and c
respectively. Now, the equation of the wavefront
of light along the radius vector r in the frame K
is given by the equation:

r? —c%t? =0, (66)

Also, the corresponding equation of the
wavefront of light along the radius vector ¥ in
frame K' is specified by the equation:

72 — c2F2 = 0, (67)

Since both the frames are at the center of the
expanding wavefront at t = t = 0, Egs. (66) and
(67) must be equal.

— 22, (68)

Equation (68) represents the wavefront of
light along the radial line OP. Also, frame K' is
moving along the radial line OP with the
uniform velocity v as shown in Fig. 1. Hence, it
is obvious that radius vectors r and 7 are related
by the equation:

O'P=0P-00,

r2 — o242 = 2

r=1—7t,

Hence, the corresponding relativistic
transformation equation relating radius vectors r
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and 7 with Lorentz coefficient y should be in the
following form:

7=y — vt). (69)
Also, the corresponding inverse relativistic

transformation equation relating radius vectors r

and 7 should be in the following form:

r=y({ +vt), (70)
Substituting Eq. (69) into Eq. (70) leads to
=yly(r —vt) + vt ],
= yyr — yyvt + yvt,

yvt = yyvt — yyr +r,

E=y[e-2(1-2)] (71)

Now, substituting Egs. (71) and (69) into Eq.

(68) leads to
r2 — 242 = 72 _ (2F2

r? —c?t? = [y(r — vt)]? — c?y? [t -

20-3)

r? —c%t? = y%r? = 2¥%rvt + y%v
c2y22 +M(1__L) @(1_
v Yy v

1 )2
4%

r? — o242 = 2 [yz _&r
rt [—Zyzv L
2 (r2v? — 2y,
After  comparing the  corresponding

coefficients of r2,rt and t? on both sides, the
following expressions are obtained

2 c2y? _i 2 _
Y~z (1 7y) =1, (72)
2¢? y 1
-2 1-1)=
yv+ 2 ( 7y) 0, (73)
vY2v? —c?y? = —c2. (74)

On solving the above three equations as done
in Section 2.2, we obtain:

_ 1

y=7="— (75)
iz
v 1
Z=(1-3) (76)
Substituting Eq. (75) into Eq. (69) leads to
F=lZ (77)

This Eq. (77) is the Lorentz transformation
equation along the radial line. To find the
equation of time coordinates, let us substitute
Egs. (76) and (75) into Eq. (71),

= o2

f=—== e (78)
P s
Here, it should be noted that the

transformation equation of time, namely Eq.
(78), is exactly the same as Egs. (39), (52), and
(64). Hence, the transformation equation of time
is the same for all directions. The inverse space
coordinates along a radial line can be achieved
by exchanging space-time coordinates and
replacing v by —v in Eq. (77) as follows.

7+vt

>’
v
1-=
c2

Using Egs. (23) and (27), Eq. (79) takes the
following form:

Jx2+y? 422 =
Jl—c—z

This Eq. (80) represents the inverse
transformation equation along the radial line
when the relative motion between inertial frames
occurs in 3D space. If the motion between
inertial frames is aligned along a single X-axis
only, then we need to substitute y =y = 0 and
z=27z=0 in Eq. (80), which exactly gives the
former 1D inverse Lorentz transformation
equation along the X-axis as follows:
VE2+02+02+vi

v2
C2

(79)

VX2 +y2+z2 40t +zz+vt (80)

x? 4+ 0% +0% =

)

_ X+vt

= =.
v
1_c2

3. Results and Discussion

3.1 Lorentz Transformation Equations in 3D
Space

In Section “Methods”, we have derived the
Lorentz transformation equations along radial
line, the X-, Y-, and Z-directions when the
motion between inertial frames takes place in 3D
space. These 3D transformation equations,
namely Egs. (37), (50), (62), and (64) represent
the extended version of the 1D Lorentz
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transformation to three dimensions of space, and
these equations exactly take the form of the 1D
Lorentz transformation when the relative motion

between inertial frames is reduced from 3D to
1D along the X-axis, as discussed in Table 1.

TABLE 1. Inverse Lorentz transformation equations in 3D space

Motion . . Space coordinate transformation equations
between | Transformation of time — — —
frames Along the X-direction Along Y-direction Along Z-direction
From Eq. (41), From Eq. ({9), From Eq. (§§), From Eq. (§§),
Along X-, N y2 + 22 i+ vtx 7+ vty P vtz
Yoand | T | T @+yrez | T JBayrez | TR +yr4 2
Z-axes 1_1]_2 = 1_U_z Y= 1_U_z 2= 1_1]_2
c? c2 c2 c2
BT O P S yr—t
S e Nz NS b0
t= X = y = 0+ —
Along X- 2 2 2 [%2 + yZ + 02
and Y- 1_5_2 1_0_2 1_0_2 z= —
axes only _ v /x4 2 - vtx 54 vty -7
z=0| T & G RN
7 *= 0 y= 0 z2=0
c i T c?
_, vWxZ + 07 + 02 . vix 2 "
S —: Froe | 0+t | o+ M0
Along X -| 02 x — __ NEH02402 | P+ 02402
axis only 1-2= 1 Z—z y v v
ZT)O'y P+%7 X +vt c? c
= t= X =
1 v? 1— U_j y=0 z=0
- C

From the last row of Table 1, it is clearly seen
that modified Lorentz transformation equations
achieve the exact form of the former 1D Lorentz
transformation equations when the motion
between inertial frames takes place along a
single X-axis only. These transformation
equations are exactly the same transformation
equations as derived in Ref. [1]. In Ref. [1], the
equations were obtained to demonstrate the
simultaneous space contraction along the X-, Y-,
and Z-directions, whereas in the present work,
the same equations are recovered in order to
formulate the matrix representation of the three-
dimensional Lorentz transformation.

3.2 Invariance of Space-time Interval

One of the important properties of the
Lorentz transformation equations is that the
space-time interval must be invariant under these
transformation equations. The equation of the
space-time interval in a moving frame of
reference is given by,

T2 = %% + 9% + 72 — c?t?,

The corresponding equation of the space-time
interval in the rest frame of reference is given by

678

12 =x2 +y? + 22 — %2,

Substituting the values of x,y,z,t from Egs.
(40), (41), (53), and (65) into the formula of
space-time interval, i.e.,
x2 +y? 4+ z2 — c%t?,
vEX 2

T—
x2+y2+22

v? v
62

2
It _ v w2 +y2+22
x2+y2+22 ——

2 &

1—>=
c2

2 52 52
922+}72+22+2vf(—x ty +7 )

VEE+§2 4+ 22
X2 +y°+7°
x* +y%+2z°

2(+v2 52 52
N o R e b e R )
[

+(vt)? c?t?

