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Abstract: This article introduces a modified version of the Lorentz transformation 
equations that transform spacetime coordinates between two inertial frames when the 
relative motion between them occurs along the X-, Y-, and Z-directions, and represents an 
extension of the one-dimensional Lorentz transformation equations to three spatial 
dimensions. Making use of the invariance of the spacetime interval, the paper demonstrates 
that an event in the spacetime continuum can be represented by six coordinates, of which 
the first three represent the spatial coordinates, and the remaining three represent the time 
coordinates. By employing the notion of a position six-vector, the correct matrix form of 
the Lorentz transformation equations of order 6 × 6 has been thoroughly developed. In 
addition, the D’Alembert operator, the basic ingredient of the wave equation, is shown to 
be form-invariant under the modified Lorentz transformation equations. Furthermore, the 
relativistic velocity addition formulas, as well as the Lorentz transformations of linear 
momentum and energy, have been theoretically analyzed on the basis of the extended 
Lorentz transformations. Finally, the particular purpose of this work is to present equal and 
opposite relativistic spacetime coordinate transformation equations between inertial frames, 
which properly allow for the formulation of the correct matrix form of the Lorentz 
transformation equations in terms of the position six-vector. 
Keywords: Four-vector, Lorentz transformation equations, Minkowski space, Special 

relativity. 
 

 

Introduction 
This paper presents the matrix form of the 

three-dimensional (3D) Lorentz transformation 
equations; therefore, it is recommended to read 
Ref. [1] in advance, which discusses spacetime 
coordinate transformations when the motion 
between inertial frames takes place in 3D space.  

The Lorentz transformation, which is 
considered the backbone of the special theory of 
relativity, is a well-known and powerful 
theoretical tool for providing an accurate 
explanation of spatial and temporal phenomena 
occurring in the realm of relativistic mechanics. 
The Lorentz transformation equations were 
invented by Voigt [2] in 1887, adopted by 
Lorentz [3] in 1904, and further analyzed by 
Poincaré [4] in 1905. Einstein [5] likely derived 
them directly from Voigt’s work. The 
contemporary version of the Lorentz 
transformation equations, when the motion 

between inertial frames is one-dimensional (1D) 
along a single X-axis, is defined as follows: 

ݔ̅ = ௫ି௩௧

ටଵିೡమ

೎మ

, ̅ݐ =
௧ିೡೣ

೎మ

ටଵିೡమ

೎మ

, തݕ = ,ݕ ̅ݖ =  ቑ,  (1)ݖ

Here, (ݔ, ,ݕ ,ݖ ,ݔ̅) and (ݐ ,തݕ ,̅ݖ  are the (̅ݐ
spacetime coordinates measured in the rest and 
moving frames of reference, respectively. 
Equation (1) in four-vector form can be 
represented as follows: 

ଵݔ̅ = ଵݔ)ߛ + ,(ସݔߩ݅ ସݔ̅ = ସݔ)ߛ − ,(ଵݔߩ݅ ଶݔ̅ =
,ଶݔ ଷݔ̅ =  ଷ},  (2)ݔ

Here, (̅ݔଵ, ,ଶݔ̅ ,ଷݔ̅ (ସݔ̅ = ,ݔ̅) ,തݕ ,̅ݖ  ,(̅ݐܿ݅
,ଵݔ) ,ଶݔ ,ଷݔ ( ସݔ = ,ݔ) ,ݕ ,ݖ ߩ ,(ݐܿ݅ = ݒ ܿ⁄ , ߛ =
1 ඥ1 − ⁄ଶߩ . 
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Various derivations of Eqs. (1) and (2) can be 
found in the literature, such as in the works of 
Feynman et al. [6] and Landau and Lifshitz [7]. 
If we examine Eq. (1) carefully, it becomes 
evident that the transformation of time ̅ݐ depends 
only on a single spatial coordinate, ݔ. Thus, Eq. 
(1) clearly fails to relate ݕ and ݖ space 
coordinates to the time coordinate ݅ܿݐ, as it is 
formulated on the basis of one-dimensional 
motion between inertial frames. Fortunately, a 
recently published article [1] formulates the 
correct Lorentz transformation equations, also 
known as 3D Lorentz transformations, for the 
case in which the motion between inertial frames 
takes place along the X-, Y-, and Z-directions. 
These transformations are of the following form 
[1]: 

ݔ̅ =
௫ି ೡ೟ೣ

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

, തݕ =
௬ି ೡ೟೤

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

̅ݖ =
௭ି ೡ೟೥

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

, ̅ݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ ⎭
⎪⎪
⎬

⎪⎪
⎫

,  (3) 

Equation (3) above represents an extended 
version of the one-dimensional Lorentz 
transformation equations to three spatial 
dimensions when there is simultaneous relative 
motion along the X-, Y-, and Z-axes. These 
three-dimensional transformations treat each 
spatial coordinate on equal footing, and the 
transformation of time ̅ݐ depends equally on the 
X-, Y-, and Z-coordinates. In Ref. [1], the 3D 
transformations were formulated to explain the 
phenomenon of space contraction; however, in 
the present work, the same 3D transformations 
are retrieved to construct the correct matrix form 
of the Lorentz transformation equations. Based 
on the contents of our work, an event in the 
spacetime continuum can be represented by six-
vectors (ݔଵ, ,ଶݔ ,ଷݔ ,ସݔ ହݔ ,  ଺) out of which theݔ
first three denote the space coordinates and the 
last three denote the time coordinates. The 3D 
Lorentz transformation given in Eq. (3), 
expressed in terms of six-vectors, takes the 
following form: 

ଵݔ̅ = ଵݔ)ߛ + ,(ସݔߩ݅
ଶݔ̅  = ଶݔ)ߛ + ,(ହݔߩ݅
ଷݔ̅ = ଷݔ)ߛ + (଺ݔߩ݅
ସݔ̅ = ସݔ)ߛ − ,(ଵݔߩ݅
ହݔ̅  = ହݔ)ߛ − ,(ଶݔߩ݅
଺ݔ̅ = ଺ݔ)ߛ − (ଷݔߩ݅ ⎭

⎪⎪
⎬

⎪⎪
⎫

,  (4) 

It should be noted that Eqs. (1) and (2) 
represent spacetime coordinate transformations 
when the relative motion between inertial frames 
is aligned along a single X-axis, whereas Eqs. 
(3) and (4) represent spacetime coordinate 
transformations when the relative motion 
between inertial frames takes place along the X-, 
Y-, and Z-directions. In concise terms, this work 
develops the three-dimensional Lorentz 
transformations, namely Eq. (3), by considering 
simultaneous relative motion along the X-, Y-, 
and Z-directions, and also presents their 
formulation in terms of six-vectors, namely Eq. 
(4). 

Albert Einstein and Henri Poincaré 
considered the concept of three-dimensional time 
many years ago, such that space and time would 
possess the same dimensionality. At present, 
many authors in works [8–12] introduce 
multidimensional time in order to provide better 
explanations of quantum mechanics and spin. 
Some time ago, Recami and Mignani [13], 
Pappas [14], Guy [15], and Weinberg [16] added 
two extra time coordinates to the four-
dimensional spacetime coordinates to interpret 
imaginary quantities in superluminal Lorentz 
transformations. In Ref. [17], three-dimensional 
time is also proposed, along with the 
replacement of the Lorentz transformation by 
vector Lorentz transformations. The author of 
Article [18] obtained a general subluminal 
Lorentz transformation in six-dimensional 
spacetime. Paper [19] explains the phenomenon 
of time dilation on the basis of a special theory 
of ether. In Work [20], it was shown that the 
existence of a universal frame of reference in 
which light propagates remains an unresolved 
problem in physics. Paper [21] presents a 
method for parameterizing new Lorentz 
spacetime coordinates based on coupled 
parameters. Article [22] introduces an innovative 
method for deriving infinitely many dynamics in 
relativistic mechanics. The author of Article [23] 
describes a Lorentz-invariant extension of 
Newton’s second law. The authors of Works [24, 
25] propose an original method for deriving 
transformation equations for kinematics with a 
universal reference system. The author of Work 
[26] provides a mathematical interpretation of 
the Lorentz transformation equations between 
inertial frames of reference moving in two 
spatial dimensions. Reference [27] demonstrates 
the phenomenon of space contraction along the 
X-, Y-, and Z-directions by introducing relative 
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motion between inertial frames in three-
dimensional space. Reference [28] gives a 
detailed explanation of time dilation and the 
relativity of simultaneity in two- and three-
dimensional space. 
       The structure of this paper is organized as 
follows. In the next Section, we introduce the 
transformation equations along the X-, Y-, and 
Z-axes when the motion between coordinate 
systems takes place in three-dimensional space. 
In the subsequent Section, we develop new 
modified three-dimensional spacetime 
transformation equations for the X-, Y-, and Z-
axes. In the Section that follows, we formulate 
the exact matrix form of the Lorentz 
transformations by introducing the notion of six-
vectors. Next, we discuss the invariance of the 
spacetime interval and the D’Alembert operator 
under the six new Lorentz transformation 
equations. In the following Section, we develop 
formulas for relativistic velocity addition and for 
the transformation of momentum and energy on 
the basis of the extended three-dimensional 
Lorentz transformation equations. The 
conclusion is presented in the final Section. 

2. Methods 
2.1 Transformation Equations between Inertial 

Frames  

Consider two inertial reference frames, K and 
K', with relative velocity ݒ between them along 
the radius vector ݎ in 3D space, as shown in Fig. 
1. The Cartesian space coordinates of a point P 
are (ݔ, ,ݕ ,ݔ̅) and (ݖ ,തݕ  'in frames K and K (̅ݖ
respectively while the respective corresponding 
polar coordinates of the same point are 
,ݎ) ,ߙ ,ݎ̅) and (ߚ ,ߙ  ߚ and ߙ Here, the angles .(ߚ
are the same for observers in both the K and K' 
systems due to symmetric space contraction in 
the X-, Y-, and Z-directions. If the motion 
between the frames of reference occurs in three 
dimensions of space, then simultaneous space 
contraction takes place in the X-, Y-, and Z-
directions by the same Lorentz factor, which 
consequently keeps the angles ߙ and ߚ identical 
in both frames of reference. For further details, it 
is strongly recommended to consult Ref. [1].  

 
FIG. 1. Motion between inertial frames in three-dimensional space. 

Consider time measured in the rest frame by 
the variable ݐ and in the moving frame by the 
variable ̅ݐ. The coordinate axes in the two frames 
are parallel and oriented such that frame K' is 

moving in three-dimensional space with speed ݒ, 
as viewed from frame K. For simplicity, let the 
origins of the coordinates in K and K' be 
coincident at ݐ = ̅ݐ = 0. If a light source at rest 
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at the origin in K is flashed on and off rapidly at 
ݐ = ̅ݐ = 0, then Einstein’s second postulate 
implies that observers in both K and K' will see a 
spherical shell of radiation expanding outward 
from the respective origins with speed ܿ along 
the radius vector ݎ. Breaking up the resultant 
velocity of light ܿ into X-component ܿ௫ =
ܿ sin ߙ cos Y-component ܿ௬ ,ߚ = ܿ sin ߙ sin  ,ߚ
and Z-component ܿ௭ = ܿ cos  allows us to deal ߙ
with each direction separately (see Fig. 1). 
Hence, the equation of the wavefront of light 
along the X-axis in the frame K is given by the 
equation: 

ଶݔ − (ܿ௫ݐ)ଶ = 0,  

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ = 0.  (5) 

where ܿ௫ = ܿ sin ߙ cos  be the component of ߚ
the velocity of light along the X-axis. According 
to the constancy of the speed of light, the 
component of velocity of light along the X-, Y-, 
and Z-directions in the K’ frame should be the 
same as in the K frame of reference. Therefore, 
in frame K', the equation of wavefront light 
along the X-axis is specified by the equation: 

ଶݔ̅ − (ܿ௫̅ݐ)ଶ = 0,  

ଶݔ̅ − ܿଶ̅ݐଶ sinଶ ߙ cosଶ ߚ = 0.  (6) 

Since both the frames are at the center of the 
expanding wavefront at ݐ = ̅ݐ = 0, Eqs. (5) and 
(6) must be equal. 