)’

22492422+ ()% —c?t

2 V2 (x%+y%+22)
ez

v2 )
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252, 52 v? 272 v?
(X2+y%+2z )<1—c2)—c t <1—c2)
2 )’
v
1__
2

=% +y* +7° — *t?,

Thus, we have clearly proved that x? + y? +
z? — c?t? = x? + y%2 + 2% — c?t?. Hence, the
space-time interval equation is invariant under
the 3D Lorentz transformation equations.

3.3 Matrix Form of 3D Lorentz Transformation
Equations

In former 1D Lorentz transformations, the
relative motion between inertial frames is
constrained along a single axis (say X-axis).
Hence, we take the account of single space
coordinates and the transformation of time
coordinate depends only upon X coordinates [see
Eq. (1)]. Unlike it, in 3D Lorentz
transformations, we have simultaneous relative
motion between inertial frames along the X-, Y-,
and Z-directions. Hence, we need to have the
transformation equations for all X, Y, and Z
space coordinates, and the transformation of the
time coordinate should depend upon all space
coordinates [see Eq. (4)]. For that, let’s write the
corresponding values of space coordinates from
Egs. (20)-(22) as follows:

X =x; =rsinacosp, (81)
y =x, =rsinasinf, (82)
Z = X3 =T COoS Q. (83)

Equations (81)-(83) represent the value of
space coordinates along the X-, Y-, and Z-axes
in the rest frame of reference. The corresponding
expression of space coordinates in a moving
frame can be written from Egs. (24)-(26) as
follows:

X =Xx; =rsinacosp, (84)
y =X, =7sinasinp, (85)
Z = X3 =T Cos Q. (86)

In fact, the above equations represent the
three components of the resultant radius vector
7. Now, we wish to find the components of the
time coordinate, or more conveniently ict, under
the 3D Lorentz transformation equations. For
that, let us write the equation of the wavefront of
light along the X-axis from Eq. (29) in the
following form:

x% — (ctsina cos B)? = x? — (ct sina cos )2,

x% + (ictsina cos f)? =
%% + (ictsina cos )2 ;. (87)
x12 + X4,2 = flz + f42
Equation (87) shows the invariance of the
space-time interval along the X-direction. Hence,
it is obvious that x, = ictsinacosf must
represent the time coordinate corresponding to
the space coordinate Xx; =rsinacosf.
Similarly, let us write the equation of the
wavefront of light along the Y-axis from Eq.
(43) in the following form:

y? — (ctsina sinB)? = y? — (ct sina sin$)?,

y? + (ictsinasinf)? =

y% + (ictsinasin)? . (88)

XZZ + X52 = fzz + fsz

Equation (88) shows the invariance of the

space-time interval along the Y-direction. Hence,
it is obvious that x5 = ictsinasinf must
represent the time coordinate corresponding to
the space coordinate x, =rsinasinf.
Similarly, let us write the equation of the
wavefront of light along the Z-axis from Eq. (55)
in the following form:

7% — (ctcosa)? = 72 — (ct cos a)?,

2 ; 2 _ 52 F 2
z% + (ict cos a) Z% + (ictcos a) } (89)

X32 + x62 = f32 + fﬁz
Equation (89) shows the invariance of the
space-time interval along the Z-direction. Hence,
it is obvious that x¢ = ict cos ¢ must represent
the time coordinate corresponding to the space
coordinate x3 =rcosa. Thus, the time
coordinates, namely the components of ict,
under the 3D Lorentz transformation equations
in the rest frame, can be written from Eqgs. (87)-
(89) in the following form:

x4 = ictsinacosf, (90)
X5 = ictsinasinf, 91)
Xg = ict cos a. (92)

The corresponding expression of components
of ictin a moving frame can be written from
Eqgs. (87)-(89) as follows:

X, = ictsina cosf, (93)
Xs = ictsinasinf, (94)
X = ict cos a. (95)

From the above mathematical manipulations,
it is obvious that time has three coordinates,
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namely (x4,xs,x5), like space has three
coordinates, namely (x;, X5, X3). Hence, an event
in the spacetime continuum should be
represented by six coordinates (let’s name them
six-vectors), out of which the first three
represent the space coordinates and the
remaining three represent the time coordinates.
Now, our main task is to write the 3D Lorentz
transformation in terms of six-vectors. For this,
let’s write the Lorentz transformation equation
along the X-axis with p = v/c from Eq. (36) as
follows:

X =y(x —vtsinacosp),

= y(x —%ctsinacosﬁ),
% =y(x — pct sina cos B),
% =y(x + i?pctsina cos B),

Substituting Egs. (81), (84), and (90) into the
above expression results in
X1 =y(x + ipxy). (96)

Similarly, let’s  write the Lorentz
transformation equation along the Y-axis with
p = v/c from Eq. (49) as follows:

y =y(y — vtsinasinp),

_ LV i o

y = y(y cctsmasmﬁ).
y =y(y — pctsinasinp),
y =y(y + i%pctsina sin B),

Substituting Egs. (82), (85), and (91) into the
above expression results in
X, = y(x; + ipxs). 97

Similarly, let us write the Lorentz
transformation equation along the Z-axis with
p = v/c from Eq. (61) as follows:

Z=y(z — vtcosa),
> — _Y
Z = y(z Cctcosa),
Z=vy(z — pctcosa),
Z=7v(z+ i’pctcos a),
Substituting Egs. (83), (86), and (92) into the
above expression results in
X3 =y (x3 + ipxe). (98)

Equations (96)-(98) are the 3D Lorentz
transformations of space coordinates in terms of
six-vectors. To find the transformation equations
of time in terms of six-vectors, let us write Eq.
(38) with p = v/c in the following form:

680

- vX
t=vy (t s sinzxcosﬁ)'

=y (t-tess)

ctsina cos B = y(ctsina cos f — px),

ictsina cos B = y(ictsina cos B — ipx),
Substituting Egs. (81), (90), and (93) into the

above expression results in

Xy =y (x4 — ipxq). 99)

Similarly, let us write Eq. (51) with p = v/c
in the following form:

- _ vy
t=vy (t c? sinzxsinﬁ)'

t= 14 (t N csin'lz)xysin ﬁ)'

ctsinasinf = y(ctsinasinf — py),

ictsinasinp = y(ictsinasinf — ipy),
Substituting Egs. (82), (91), and (94) into the

above expression results in

x5 =y (xs — ipxy). (100)

Similarly, let us write Eq. (63) with p = v/c
in the following form:

- vz

t=y (t T e coszx)'

t= ]/(t ccoszx)'

ctcosa = y(ctcosa — pz),
ictcosa = y(ictcosa — ipz),

Substituting Egs. (82), (92), and (95) into the
above expression results in

Xe =y (xg — ipxs3). (101)

Equations (99)-(101) are the transformation
formulas for three coordinates of time, i.e.,
(x4, %s,%¢). Equations (96)-(98) represent the
Lorentz transformation equations of the first
three space coordinates of six-vectors, while
Egs. (99)-(101) represent the Lorentz
transformation equations of the remaining three
time coordinates of the six-vectors. Equations
(96)-(101) can be written in the following form:
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X1 =V7.%1+0.x3 +0.x3
+ipy. x4 + 0.x5 + 0. x4
X, =0.x1 +y.x5, +0.x3
+0.x4 + ipy. x5 + 0. x4
X3=0.x1 +0.x, +y.x3
+0.x4 + 0.x5 + ipy. xg
X4 = —ipy.x1 + 0.5, + 0.x3
+Y.x4 + 0.5 + 0. x4
X5 = 0.x; —ipy.xy + 0.x3
+0.x4 +y.x5 + 0.x4
X¢ =0.x1 +0.x5 —ipy.x3
+0.x4 + 0.5 + y.x¢

, (102)

In matrix form above equations can be
written as:

X y 0 0 ipy O 0 1rx,
El lo v 0 0w o]
x| _| 0 0 y 0 0 ipy|lxs]
|z, | = |-ipy 0 0 vy 0 o0 [lxl
FSJ l 0 —ipy 0 0 y OHst
X6 0 0 —ipy 0 0 yl1%

(103)

Equation (103) represents the matrix form of
the three-dimensional Lorentz transformation
equations in terms of six-vectors. The inverse of
this equation that transforms coordinates from a
moving frame to a rest frame can be achieved by
exchanging space-time coordinates and replacing
p with —p in Eq. (103) as follows:

X, y 0 0 —ipy 0 0 7rx,;
El foov o0 0 i o |z
|xs| |0 0 'y 0O 0 —ipy||xs|
x| =lipy 0 o y 0 o |z
lst lO ipy O 0 y 0 “JZSJ
X6 0 0 ipy O 0 y Ilxg

(104)

Equations (103) and (104) represent the
matrix form of 3D direct and inverse Lorentz
transformation equations, respectively, when the
motion between inertial frames takes place along
the X-, Y-, and Z-directions simultaneously.
However, when the motion between inertial
frames takes place along a single X-axis, we
should have a = % and f = 0 (see Fig. 1), and

Egs. (81), (82) and (83) achieve the following
form under such one-dimensional conditions.

X =x =rsin§c050=r, (105)
y =X, =7sinzsin0 =0, (106)
Z = X3 =rcos==0. (107)

2

Equations (90)-(92) take the following form
when a =§andﬂ =0.

X4 = ict sin%cos 0 =ict, (108)
x5 = ictsinZsin0 = 0, (109)
X = ictcos~ = 0. (110)

Substituting Egs. (105)-(110) into six Lorentz
transformations, namely Eq. (102) results in

X =y.x1+00+00+
ipy.x4 + 0.0+ 0.0
X, =0.xy +y.0+0.0 +
0.x4, +ipy.04+0.0=0
X3=0.x,+00+7y.0+
0.4 +0.0+ipy.0=0
X4 =—ipy.x1 +0.04+0.x3 +
y.x4 + 0.0+ 0.0
X5 =0.x; —ipy.0+0.x3 +
0.x,+y.0400=0
0.x4+00+y.0=0

. (111)

From the above mathematical calculations, it
is clear that the value of Y and Z space-time
coordinates drops out (¥, = X3 = X5 = Xz = 0)
when the motion between inertial frames takes
place along a single X-axis only. If we remove
the coordinates having zero values from Eq.
(111), then we get:

X, =y.x1++0.0+ 0.0 +ipy.x4 + 0.0 + 0.0}
X4 =—ipy.x; +0.0+0.0+7y.x4 + 0.0 + 0.0)
(112)

In matrix form above equations can be
written as:

[9?1] |7 im/] [xl]
X4 —ipy v 1lxel

Equation (113) represents the matrix form of
the one-dimensional Lorentz transformation

equations. Also, Egs. (84) and (93) achieve the
following form  under  one-dimensional

.. o Vs
conditions, i.e., @ = > and § = 0:

(113)

X =% =Tsinzcos0 =T, (114)

Xy = icfsin%cos 0 = ict. (115)

Substituting Egs. (105), (108), (114), and
(115) into Eq. (113) results in

[iff] - —Zoy i?xy] [i)cct]' (116)
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Solution of the above matrix Eq. (116) gives
exact one-dimensional Lorentz transformation
equations as follows:

X =yx +iypct =

and,

ict = —ipyx + icty =

For the invariance of the space-time interval
in terms of the six-vector, let us add the Egs.
(87)-(89):
= flz +

(117)
This equation represents the invariance of the

spacetime interval under the extended new six
Lorentz transformation equations.

2+ 2,2 4+ x3% 4 x4% + x52 + x62
24 X%+ X, + X%+ X6l

3.4 Invariance of the Wave Equation

In Fig. 1, frame K' is moving with velocity v
relative to frame K along the radius vector r in
3D space. If an electromagnetic wave is
travelling in frame K, then the propagation
equation for such a wave is of the form,

* e = (et © =
{V a(ct)? P=1r T a(ict)? ¢ =0,

Here, r denotes the resultant vector, which
has three components, namely x; = x, x, =y,
and x; =z, as discussed in Egs. (81)-(83).
Hence, the above expression can be extended in
terms of components of 1 as follows,

a2 | 92 | 02 92 92 92
ettt oo @ = e T o

a2 a2
dx32 + a(ict)z} ® =0,

Similarly, ict has three components, namely,
X4, X5, and xg as discussed in Egs. (90)-(92).
Hence, the above expression can be extended in
terms of components of ict as follows,

02 02 02 02 02 02
{ax12 + x5 + dx32 + 0x42 + dxg? + axGZ} ¢ =0.
(118)

Equation (118) represents the equation of an
electromagnetic wave in a six-dimensional
space-time continuum. Now, the propagation
equation of the same wave in frame K' is given
by
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{62 92 9? n 9? 9?
2 7 9%z | 0x,?  9xs?