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ =
ଶݔ̅ − ܿଶ̅ݐଶ sinଶ ߙ cosଶ  (7)  .ߚ

Equation (7) represents the wavefront of light 
along the X-axis when motion between inertial 
frames is in three-dimensional space. Similarly, 
the equation of the wavefront of light along the 
Y-axis in the frame K is given by the equation: 

ଶݕ − ൫ܿ௬ݐ൯ଶ
= 0,  

ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ = 0.  (8) 

where ܿ௬ = ܿ sin ߙ sin  be the component of ߚ
the velocity of light along the Y-axis. Also, in 
frame K', the equation of the wavefront of light 
along the Y-axis is specified by the equation: 

തଶݕ − ൫ܿ௬̅ݐ൯ଶ
= 0,  

തଶݕ − ܿଶ̅ݐଶ sinଶ ߙ sinଶ ߚ = 0.  (9) 

Since both the frames are at the center of the 
expanding wavefront at ݐ = ̅ݐ = 0, Eqs. (8) and 
(9) must be equal. 

ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ =
തଶݕ − ܿଶ̅ݐଶ sinଶ ߙ sinଶ  (10)  .ߚ

Equation (10) represents the wavefront of 
light along the Y-axis when motion between 
inertial frames is in three-dimensional space. 
Similarly, the equation of the wavefront of light 
along the Z-axis in the frame K is given by the 
equation: 

ଶݖ − (ܿ௭ݐ)ଶ = 0,  

ଶݖ − ܿଶݐଶ cosଶ ߙ = 0.  (11) 

where ܿ௭ = ܿ cos  be the component of the ߙ
velocity of light along the Z-axis. Also, in frame 
K', the equation of the wavefront of light along 
the Z-axis is specified by the equation: 

ଶ̅ݖ − (ܿ௭̅ݐ)ଶ = 0,  

ଶ̅ݖ − ܿଶ̅ݐଶ cosଶ ߙ = 0.  (12) 

Since both the frames are at the center of the 
expanding wavefront at ݐ = ̅ݐ = 0, Eqs. (11) and 
(12) must be equal. 

ଶݖ − ܿଶݐଶ cosଶ ߙ = ଶ̅ݖ − ܿଶ̅ݐଶ cosଶ  (13)  .ߙ

Equation (13) represents the wavefront of 
light along the Z-axis when motion between 
inertial frames is in three-dimensional space. The 
frame K' is moving away from the rest frame K 
in such a way that there is relative motion along 
the X-, Y-, and Z-directions simultaneously, as 
shown in Fig. 1. Let ݒ denote the velocity of the 
moving frame along the radius vector ݎ in 3D 
space. Breaking up the resultant velocity ݒ into 
X-component ݒ௫ = ݒ sin ߙ cos  Y-component ,ߚ
௬ݒ = ݒ sin ߙ sin ௭ݒ and Z-component ,ߚ =
ݒ cos  allows us to deal with each direction ߙ
separately. Hence, the respective transformation 
equations from frame K to K' along the X-, Y-, 
and Z-axes are as follows: 

ݔ̅ = ݔ − ݐ௫ݒ = ݔ − ݐݒ sin ߙ cos   ,ߚ

തݕ = ݕ − ݐ௬ݒ = ݕ − ݐݒ sin ߙ sin   ,ߚ

̅ݖ = ݖ − ݐ௭ݒ = ݖ − ݐݒ cos   .ߙ
The three equations above are valid only in 

classical mechanics, but not in relativistic 
mechanics. Therefore, multiplying them by the 
Lorentz coefficient ߛ, we get: 

ݔ̅ = ݔ)ߛ − ݐݒ sin ߙ cos  (14)  ,(ߚ

തݕ = ݕ)ߛ − ݐݒ sin ߙ sin  (15)  ,(ߚ

̅ݖ = ݖ)ߛ − ݐݒ cos  (16)  .(ߙ
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Similarly, the respective inverse 
transformation equations from frame K' to K 
along the X-, Y-, and Z-directions are as follows: 

ݔ = ݔ̅ + ̅ݐ௫ݒ = ݔ̅ + ̅ݐݒ sin ߙ cos   ,ߚ

ݕ = തݕ + ̅ݐ௬ݒ = തݕ + ̅ݐݒ sin ߙ sin   ,ߚ

ݖ = ̅ݖ + ̅ݐ௭ݒ = ̅ݖ + ̅ݐݒ cos   .ߙ

where ݒ௫ = ݒ sin ߙ cos ௬ݒ ,ߚ = ݒ sin ߙ sin  and ߚ
௭ݒ = ݒ cos  are the components of velocity ߙ
along the X-, Y-, and Z-directions, respectively. 
The above three equations are valid only in 
classical mechanics, but not in relativistic 
mechanics. Therefore, multiplying them by the 
Lorentz coefficient ̅ߛ, we get: 

ݔ = ݔ̅)ߛ̅ + ̅ݐݒ sin ߙ cos  (17)  ,(ߚ

ݕ = തݕ)ߛ̅ + ̅ݐݒ sin ߙ sin  (18)  ,(ߚ

ݖ = ̅ݖ)ߛ̅ + ̅ݐݒ cos  (19)  .(ߙ

Furthermore, the following equations show 
the mathematical relationship between Cartesian 
coordinates (ݔ, ,ݕ  and polar coordinates (ݖ
,ݎ) ,ߙ  of point P measured from the K frame (ߚ
of reference (see Fig. 1). 

ݔ = ݎ sin ߙ cos  (20)  ,ߚ

ݕ = ݎ sin ߙ sin  (21)  ,ߚ

ݖ = ݎ cos  (22)  .ߙ

Squaring both sides of Eqs. (20)-(22) and 
then adding them, we get: 
ଶݎ sinଶ ߙ cosଶ ߚ + ଶݎ sinଶ ߙ sinଶ ߚ +

ଶݎ cosଶ ߙ = ଶݔ + ଶݕ +   ,ଶݖ
ଶݎ sinଶ ߙ (cosଶ ߚ + sinଶ (ߚ + ଶݎ cosଶ ߙ = ଶݔ +

ଶݕ +   ,ଶݖ
ଶݎ sinଶ ߙ + ଶݎ cosଶ ߙ = ଶݔ + ଶݕ +   ,ଶݖ
ଶݎ = ଶݔ + ଶݕ + ଶݖ ,  

ݎ = ඥݔଶ + ଶݕ + ଶݖ .  (23) 

Also, the following equations show the 
mathematical relationship between Cartesian 
coordinates (̅ݔ, ,തݕ  and polar coordinates (̅ݖ
,ݎ̅) ,ߙ  of point P measured from the K’ frame (ߚ
of reference (see Fig. 1). 