02 _
+ afGZ}‘D = 0.
(119)

Here @ is a function of Xj, X5, X3, X4, X5 and
X¢ and thus it may be written as
®(X1,%,,X3,X4, X5, Xg). Hence, we can write the
following differential operator:

0x.2 0%,

00 _ 00 0%, 0005, 00 0%; | 00 0%
axl - 63?1 axl 63?2 axl 63?3 axl 63?4 axl
00 05500 0%,
63?5 axl 63?6 axl’
0 _0om, 0%, 005, 00n
axl - 63?1 axl 63?2 axl 63?3 axl 63?4 axl
0 0%y 0 0%
63?5 axl 63?6 axl’

Substituting Eqgs. (96)-(101) into the above
expression results in
0 _ 0 oly(xatipxs)} | 0 0{y(xa+ipxs)}
axl 63?1 axl 63?2 axl
0 3{y(xz+ipxe)} iay(x4—ipx1)+
af3 axl 63?4 axl
iay(xs—ipxz) iay(xG—ipJ@)
afs axl 63?6 axl

—y+—0+—0——lyp+—0+

axl axZ

+

I N
_yafl ypaaa’

axl

]

Multiplying the above equation by itself, we
get:

92 a . 9 a . 9
P = (Va—fl —yp 6_924) (Va—fl - lypg).
92 5 02 2 62
Flz =Y 0%.> 'Dy 6x1 ax 'D 14
(120)
Similarly, we can write the following
differential operator:
0® _ 9b 3%, , 0D 0%, , 0P 9%z |, 0P 0%,
0x, 0% 0%, | 0%, 0%y 0%3 0%, | 0%y 0%,
0P x5 |, 0D 0%
d 9 9%y, D A%, , O 0%z , O 0%,
0x, 0% 0%, | 0%, 0%y 0%3 0%, | 0%y 0%,
9 9%s , 0 0%

Substituting Eqgs. (96)-(101) into the above
expression results in

0 9 {y(xy+ipxy)} ia{y(xzﬂpxs)}_i_
0x4 x4 0x4 0%, 0xy
0 3{y(xz+ipxe)} iay(x4—ipx1)+
0x3 0xy 0%, 0x4
iay(xs—ipxz) iay(xG—ipJ@)

63?5 aX4, 63?6 aX4, !
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2 - lyp+—0+—0+—y+—0+
aX4,
0%
9 _ i
dxy ypa_,

Multiplying the above equation by itself, we
get:

a2 ( .9 )( a . 8 )
x42 o e 8%, 8%, tup 8%.)’
02 .2 02 6 2.2 02
Bx42 =Y 87,2 2ipy? 9%, 0%, Py 9%, %
(121)
Adding Egs. (121) and (120) results in
02 02 02 . a 0
2 = yz — — 2ip P
0x4 6x4 x4 0X1 0%,
2y 22y Z L oipy2 29 _
PY 5% 42 Vo 42 p 0%, 0%,
2., 2 52
Py 97,2’
62 62 =y2( 62 _pz 62 + 62 _
axl aX4, 63?12 63?42 63?42
2 02 )
p ox
62+62_1(62 vz o | o
0x,2 | 9x,2 1 v2\0xy% 20,7 0%,°

vZ 92 )
c? 63?42 !

2 2 v2 2) 55 2
axl aX4, 1_C_2 c axl
v?) 8?2
( - c_z) a;zﬁ]
02 02 02 02
+ = >+ (122)

axlz aX42 63?1 aX4,

Similarly, we can write the following
differential operator:
0 _0om  99% 805, 0 0%
axZ - 63?1 axZ axZ axZ + aX3 axZ 63?4 axZ

0 0% 9 0%

63?5 axZ 63?6 axZ’

Substituting Egs.
expression results in
0 _ 0 oly(xatipxs)} | 0 0{y(xa+ipxs)}
axZ 63?1 axZ 63?2 axZ

0 3{y(xz+ipxe)} | 0 dy(x4—ipxy)

63?3 axZ 63?4 axZ

ial/(xs—ipxz) iay(xG—ipJ@)

63?5 axZ 63?6 axZ

(96)-(101) into the above

+

+

%0+—0——1yp+

Multiplying the above equation by itself, we

get:
s = (Vo — r5g) (vag -

iyp aixs)

92 5 02 . a 9 92
[ -2 2.9 Y9 _ 2,2 .
0x,2 14 0%,> tp 0%, 0%y Py %52
(123)
Similarly, we can write the following
differential operator:
0 _0om 09w 8 0%, 0 0%
dxs 0%, 0xs 0%, 0xs 0%z 0xs 0%, 0xs
0 0% 9 0%
69?5 axs 63?6 aXS’

Substituting Eqgs. (96)-(101) into the above
expression results in
0 _ 0 oly(xatipxs)} | 0 0{y(xa+ipxs)}
axs 69?1 axs afz axs
0 3{y(xz+ipxe)} ial/(le-_ipxl)_i_
69?3 axs 63?4 axs
ial/(xs—ipxz) iay(xG—ipJ@)
69?5 axs 69?6 axs

+

—=—0+—lyp+—0+—0+—y+

9
dxs ypa_,

Multiplying the above equation by itself, we
get:

92 d
> = ( —+
axs axs

> _ 5 2 0 0 2 2 52
(’)xsz_y ‘2+ 'Dy 0%, 0%y 14
(124)
Adding Egs. (123) and (124) results in
0 L 29 20 0
Bx,2 axs =Y 69?22 2ip 8%, 6925

d
py? af2+y -2+2mf Frraie

0x, 0Xg
2
2,29
Py 9%,
92 | 22 2( 92 2 | 9
8x,2  dxs? =Y %2 P 3 8%s2
2 0% )
p afZZ )
az+az_y2(az _p? 2 | 9
9x,2  dxg? 0x,2 0xs? = 9xg?
2 0%
p 69?22)'
62+62_1(62 v2 92 | 92
9x,2  dxg? 1_’;_: 05,2 c20x, %52
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2 2 v2 2) 552
0x, Oxs 1_C_2 c?) 0x,
v?) 8?2
(1-%)5]
c?/) 0xg
a2 a2 a2 a2

+ j—

8x,2  Oxs?  0%,> + 8%s2"

(125)

Similarly, we can write the following
differential operator:
0 _0om  99% 805, 0 0%
aX3 - 63?1 aX3 63?2 aX3 63?3 aX3 63?4 aX3

0 oxs 9 o%

63?5 aX3 63?6 aX3’

Substituting Eqgs. (96)-(101) into the above
expression results in
0 _ 0 oly(xatipxs)} | 0 0{y(xa+ipxs)}
aX3 63?1 aX3 63?2 aX3
0 3{y(xz+ipxe)} | 0 dy(x4—ipxy)
63?3 aX3 63?4 aX3
iay(xs—ipxz) iay(xG—ipJ@)
63?5 aX3 63?6 aX3

a a a a a
a—ﬁ0+a0+ay+a—@0+a—&0—

+

+

)

N
9% v,
I R
aX3 - y 63?3 lyp 63?6'
Multiplying the above equation by itself, we
get

" (i) (v — trp L)
aX32 - y6f3 yp 63?6 y6f3 yp 63?6 ’
92 , 92 . a9 92
_ _9ipy2 29 _ 2,2 0%
aX32 y 63?32 lpy 63?36326 p y 63?62
(126)
Similarly, we can write the following
differential operator:
0 _0om, 0%, 005, 00n
ax6 - 63?1 ax6 63?2 ax6 63?3 ax6 63?4 ax6
0 0%y 0 0%
63?563(6 63?6 ax6’

Substituting Egs. (96)-(101) into the above
expression results in
0 _ 0 oly(xatipxs)} | 0 0{y(xa+ipxs)}
ax6 63?1 ax6 63?2 ax6
0 3{y(xz+ipxe)} | 0 dy(x4—ipxy)
d%3 dxg 0%y 0x¢
iay(xs—ipxz) iay(xG—ipJ@)
63?5 ax6 63?6 ax6

a a a a . a a
—0+£0+al]/p+a0+a—fs0+

+

+

)

axs 0%,
9
0%g £

d

0 _ 0 0
ax6 - yafG yp 63?3'
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Multiplying the above equation by itself, we
get,

2 (y L+ ivp L) (= + ivp)
dxg? y6f6 yp6f3 y6f6 yp6f3 ’
02 5 02 . a 0 02
[ 2 2.9 Y9 _ 2,2 .
ax62 y 6f62+ lpy 63?3 63?6 p y 63?32

(127)
Adding Egs. (126) and (127) results in
02 02 5 02 . a 0
— = -2 2 = =
6x32+6x62 y 63?32 lpy 63?3 63?6
2 2
2,29 2.9 920 9
Py 6f62+y 6f62+ Py %3 0%¢
2
2,29

PV 5

2 2 2 2 2
a + a _]/2( a —,02 a a
0x32  9xg? 0x32 0%g%  0%g?

2 0% )

p af32 )

2 2 2 2 2
6+6=y2(6 _p26+6_
aX32 ax62 63?32 63?62 63?62

2 0% )

p ax3%)’
62+62_1(62 ﬁaz 02
aX32 ax62 - 1_% 63?32 CZ 63?32 63?62

(128)

Adding Egs. (122), (125), and (128), we get,

92 92 92 92 92 92
2 ;t ;t ;t ;T z =
0xq 0x, 0x3 0xy Oxs 0xg

92 92 92 92 92 92
2 2 2 2 2

(129)

From Egs. (118), (119), and (129), we can
conclude that the propagation equation of the
electromagnetic wave or D’ Alembert operator is
invariant under the six new relativistic Lorentz
transformation equations.

8%.2 | 0%,% | %32 | 0%, | 0% | 0%

3.5 Transformation of Energy and Momentum

Let us suppose once again that the frame K'
moves relative to the frame k with velocity v in
three dimensions of space as indicated in Fig. 2.
Here, the symbols u and % will be used for
velocities of the particle measured from the
inertial frames K and K', respectively. Symbol v
will only be used for the relative velocity
between inertial frames (see Fig. 2), and symbol
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y will always represent 1/4/1 — v2/c?. Symbol
mg will be used to represent the rest mass of the
particle so that the relativistic mass of the
particle measured from the frames K and K'
isgiven by the following:

Z Z'

| |

my — my
m= ,m=—.
u? u2
1-X 1-2
c2 c2

Here, m and m represent the relativistic mass
of the particle measured from the inertial frames
K and K, respectively.

,no‘/lz (ul, Uus, U3)

u (ﬁlr 1_12, 1_13)

7

.Y'

*

»Y

FIG. 2. Velocity of a moving particle observed from frames K and K'.

The position vector of a particle measured
from frame K at any instant of time t can be
written as follows:
= xl+yj + zk,

Differentiating this equation with respect to ¢,
we get:
ar _dxy  dyo  dzp
- at Tl T k}_ (130)
U=ul+uy +usk

Multiplying both sides by the relativistic
mass m = mgy/+/1 —u?/c? of the particle as

measured in frame K we get:
mu = mu,t + muyJ + mus E}
P =pil+poJ +psk

Here, p4, p,, and p3 represent the component
of linear momentum along the X-, Y-, and Z-
directions in the K frame of reference. Also,
using Egs. (20)-(22), the position of the same
particle in the form of polar coordinates can be
written as follows:

(131)

= xl+yj + zk,

S
7 =rsinacosfi+rsinasinfj+rcosak,

Differentiating this equation with respect to ¢,
we get:

df _ d(rsinacospf)- , d(rsinasinp) -

= l
dt ( sit + dt J+

d(rcosa) 7

-k,

dt

ar dar . - dar . . -
— = —sin —sin a sin
prialent acosﬁl+dts asinfj+

rcosak

—cosa

dt !

i =usinacos i+ usinasinf]+ucosak,
(132)

Multiplying both sides by the relativistic
mass m = mgy/+/1 —u?/c? of the particle as

measured in frame K, we get:
mu = musinacos BT+ musinasinf j+

-
mucosak,

p =psinacosBI+psinasinfj+pcosak,
(133)

Now, comparing the  corresponding
coefficients of Egs. (130) and (132), we get:

685



Article

Chandra Bahadur Khadka

u; =usinacosf,u, =usinasinf,u; =

ucos «a, (134)
Also, comparing the  corresponding
coefficients of Egs. (131) and (133), we get:
p1 =psinacosf,p, =psinasinf,p; =
p cos q, (135)

Similarly, the position vector of the same
particle measured from frame K' at any instant of
time t can be written as follows:

F =%+ y] + zk,

Differentiating this equation with respect to ¢,

_dx. , dy, dzp
L+ oel+ dfk}_ (136)

ar _ dx
£ dtf
U =0 + Uy] + Usk

Multiplying both sides by the relativistic
mass m = my/+/1 —U?/c? of the particle as

measured in frame K', we get:

—= — — — — —— 7
MU = MUy + MUy + Mils k}

it (137)
D = p1l+ Poj + D3k

Here, p;, P, and p; represent the component
of linear momentum along the X-, Y-, and Z-
directions in the K' frame of reference. Also,
using Egs. (24)-(26), the position of the same
particle in the form of polar coordinates can be
written as follows:

= %1+ V] + zk,

i

=2 — . — . . — >
7 =7sinacos BT+ Fsinasinfj+rcosak,

Differentiating this equation with respect to ¢,
we get:

a7 d(7 sin a cos d(7 sin a sin
- = = ﬁ)i)‘i' = ﬁ)f+
dt dt dt

d(fcosa) 7

—_k,

dt

ar . ar 5 . .o dF S
— =SInacosp —1 sinasinp —
dt ﬁ dt + ﬁ dt] +

COS(XEI—C)

at ™’

i =1usinacosBi+usinasinf]+ucosak,
(138)

Multiplying both sides by the relativistic
mass m = my/+/1 —U?/c? of the particle as

measured in frame K', we get:

=2 — . — . .
mu = musina cos BT+ musinasinj+
-
mucos ak,
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p =psinacosBl+psinasinfj+pcosak,

(139)
Now, comparing the  corresponding
coefficients of Egs. (136) and (138), we get:

U, =usinacosf,u, =usinasinf,u; =
ucosa, (140)
Similarly, comparing the corresponding

coefficients of Egs. (137) and (139) we get:

pL=psinacosf,p, =psinasinf,p; =
pcosa, (141)