ݔ̅ = ݎ̅ sin ߙ cos  (24)  ,ߚ

തݕ = ݎ̅ sin ߙ sin  (25)  ,ߚ

̅ݖ = ݎ̅ cos  (26)  .ߙ

Squaring both sides of Eqs. (24)-(26) and 
then adding them, we get: 

ଶݎ̅ sinଶ ߙ cosଶ ߚ + ଶݎ̅ sinଶ ߙ sinଶ ߚ +
ଶݎ̅ cosଶ ߙ = ଶݔ̅ + തଶݕ +   ,ଶ̅ݖ

ଶݎ̅ sinଶ ߙ (cosଶ ߚ + sinଶ (ߚ + ଶݎ̅ cosଶ ߙ = ଶݔ̅ +
തଶݕ +   ,ଶ̅ݖ

ଶݎ̅ sinଶ ߙ + ଶݎ̅ cosଶ ߙ = ଶݔ̅ + തଶݕ +   ,ଶ̅ݖ
ଶݎ̅ = ଶݔ̅ + തଶݕ + ଶ̅ݖ ,  

ݎ̅ = ඥ̅ݔଶ + തଶݕ + ଶ̅ݖ .  (27) 

2.2 Lorentz Transformation Equations Along the 
X-axis 

From Eq. (17), the relativistic transformation 
equation along the X-axis is given by the 
equation: 

ݔ = ݔ̅)ߛ̅ + ̅ݐݒ sin ߙ cos   ,(ߚ

Substituting Eq. (14) into the above 
expression leads to 

ݔ = ݔ)ߛ]ߛ̅ − ݐݒ sin ߙ cos (ߚ + ̅ݐݒ sin ߙ cos   ,[ߚ

ݔ = ݔߛߛ̅ − ݐݒߛߛ̅ sin ߙ cos ߚ + ̅ݐݒߛ̅ sin ߙ cos   ,ߚ

̅ݐݒߛ̅ sin ߙ cos ߚ = ݐݒߛߛ̅ sin ߙ cos ߚ − ݔߛߛ̅ +   ,ݔ

̅ݐ sin ߙ cos ߚ = ݐߛ sin ߙ cos ߚ − ఊ௫
௩

+ ௫
ఊഥ௩

,  

̅ݐ = ఊ
ୱ୧୬ ఈ ୡ୭ୱ ఉ

ቂݐ sin ߙ cos ߚ − ௫
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ.  (28) 

Now, substituting Eqs. (28) and (14) into Eq. 
(7) leads to 

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ =
ଶݔ̅ − ܿଶ̅ݐଶ sinଶ ߙ cosଶ  (29)  ,ߚ

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ =
ݔ)ߛ] − ݐݒ sin ߙ cos ଶ[(ߚ −
ܿଶ sinଶ ߙ cosଶ ߚ ఊమ

ୱ୧୬మ ఈ ୡ୭ୱమ ఉ
ቂݐ sin ߙ cos ߚ −

௫
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ
ଶ

,  

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ = ଶݔଶߛ −
ݐݒݔଶߛ2 sin ߙ cos ߚ + ଶݐଶݒଶߛ sinଶ ߙ cosଶ ߚ −
ܿଶߛଶݐଶ sinଶ ߙ cosଶ ߚ +
2ܿଶߛଶݐ sin ߙ cos ߚ ௫

௩
ቀ1 − ଵ

ఊഥఊ
ቁ −

ଶܿଶߛ ௫మ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ
, 

ଶݔ − ܿଶݐଶ sinଶ ߙ cosଶ ߚ = ଶݔ ൤ߛଶ −
௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

൨ + ݐݔ sin ߙ cos ߚ ቂ−2ߛଶݒ +
ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ + ଶݐ sinଶ ߙ cosଶ ߚ ଶݒଶߛ) −

ܿଶߛଶ),  
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After comparing the corresponding 
coefficients of ݔଶ , ,ݐݔ  ଶ on both sides, theݐ ݀݊ܽ
following expressions are obtained: 

ଶߛ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

= 1,  (30) 

sin ߙ cos ߚ ቂ−2ߛଶݒ + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ = 0,  (31) 

sinଶ ߙ cosଶ ߚ ଶݒଶߛ) − ܿଶߛଶ) =
−ܿଶ sinଶ ߙ cosଶ  (32)  .ߚ

Now, Eq. (32) gives 

ଶ(ܿଶߛ− − (ଶݒ = −ܿଶ ,  

ଶߛ = ௖మ

௖మି௩మ = ଵ

ଵିೡమ

೎మ
,  

ߛ = ଵ

ටଵିೡమ

೎మ

.  (33) 

And further mathematical calculation results 
in 

ଶߛ = ଵ

ଵିೡమ

೎మ
,  

௩మ

௖మ = 1 − ଵ
ఊమ.   (34) 

Again, Eq. (31) yields 

ݒ− + ௖మ

௩
ቀ1 − ଵ

ఊഥఊ
ቁ = 0,  

ି௩మା௖మቀଵି భ
ംഥംቁ

௩
= 0,  

௩మ

௖మ =  ቀ1 − ଵ
ఊഥఊ

ቁ.  (35) 

Substituting Eq. (34) into Eq. (35) leads to 

1 − ଵ
ఊమ = ቀ1 − ଵ

ఊഥఊ
ቁ,  

ଵ
ఊ

= ଵ
ఊഥ

,  

ߛ = ߛ̅ = ଵ

ටଵିೡమ

೎మ

.  

Now, substituting Eq. (33) into (14) leads to 

ݔ̅ = ௫ି௩௧ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೡమ

೎మ

,  (36) 

Substituting the value of sin ߙ cos  .from Eq ߚ
(20) into Eq. (36), and then inserting the value of 
r from Eq. (23) into the resulting expression, 
yields 

ݔ̅ =
௫ିೡ೟ೣ

ೝ

ටଵିೡమ

೎మ

=
௫ି ೡ೟ೣ

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

.  (37) 

Equation (37) represents the Lorentz 
transformation along the X-axis for the case of 
simultaneous relative motion between inertial 
frames in three-dimensional space. To obtain the 
transformation equation for the time coordinate, 
Eq. (35) is substituted into Eq. (28): 

̅ݐ = ߛ ቂݐ − ௫
௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ቀ1 − ଵ
ఊഥఊ

ቁቃ,  

̅ݐ = ߛ ቀݐ − ௩௫
௖మ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ቁ,  (38) 

Using the value of ݎ from Eq. (20) and then 
substituting Eq. (23), the above expression takes 
the form 

̅ݐ = ߛ ቀݐ − ௩௥
௖మቁ = ߛ ൬ݐ − ௩ඥ௫మା௬మା௭మ

௖మ ൰,  

̅ݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

.  (39) 

The inverse space-time coordinates along the 
X-axis in 3D space can be achieved by 
exchanging space-time coordinates and replacing 
 :in Eqs. (37) and (39) as follows ݒ− by ݒ

ݔ =
௫̅ା ೡ೟തഥೣ

ටഥೣమశ೤ഥమశ೥ത మ

ටଵିೡమ

೎మ

,  (40) 

ݐ =
௧̅ା

ೡටഥೣమశ೤ഥమశ೥ത మ

೎మ

ටଵିೡమ

೎మ

.  (41) 

2.3 Lorentz Transformation Equations Along the 
Y-axis 
From Eq. (18), the relativistic transformation 

equation along the Y-axis is:  
ݕ = തݕ)ߛ̅ + ̅ݐݒ sin ߙ sin   ,(ߚ
Substituting Eq. (15) into the above 

expression leads to 
ݕ = ݕ)ߛ]ߛ̅ − ݐݒ sin ߙ sin (ߚ + ̅ݐݒ sin ߙ sin   ,[ߚ
ݕ = ݕߛߛ̅ − ݐݒߛߛ̅ sin ߙ sin ߚ + ̅ݐݒߛ̅ sin ߙ sin   ,ߚ
̅ݐݒߛ̅ sin ߙ sin ߚ = ݐݒߛߛ̅ sin ߙ sin ߚ − ݕߛߛ̅ +   ,ݕ
̅ݐ sin ߙ sin ߚ = ݐߛ sin ߙ sin ߚ − ఊ௬

௩
+ ௬

ఊഥ௩
,  

̅ݐ = ఊ
ୱ୧୬ ఈ ୱ୧୬ ఉ

ቂݐ sin ߙ sin ߚ − ௬
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ,  (42) 

Now, substituting Eqs. (42) and (15) into Eq. 
(10), we get: 
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ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ =
തଶݕ − ܿଶ̅ݐଶ sinଶ ߙ sinଶ  (43)  ,ߚ

ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ =
ݕ)ߛ] − ݐݒ sin ߙ sin ଶ[(ߚ −
ܿଶ sinଶ ߙ sinଶ ߚ ఊమ

ୱ୧୬మ ఈ ୱ୧୬మ ఉ
ቂݐ sin ߙ sin ߚ −

௬
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ
ଶ

,  

ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ =
ଶݕଶߛ − ݐݒݕଶߛ2 sin ߙ sin ߚ +
ଶݐଶݒଶߛ sinଶ ߙ sinଶ ߚ − ܿଶߛଶݐଶ sinଶ ߙ sinଶ ߚ +
2ܿଶߛଶݐ sin ߙ sin ߚ ௬

௩
ቀ1 − ଵ

ఊഥఊ
ቁ − ଶܿଶߛ ௬మ

௩మ ቀ1 −
ଵ

ఊഥఊ
ቁ

ଶ
,  

ଶݕ − ܿଶݐଶ sinଶ ߙ sinଶ ߚ = ଶݕ ൤ߛଶ −
௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

൨ + ݐݕ sin ߙ sin ߚ ቂ−2ߛଶݒ +
ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ + ଶݐ sinଶ ߙ sinଶ ߚ ଶݒଶߛ) −

ܿଶߛଶ),  
After comparing the corresponding 

coefficients of ݕଶ,  ଶ on both sides, theݐ ݀݊ܽ ݐݕ
following expressions are obtained 

ଶߛ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

= 1,  (44) 

sin ߙ sin ߚ ቂ−2ߛଶݒ + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ = 0,  (45) 

sinଶ ߙ sinଶ ߚ ଶݒଶߛ) − ܿଶߛଶ) =
−ܿଶ sinଶ ߙ sinଶ  (46)  .ߚ

On solving the above three equations as done 
in Section 2.2, we obtain: 

ߛ = ߛ̅ = ଵ

ටଵିೡమ

೎మ

,  (47) 

௩మ

௖మ =  ቀ1 − ଵ
ఊഥఊ

ቁ.  (48) 

Substituting Eq. (47) into Eq. (15) leads to 

തݕ = ௬ି௩௧ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೡమ

೎మ

,  (49) 

Substituting the value of sin ߙ sin  .from Eq ߚ
(21) into Eq. (49), and then putting the value of ݎ 
from Eq. (23) into the resulting equation, leads 
to 

തݕ =
௬ିೡ೟೤

ೝ

ටଵିೡమ

೎మ

=
௬ି ೡ೟೤

ටೣమశ೤మశ೥మ

 ටଵିೡమ

೎మ

.  (50) 

Equation (50) is the Lorentz transformation 
equation along the Y-axis when there is the 

simultaneous relative motion between inertial 
systems in 3D space. To find the equation of 
time coordinates, let us use Eq. (48) in Eq. (42): 

̅ݐ = ߛ ቂݐ − ௬
௩ ୱ୧୬ ఈ ୱ୧୬ ఉ

ቀ1 − ଵ
ఊഥఊ

ቁቃ,  

̅ݐ = ߛ ቀݐ − ௩௬
௖మ ୱ୧୬ ఈ ୱ୧୬ ఉ

ቁ,  (51) 