Now we find formulas relating the velocity of
the particle in one inertial frame to its velocity in
a second inertial frame. From Egs. (78), (77),
(61), (49), and (36), we can write the following
relativistic space-time coordinates
transformation equations in differential form

with the Lorentz factory = 1//1 — v2/c2.

df =y (dt — S dr), (142)
dr = y(dr — vdt) (143)
dx = y(dx — vsina cos f dt), (144)
dy = y(dy — vsinasin B dt), (145)
dz = y(dz — v cos a dt), (146)

From Eq. (136), the total resultant velocity of
the particle as measured in frame K' can be
written as follows:
ar
at’

After the substitution of Egs. (142) and (143),
the following is obtained

u=

dr
7= y(dr—-vdt) _ g~v
- v - vdr’
y(dt—c—zdr) 1=zae
_ u-v
=" (147)

Equation (147) determines the transformation
of the velocity of the particle along the radial
line. To determine the velocity transformation
formulas for the X-, Y-, and Z-components, let’s
write the X-component of velocity of the particle
from Eq. (136) as follows:

dx
U =29

After the substitution of the Egs. (142) and

(144), the following is obtained:

. dx .
_ _ y(dx—vsinacos Bdt) _ g ~vsinacosf

u; = v vdr )
y(dt _c_zdr) T cZdt
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— _ u;—vsinacosp
U =——w

(148)
Similarly, let’s write the Y-component of

velocity of the particle from Eq. (136) as

follows:

o

T at’

After the substitution of the Egs. (142) and

(145), the following is obtained:

Uz

. . dy . .
— _ y(dy-vsinasingdt) _ g —vsinasinf

) “za

— __ ux—vsinasinp
Up ==
2

(149)

Similarly, let’s write the Z-component of
velocity of the particle from Eq. (136) as
follows:

. dz
Uz = E,

After the substitution of the Egs. (142) and
(146), the following is obtained:

dz
— _ y(dz—vcosadt) _g~vcosa

Uz = v - vdr
y(dt—c—zdr) = Zar
_ Uz—-vcosa
U ==~ —w— (150)
2

Equation (147) represents the transformation
of the resultant velocity along the radial line,
whereas Egs. (148), (149), and (150) give the
relativistic velocity-addition formulas for the Z-
components, respectively. The corresponding
inverse velocity-transformation equations along
the radial direction and the X-, Y-, and Z-axes
are obtained by interchanging the coordinates
and replacing v with —v in Egs. (147)-(150).
These inverse transformations take the following
forms:

u+v
= — (151)
1+—
C
__uytvsinacosp
U == (152)
1+—
C
__Uytvsinasin B
Up =~ (153)
1+—
C
__ Uztvcosa 154
Uz = uv ( 5 )
1+C_2

In the inertial frame K, the total resultant
linear momentum of the particle along the radial
line [see also Eq. (131)] is given by the relation:

mou

p =mu= —
==

And total energy is defined by the relation:

2 _ mgc?

E=mcc = 2
uZ
Ji—z

The corresponding quantities in frame K' are
defined as:

p == (155)
==
E =mc? =25 (156)

From Eq. (147), the velocity transformation
formula along the radial line is given by the
equation:

ﬁ=1_%, (157)
e _ (Y
< (1-%)”
e (WY _wes
1 —_ 2 - 2
S
CZ 2
o _CEE) ()
SR
c2 c2
- 142\ (122
1 ‘C‘j_ ( 12_),£ CZ), (158)
CZ

Substituting this value in Eq. (155) and also
using Eq. (157), one obtains

E
But, p = mu and m = —. Hence,
c

p=—==r(p-3),

Now, from Egs. (156) and (158) we get:

(159)
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P= mgc? mocz(l—%) — P1—Evsmc+.sﬁ —y (p Ev sinacosﬁ)
= —= 2 PV 1=~ 17 = 1= =2 )
[ = c
. (169)
F=_M X(c—uv): 2 ’
AT y(me? —muv) Similarly, substituting Egs. (149) and (158)
~ ¢ ¢ into Egs (167), one obtains
E =y(E — pv). (160) v
larly, one has th I gy = e o)
Similarly, one has the inverse relations: 2= —= ,
g g Jea)s)
p=v(p+%), (161) .
¢ — _ Mo(up—vsinasin f) (1_C_2)
E =y(E +pv). (162) 7 -5 (-2)(-2)
c2 c2

Equations (159) and (161) represent the
transformation of total resultant linear
momentum along the radial line. Now we wish
to determine the transformation equations for the
X-, Y-, and Z-components of linear momentum.
The components of momentum along the X-, Y-,
and Z-directions in frame S are defined by the
relations [see also Eq. (131)]:

MmolUq

Py =mu; = >
u

1[1——2
(o

(163)

(164)

(165)

The corresponding quantities in frame K' are
defined as [see also Eq. (137)]:

(166)

(167)

(168)
Substituting Egs. (148) and (158) into Eq.

(166), one obtains

mot(1-37)

P e

——  mg(uy—vsinacosp)

o= M0y (u;-vsinacosf)
1= u? v2 -
ez 1-=

688

(uz-vsinasinp) _

2 2 2
u v
1_C_2 1_C_2

mu,—mv sina sin 8

> )
v
1——=
c2

Evsinasin

— 2 2 Ev sin a sin ﬁ)

Al 14 (Pz - 2
12
Jj (170)

Similarly, substituting Egs. (150) and (158)
into Eq. (168), one obtains

— uv
moti; (1-33)

uv
% (1-%)
1-— u? v2Y’
¢ (1-52)(-2)

— mg % (uz—vcosa) _ muz—-mvcosa

)

(171)

Equations (169), (170), and (171) represent
the relativistic momentum transformation
formulas for the X-, Y-, and Z-components,
respectively. The respective inverse momentum
transformation equations along the X-, Y-, and
Z-axes are obtained by interchanging the
coordinates and replacing v with —v in Egs.
(169)-(171). These inverse transformations take
the following forms:

__  Evsi

py =y (pr + 2Resh) (172)
__ , Evsi i

P, =Y (pz + vsmcz;c s1nﬁ)’ (173)
__ E

ps =y (75 +22529). (174)
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These equations represent the transformation
relations for the first three spatial components of
the four-momentum vector (p;,p,,ps, iE/c) in
ordinary four-dimensional Minkowski space.
However, in the extended space—time continuum
considered in this work, it will be shown in the
derivation presented in the forthcoming Section
3.6 that the time part of the momentum also
yields three distinct components. This leads
naturally to the concept of a six-momentum. The
six-momentum vector thus defined has six
components, of which the first three represent
the spatial momenta (p;,p,,p3) i.e., momentum
components along the X, Y and Z-directions,
while the remaining three represent the time
components of momentum, which are of the
following form (see the forthcoming Section 3.6
for the explicit derivation):

iEsinacosf iEsinasinf§ iEcosa
Po=———Ps = »Pe = )

c c c
(175)