Using the value of ݎ from Eq. (21) and then 
substituting Eq. (23), the above expression takes 
the form 

̅ݐ = ߛ ቀݐ − ௩௥
௖మቁ = ߛ ൬ݐ − ௩ඥ௫మା௬మା௭మ

௖మ ൰,  

̅ݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

.  (52) 

Here, it should be noted that the 
transformation equation of time, namely Eq. 
(52), is exactly the same as Eq. (39). Hence, the 
transformation equation of time is the same for 
X- and Y-directions. The inverse space 
coordinates along the Y-axis in 3D space can be 
achieved by exchanging space-time coordinates 
and replacing ݒ by −ݒ in Eq. (50) as follows: 

ݕ =
௬തା ೡ೟ത೤ഥ

ටഥೣమశ೤ഥమశ೥ത మ

ටଵିೡమ

೎మ

.  (53) 

2.4 Lorentz Transformation Equations Along the 
Z-axis 

From Eq. (19), the relativistic transformation 
equation along the Z-axis is given by the 
equation: 

ݖ = ̅ݖ)ߛ̅ + ̅ݐݒ cos   ,(ߙ

Substituting Eq. (16) into the above 
expression leads to 
ݖ = ݖ)ߛ]ߛ̅ − ݐݒ cos (ߙ + ̅ݐݒ cos   ,[ߙ
ݖ = ݖߛߛ̅ − ݐݒߛߛ̅ cos ߙ + ̅ݐݒߛ̅ cos   ,ߙ
̅ݐݒߛ̅ cos ߙ = ݐݒߛߛ̅ cos ߙ − ݖߛߛ̅ +   ,ݖ
̅ݐ cos ߙ = ݐߛ cos ߙ − ఊ௭

௩
+ ௭

ఊഥ௩
,  

̅ݐ = ఊ
ୡ୭ୱ ఈ

ቂݐ cos ߙ − ௭
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ.  (54) 

Now, substituting Eqs. (54) and (16) into Eq. 
(13) leads to 

ଶݖ − ܿଶݐଶ cosଶ ߙ = ଶ̅ݖ − ܿଶ̅ݐଶ cosଶ  (55)  ߙ
ଶݖ − ܿଶݐଶ cosଶ ߙ = ݖ)ߛ] − ݐݒ cos ଶ[(ߙ −

ܿଶ cosଶ ߙ ఊమ

ୡ୭ୱమ ఈ
ቂݐ cos ߙ − ௭

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ

ଶ
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ଶݖ − ܿଶݐଶ cosଶ ߙ = ଶݖଶߛ − ݐݒݖଶߛ2 cos ߙ +
ଶݐଶݒଶߛ cosଶ ߙ − ܿଶߛଶݐଶ cosଶ ߙ +

2ܿଶߛଶݐ cos ߙ ௭
௩

ቀ1 − ଵ
ఊഥఊ

ቁ − ଶܿଶߛ ௭మ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ
  

ଶݖ − ܿଶݐଶ cosଶ ߙ = ଶݖ ൤ߛଶ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

൨ +

ݐݖ cos ߙ ቂ−2ߛଶݒ + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ +

ଶݐ cosଶ ߙ ଶݒଶߛ) − ܿଶߛଶ)  

After comparing the corresponding 
coefficients of ݖଶ,  ଶ on both sides, theݐ ݀݊ܽ ݐݖ
following expressions are obtained: 

ଶߛ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

= 1,  (56) 

cos ߙ ቂ−2ߛଶݒ + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ = 0,  (57) 

cosଶ ߙ ଶݒଶߛ) − ܿଶߛଶ) = −ܿଶ cosଶ  (58)  .ߙ

On solving the above three equations as done 
in Section 2.2, we obtain: 

ߛ = ߛ̅ = ଵ

ටଵିೡమ

೎మ

,  (59) 

௩మ

௖మ =  ቀ1 − ଵ
ఊഥఊ

ቁ.  (60) 

Substituting Eq. (59) into Eq. (16) leads to 

̅ݖ = ௭ି௩௧ ୡ୭ୱ ఈ

ටଵିೡమ

೎మ

,  (61) 

Substituting the value of cos  from Eq. (22) ߙ
into Eq. (61) and then putting the value of ݎ from 
Eq. (23) into the obtained equation leads to 

̅ݖ =
௭ିೡ೟೥

ೝ

ටଵିೡమ

೎మ

=
௭ି ೡ೟೥

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

.  (62) 

Equation (62) is the Lorentz transformation 
equation along the Y-axis when there is the 
simultaneous relative motion between inertial 
systems in 3D space. To find the equation of 
time coordinates, let us substitute Eq. (60) into 
Eq. (54): 

̅ݐ = ߛ ቂݐ − ௭
௩ ୡ୭ୱ ఈ

ቀ1 − ଵ
ఊഥఊ

ቁቃ,  

̅ݐ = ߛ ቀݐ − ௩௭
௖మ ୡ୭ୱ ఈ

ቁ,  (63) 

Using the value of ݎ from Eq. (22) and then 
substituting Eq. (23), the above expression takes 
the form 

̅ݐ = ߛ ቀݐ − ௩௥
௖మቁ = ߛ ൬ݐ − ௩ඥ௫మା௬మା௭మ

௖మ ൰,  

̅ݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

.  (64) 

Here, it should be noted that the 
transformation equation of time, namely Eq. 
(64), is exactly the same as Eq. (39) and Eq. 
(52). Hence, the transformation equation of time 
is the same for the X-, Y-, and Z-directions. The 
inverse space coordinates along the Y-axis in 3D 
space can be achieved by exchanging space-time 
coordinates and replacing ݒ by −ݒ in Eq. (62) as 
follows. 

ݖ =
௭̅ା ೡ೟ത೥ത

ටഥೣమశ೤ഥమశ೥ത మ

ටଵିೡమ

೎మ

.  (65) 

2.5 Lorentz Transformation Equations Along 
Radial Line 

In previous sections, we have derived the 
Lorentz transformation equations along the X-, 
Y-, and Z-directions. Now we wish to find the 
relativistic space-time transformation formulas 
relating radius vectors ݎ and ̅ݎ along the radial 
line OP. In Fig. 1, the moving frame K' and the 
emitted pulse of light are moving along the 
radial line OP with the velocity ݒ and ܿ 
respectively. Now, the equation of the wavefront 
of light along the radius vector ݎ in the frame K 
is given by the equation: 

ଶݎ − ܿଶݐଶ = 0,   (66) 

Also, the corresponding equation of the 
wavefront of light along the radius vector ̅ݎ in 
frame K' is specified by the equation: 

ଶݎ̅ − ܿଶ̅ݐଶ = 0,  (67) 

Since both the frames are at the center of the 
expanding wavefront at ݐ = ̅ݐ = 0, Eqs. (66) and 
(67) must be equal. 

ଶݎ − ܿଶݐଶ = ଶݎ̅ − ܿଶ̅ݐଶ .  (68) 

Equation (68) represents the wavefront of 
light along the radial line OP. Also, frame K' is 
moving along the radial line OP with the 
uniform velocity ݒ as shown in Fig. 1. Hence, it 
is obvious that radius vectors ݎ and ̅ݎ are related 
by the equation: 

ܱᇱܲ = ܱܲ − ܱܱᇱ,  

ݎ̅ = ݎ −   ,ݐݒ
Hence, the corresponding relativistic 

transformation equation relating radius vectors ݎ 
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and ̅ݎ with Lorentz coefficient ߛ should be in the 
following form: 

ݎ̅ = ݎ)ߛ −  (69)  .(ݐݒ

Also, the corresponding inverse relativistic 
transformation equation relating radius vectors ݎ 
and ̅ݎ should be in the following form: 

ݎ = ݎ̅)ߛ̅ +  (70)  ,( ̅ݐݒ

Substituting Eq. (69) into Eq. (70) leads to 
ݎ = ݎ)ߛ]ߛ̅ − (ݐݒ +   ,[ ̅ݐݒ
ݎ = ݎߛߛ̅ − ݐݒߛߛ̅ +   ,̅ݐݒߛ̅
̅ݐݒߛ̅ = ݐݒߛߛ̅ − ݎߛߛ̅ +   ,ݎ

̅ݐ = ߛ ቂݐ − ௥
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ.  (71) 

Now, substituting Eqs. (71) and (69) into Eq. 
(68) leads to 
ଶݎ − ܿଶݐଶ = ଶݎ̅ − ܿଶ̅ݐଶ ,  

ଶݎ − ܿଶݐଶ = ݎ)ߛ] − ଶ[(ݐݒ − ܿଶߛଶ ቂݐ −
௥
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ
ଶ

,  

ଶݎ − ܿଶݐଶ = ଶݎଶߛ − ݐݒݎଶߛ2 + ଶݐଶݒଶߛ −
ܿଶߛଶݐଶ + ଶ௖మఊమ௧௥

௩
ቀ1 − ଵ

ఊഥఊ
ቁ − ఊమ௖మ௥మ

௩మ ቀ1 −
ଵ

ఊഥఊ
ቁ

ଶ
,  

ଶݎ − ܿଶݐଶ = ଶݎ ൤ߛଶ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

൨ +

ݐݎ ቂ−2ߛଶݒ + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁቃ +

ଶݒଶߛ)ଶݐ − ܿଶߛଶ),  

After comparing the corresponding 
coefficients of ݎଶ,  ଶ on both sides, theݐ ݀݊ܽ ݐݎ
following expressions are obtained 

ଶߛ − ௖మఊమ

௩మ ቀ1 − ଵ
ఊഥఊ

ቁ
ଶ

= 1,  (72) 

ݒଶߛ2− + ଶ௖మఊమ

௩
ቀ1 − ଵ

ఊഥఊ
ቁ = 0,  (73) 

ଶݒଶߛ − ܿଶߛଶ = −ܿଶ.  (74) 

On solving the above three equations as done 
in Section 2.2, we obtain: 

ߛ = ߛ̅ = ଵ

ටଵିೡమ

೎మ

,  (75) 

௩మ

௖మ =  ቀ1 − ଵ
ఊഥఊ

ቁ.  (76) 

Substituting Eq. (75) into Eq. (69) leads to 

ݎ̅ = ௥ି௩௧

ටଵିೡమ

೎మ

.  (77) 

This Eq. (77) is the Lorentz transformation 
equation along the radial line. To find the 
equation of time coordinates, let us substitute 
Eqs. (76) and (75) into Eq. (71), 

̅ݐ = ߛ ቂݐ − ௥
௩

ቀ1 − ଵ
ఊഥఊ

ቁቃ,  

̅ݐ =
௧ିೡೝ

೎మ

ටଵିೡమ

೎మ

=
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

.  (78) 

Here, it should be noted that the 
transformation equation of time, namely Eq. 
(78), is exactly the same as Eqs. (39), (52), and 
(64). Hence, the transformation equation of time 
is the same for all directions. The inverse space 
coordinates along a radial line can be achieved 
by exchanging space-time coordinates and 
replacing ݒ by −ݒ in Eq. (77) as follows. 

ݎ = ௥̅ା௩௧̅

ටଵିೡమ

೎మ

,  (79) 

Using Eqs. (23) and (27), Eq. (79) takes the 
following form: 

ඥݔଶ + ଶݕ + ଶݖ = ඥ௫̅మା௬തమା௭̅మା௩௧̅

ටଵିೡమ

೎మ

.  (80) 

This Eq. (80) represents the inverse 
transformation equation along the radial line 
when the relative motion between inertial frames 
occurs in 3D space. If the motion between 
inertial frames is aligned along a single X-axis 
only, then we need to substitute ݕ = തݕ = 0 and 
ݖ = ̅ݖ = 0 in Eq. (80), which exactly gives the 
former 1D inverse Lorentz transformation 
equation along the X-axis as follows: 

ଶݔ√ + 0ଶ + 0ଶ = √௫̅మା଴మା଴మା௩௧̅

ටଵିೡమ

೎మ

,  

ݔ = ௫̅ା௩௧̅

ටଵିೡమ

೎మ

.  