These time components of the six-momentum
are defined for the frame K; however, they must
be defined for the frame K' in the following way
(see the forthcoming Section 3.6 for the explicit
derivation):

__iEsinacosp _ _ iEsinasinp

Py = B yPs = B

iE cosa

D6 = c

(176)

Using Eq. (175) in Egs. (169), (170), and

(171), the following expressions are obtained
with the factor p = v/c:

— E i
pi =y (py - p PR — y (p, +
MY
M) =y(p, + ipps), (178)
A
R (PLALLALE R (A
2 : 1
EEEE) =y (p, + ipps), (179)
— E_ '2E
7 :y(p3—,0 C(C)szx) =y(p3+pl ZOSUC) —

y(P3 + ippe)- (180)
Now, multiplying both sides of Eq. (160) by
isina cos B/c, we get:
E=y(E -pv),

iEsinacosf _ ¥ (iE sinacosfS ipvsinacos ﬁ)
- - )
c

Cc Cc

After the substitution of Egs. (135), (175),
and (176), the following is obtained with factor
p=v/c:

iEsinacosf _ iEsinacosﬁ_ﬂ
c - Y( c c )'
Pa = ¥(Pa — ipp1). (181)
Similarly, let us multiply both sides of Eq.
(160) by i sina sin8/c to get:
E=y(E -pv),
iEsinasinf _ (iE sina sin 8 _ ipvsin a sin ﬁ)

c Cc Cc

After the substitution of Egs. (135), (175),
and (176), the following is obtained with factor
p=v/c:
iEsinasinf _ (iE sinasinf %)

c - c c /)’

ps = v(ps — ippy). (182)

Similarly, let us multiply both sides of Eq.
(160) by i cos a/c to get:

E =y(E —pv),

iEcosa __ (iE cosa ipvcos zx)
- - ]

Cc Cc Cc

After the substitution of Egs. (135), (175),
and (176), the following is obtained with factor
p=v/c:
iEcosa _ (iEcosuc _ %)

Cc Cc Cc

Ps =¥ (s — ipP3). (183)

Equations (178)-(183) represent the Lorentz
transformation equations for the six-momentum.
These transformation relations have been
obtained using the extended three-dimensional
Lorentz transformation equations. The same six-
momentum transformation equations can also be
derived directly by employing the matrix
formulation of the three-dimensional Lorentz
transformation, as discussed in the forthcoming
Section 3.6.

3.6 Six-Velocity and Six-momentum

Based on the matrix form of the extended
Lorentz transformation equations, namely Eq.
(103), an event in the space-time continuum
should be represented by six coordinates
(x1, %2, X3, X4, X5, Xg), out of which the first three
represent the spatial coordinates and the last
three represent the temporal coordinates. As a
result of these six space-time coordinates, we
need to extend the notion of the ordinary four-
vector analysis to a six-vector. Now, the
components of the six-velocity in the rest frame
K can be defined as:
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w, = i
Ldey
where x; = (xq, x5, X3, X4, Xs5,%¢) denote the

space-time six-vector coordinates of a particle
moving with velocity u with respect to the rest

frame K, and dt, = dt /1—?—; is the proper

time. Now, the components of the six-velocity in
the rest frame are:
__dxy; _ d(rsinacosf) _ sinacosfdr _

wy =—= = —=
dt 2 2 ar
0 dt /1—’;—2 1-%

usinacosf

__dx, _ d(rsinasinpB) _ sinasinf dr

Wy = ——= = _=
dt 2 z dt
0 dt /1—’;—2 1-5

usinasinf§

dxz _ d(rcosa) _ cosa dr _ ucosa

dtg - uz u?2 at u2’
Py Jl wa [

dx, _ d(ictsinacosf) _ . sinacosfdt _

Wy =—= =ic
dt 2 2 dar
0 de [1-% 1-5
(o

icsina cosf

W3 =

)
u?
CZ

sina sin dat _

u? dt
__2

dxs _ d(ictsinasinf)

Wg =—= =ic
T dt dt/1—ﬁ
CZ

icsinasinf

)
¥
CZ

dxe _ d(ictcos a) cosa dt _ iccosa

W, = — =
¢ Tan L [ / _ﬁdt /l_ﬁ'
c2

The components of six-momentum can be
defined as

bi = mow;,

where my is the rest mass, and w; denotes the
components of the six-velocity. Now, the
components of the six-momentum are:

— — mo
b1 = mMoW1 = 77—
u
Ji—z

musina cos f = psinacosf,
Mo

b2 = MW, = >
u

1[1——2

(o

musina sinff = psinasinf,

— _ Mo
b3 = MoW3 = 7——
Ji—z

pcos q,

Xusinacosf =

X usinasinf

Xucosa =mucosa =

690

m . .
Py = MoW, = ﬁx icsinacosf =
1-=

C

. . iE .
imc sin a cos ,8 = —sinacos B,

imc smasmﬁ = —smasm B,

my
D = MoWg = —r
1__

iE
—Cos qa,
c

Ps = mows = =X icsinasinf§

X iccosa =imccosa =

Thus, we can write the following expression
of the six-momentum for the frame K.

p1 =psinacosf,p, =psinasinf,p; —pcosa
Da ——smacosﬁ ps——smasmﬁ p6——cosa

(184)

These expressions represent the components
of the six-momentum of a particle as measured
in the rest frame K, relative to which the particle
moves with velocity u. Next, we aim to
determine the six-momentum in the moving
frame K', with respect to which the particle
moves with velocity #. The components of the
six-velocity in frame K' can now be defined as
. = 4

Ldey
where X; = (Xq,X,,X3,X4,X5,Xs) denote the
space-time six-vector coordinates of a particle
moving with velocity # with respect to the

moving frame K' and dt, = dt fl —f—z be the

proper time. Now, the components of the six-
velocity in the moving frame are:
dx, _ d(fsinacosp) _ sinacosfdr _

W, = = = " =
17 ae, [ w2 “aZ di
at [1-% 1-%

usinacosf

)

u2
u
1_c2
_dx, _ d(fsinasinB) _ sinasinf dr _
2 dto - uz ‘17.2

dt 1-—

ra c2
usinasin
)

2
-2

Wa = dxz _ d(Fcosa) _ cosa dFf _ Ucosa

3 — — —)
dtg - u2 u di u?2
‘“Jl—c—z Jl——z Jl—c—z

_ dx, _ d(ictsinacosp) sinacosfdE _

Wy =—= =ic -
dt - u2 u2 dt
0 at [1-% 1-4
C C
icsina cosf
—2 4
u
1-
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o _ dxs _ d(ictsinasinp) _ i sinasinp dt _

We = =
57 at, ai 2 L@ db
2 2

icsinasinf

— )
u?
C2

o _ dXe _ d(ictcosa) _ cosa df _ iccosa

i, = e _ dlctcosa) _
6 Tar T [ @ / _u_Zdt L _ﬁ'
c2

The components of the six-momentum in the
moving frame K' can be defined as

p; = mow;,

where my is the rest mass, and w; denotes the
components of the six-velocity in frame K'.
Now, the components of the six-momentum are:

mo
aZ
Ji—z
musina cosf = psinacospf,

my
Jl—c—z

musinasinf = psinasinf,

— = _ _Mo
Pz = mows = —
JiI—z

pcosa,

p1 = mow; =

Xusinacosf =

= mow, = Xusinasinf =
2 ow2

XUCOSax = mucosa =

— m . .
Pa = MoW, = ——= X icsina cos § =
u

==

. iE .
imcsinacosf = — sinacos B,

my
Jl—c—z

imcsinasinf = 7 sin asinf,

— = _ _Mo
Pe = MoWe = —
JiI—z

iE
—Ccos «a,
c

= MmoWg = X icsinasinf =
5 oWs

X iccosa = imccosa =

Thus, we can write the following expression
for the six-momentum in the frame K'.

P, =psinacosf,p, =psinasinf,p; =pcosa
_iE . _iE . __iE .
p4=7smacos,8,p5=7smasmﬁ,p6=7cosa}

(185)

These expressions represent the components
of the six-momentum of a particle as measured
in the moving frame K', relative to which the
particle has velocity #. The transformation of
this six-momentum from frame K to K' follows
the same rules as the transformation of space-
time coordinates, as discussed in Egq. (103).
Hence, based on the transformation in Eq. (103),
the six-momentum transforms as:

D1 14 0 0 ipy 0 07mp
{ﬁz} |[ 0 14 0 0 ipy 0“1%}
Bs| | 0 o vy 0 0 ipy||ps
15, = |=ipy 0 o vy 0 o l|lp}
[ﬁsJ [ 0 —ipy 0 0 o“sz
Ds 0 0 —ipy O 0 y 1Ps

Solution of the above matrix gives the
following equations:

=y(py +ipps),
=y(p, +ipps),
¥ (p3 + ippe),
=y(ps — ipp1),
=y(ps — ipp2),
=y(ps — ipp3).

These six transformation equations are
identical to Egs. (178)—~(183) from Section 3.5.
In Section 3.5, they were derived using the
extended 3D Lorentz transformations; here, in
Section 3.6, we obtain the same results directly
using the matrix form of the 3D Lorentz
transformation. An important property of a six-
vector is that the square of its magnitude remains
invariant under Lorentz transformations. Now
we wish to prove that the square of the length of
the six-momentum is also invariant under the
Lorentz transformation. In  relativistic
mechanics, it is well known that the quantity
p? — E?/c? remains unchanged in any frame of
reference, i.e.,

'"d| '"d| '"d| '"d' '"d' '"d'
||

(186)
Now from L.H.S. of Eq. (186),

2 E? 2(cin2 2 E? . 9
— — =p?(sin* a + cos* a) — —= (sin a +

pP-==p =

cos? a),
= p?[sin? a (cos? B + sin? B) + cos? a] —

2

E— —[sin? a (cos? B + sin? B) + cos? a],

= (p sina cos 8)? + (psina smﬁ)2

(p cos a)? + ( sin @ cos ﬁ)
2

iE . A
(?smasmﬁ) + (?cosa) ,

After the substitution of Eq. (184),
following is obtained:

2
P2 =5 = () + (2)? + ()? + (pa)* +
(ps)* + (pe)?. (187)
Similarly, from R.H.S. of Eq. (186),
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52 — E? _ 52(sin2 @ + cos? @) — E? (sin a + In fact, these equations represent the
<2 ) c? components of the radius vector r along the X-,

cos? a),

= p?[sin? a (cos? B + sin? B) + cos? a] —
m2
}5—2 [sin? a (cos? B + sin? B) + cos? a],
= (psina cos )% + (psinasinf)? +
P 2
(P cosa)? + (%sinacos ﬁ) +
L= 2 = 2
iE . . iE
(7 smasmﬁ) + (7cos a) ,

After the substitution of Eq. (185), the
following is obtained:

P2 =5 = (B2 + ()7 + (B3)2 + () +
(Ps)? + (P6)?. (188)

Now, after the substitution of Eqs. (187) and
(188) into Eq. (186), the following is obtained:

()% + ()% + (3)? + (pa)? + (ps)? +

(p6)* = (B1)* + (52)* + (B3)* + (Pu)* +

(Ps)? + (Pe)?.

From the above expression, one can conclude
that the square of the length of the six-
momentum vector remains unchanged in any
frame of reference.

4. Conclusion

In this investigation, we have derived
extended relativistic Lorentz transformation
equations for three-dimensional motion between
inertial frames of reference. Both polar and
Cartesian coordinate systems were introduced to
specify the position of a point in 3D space. The
Lorentz transformation equations along the X-,
Y-, and Z-directions were thoroughly obtained
for the case where the relative motion between
inertial frames occurs in three dimensions. To
formulate the matrix representation of these 3D
transformations, namely Eqgs. (37), (39), (50),
and (62), we first expressed the X-, Y-, and Z-
coordinates as given in Egs. (81)-(83), which
take the following form:

Xy =rsinacosf,
X, =rsinasinf,
X3 =71 Cosq.
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Y-, and Z-directions. In the same way, we
considered that the time coordinate ict must
have three components, like space coordinate r
has. For that, we have first analyzed invariance
of the space-time interval equations along the
X-, Y-, and Z-directions [see Egs. (87)-(89)] and
these invariance equations explicitly clarify that
the temporal coordinate ict has three
components in following form [see Egs. (90)-
92)]:

x4 = ictsinacosf,

X5 = ictsinasinf,

X¢ = Ict cos a.

Based on the concept of six-vectors, an event
in the space-time continuum should be
represented by six coordinates (xq, x5, X3,
X4, X5, Xg), of which the first three represent
spatial coordinates, and the last three represent
temporal coordinates. Using these six-vectors,
we obtained six new Lorentz transformation
equations, including their 6 X 6 matrix form [see
Eq. (103)]. Furthermore, the D’Alembert
operator, the fundamental component of the
wave equation, is shown to be form-invariant
under these six Lorentz transformations [see Eq.
(129)]. Correct transformation equations of
linear momentum between inertial frames were
also theoretically interpreted using the matrix
form of the six-vector Lorentz transformations,
as discussed in Sections 3.5 and 3.6. To the best
of our knowledge, this is the first study to
formulate Lorentz transformation equations in
terms of six-vectors. This work could serve as a
milestone, providing a potential new framework
to explore further consequences of relativistic
mechanics using the obtained six-vector Lorentz
transformations.
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