3. Results and Discussion 
3.1 Lorentz Transformation Equations in 3D 

Space 

In Section “Methods”, we have derived the 
Lorentz transformation equations along radial 
line, the X-, Y-, and Z-directions when the 
motion between inertial frames takes place in 3D 
space. These 3D transformation equations, 
namely Eqs. (37), (50), (62), and (64) represent 
the extended version of the 1D Lorentz 
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transformation to three dimensions of space, and 
these equations exactly take the form of the 1D 
Lorentz transformation when the relative motion 

between inertial frames is reduced from 3D to 
1D along the X-axis, as discussed in Table 1. 

TABLE 1. Inverse Lorentz transformation equations in 3D space 
Motion 
between 
frames 

Transformation of time 
Space coordinate transformation equations 

Along the X-direction Along Y-direction Along Z-direction 

Along X-, 
Y-, and 
Z-axes 

From Eq. (41), 

ݐ =
̅ݐ + ଶݔඥ̅ݒ + തଶݕ + ଶ̅ݖ

ܿଶ

ට1 − ଶݒ

ܿଶ

 

From Eq. (40), 

ݔ =
ݔ̅ + ݔ̅̅ݐݒ

ඥ̅ݔଶ + തଶݕ + ଶ̅ݖ

ට1 − ଶݒ

ܿଶ

 

From Eq. (53), 

ݕ =
തݕ + തݕ̅ݐݒ

ඥ̅ݔଶ + തଶݕ + ଶ̅ݖ

ට1 − ଶݒ

ܿଶ

 

From Eq. (65), 

ݖ =
̅ݖ + ̅ݖ̅ݐݒ

ඥ̅ݔଶ + തଶݕ + ଶ̅ݖ

ට1 − ଶݒ

ܿଶ

 

Along X- 
and Y-

axes only 
ݖ̅) = 0) 

ݐ =
̅ݐ + ଶݔඥ̅ݒ + തଶݕ + 0ଶ

ܿଶ

ට1 − ଶݒ

ܿଶ

 

ݐ =
̅ݐ + ଶݔඥ̅ݒ + തଶݕ

ܿଶ

ට1 − ଶݒ

ܿଶ

 

ݔ =
ݔ̅ + ݔ̅̅ݐݒ

ඥ̅ݔଶ + തଶݕ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

ݔ =
ݔ̅ + ݔ̅̅ݐݒ

ඥ̅ݔଶ + തଶݕ

ට1 − ଶݒ

ܿଶ

 

ݕ =
തݕ + തݕ̅ݐݒ

ඥ̅ݔଶ + തଶݕ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

ݕ =
തݕ + തݕ̅ݐݒ

ඥ̅ݔଶ + തଶݕ

ට1 − ଶݒ

ܿଶ

 

ݖ =
0 + 0̅ݐݒ

ඥ̅ݔଶ + തଶݕ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

 
ݖ = 0 

Along X -
axis only 
ݖ̅ = 0, തݕ
= 0 

ݐ =
̅ݐ + ଶݔ̅√ݒ + 0ଶ + 0ଶ

ܿଶ

ට1 − ଶݒ

ܿଶ

 

ݐ =
̅ݐ + ݔ̅ݒ

ܿଶ

ට1 − ଶݒ

ܿଶ

 

ݔ =
ݔ̅ + ݔ̅̅ݐݒ

ଶݔ̅√ + 0ଶ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

ݔ =
ݔ̅ + ̅ݐݒ

ට1 − ଶݒ

ܿଶ

 

ݕ =
0 + 0̅ݐݒ

ଶݔ̅√ + 0ଶ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

 
ݕ = 0 

ݖ =
0 + 0̅ݐݒ

ଶݔ̅√ + 0ଶ + 0ଶ

ට1 − ଶݒ

ܿଶ

 

 
ݖ = 0 

 

From the last row of Table 1, it is clearly seen 
that modified Lorentz transformation equations 
achieve the exact form of the former 1D Lorentz 
transformation equations when the motion 
between inertial frames takes place along a 
single X-axis only. These transformation 
equations are exactly the same transformation 
equations as derived in Ref. [1]. In Ref. [1], the 
equations were obtained to demonstrate the 
simultaneous space contraction along the X-, Y-, 
and Z-directions, whereas in the present work, 
the same equations are recovered in order to 
formulate the matrix representation of the three-
dimensional Lorentz transformation. 

3.2 Invariance of Space-time Interval 

One of the important properties of the 
Lorentz transformation equations is that the 
space-time interval must be invariant under these 
transformation equations. The equation of the 
space-time interval in a moving frame of 
reference is given by, 

߬̅ଶ = ଶݔ̅ + തଶݕ + ଶ̅ݖ − ܿଶ̅ݐଶ,  
The corresponding equation of the space-time 

interval in the rest frame of reference is given by 

߬ଶ = ଶݔ + ଶݕ + ଶݖ − ܿଶݐଶ. 
Substituting the values of ݔ, ,ݕ ,ݖ  .from Eqs ݐ

(40), (41), (53), and (65) into the formula of 
space-time interval, i.e., 

ଶݔ + ଶݕ + ଶݖ − ܿଶݐଶ,  

= ൮
௫̅ା ೡ೟തഥೣ

ටഥೣమశ೤ഥమశ೥തమ

ටଵିೡమ

೎మ

൲

ଶ

+ ൮
௬തା ೡ೟ത೤ഥ

ටഥೣమశ೤ഥమశ೥തమ

ටଵିೡమ

೎మ

൲

ଶ

+

൮
௭̅ା ೡ೟ത೥ത

ටഥೣమశ೤ഥమశ೥തమ

ටଵିೡమ

೎మ

൲

ଶ

− ܿଶ ൮
௧̅ା

ೡටഥೣమశ೤ഥమశ೥തమ

೎మ

ටଵିೡమ

೎మ

൲

ଶ

,  

=

ଶݔ̅ + തଶݕ + ଶݖ̅ + ̅ݐݒ2 ቆ ଶݔ̅ + തଶݕ + ଶݖ̅

ඥ̅ݔଶ + തଶݕ + ଶݖ̅
ቇ

ଶ(̅ݐݒ)+ ଶݔ̅ + തଶݕ + ଶݖ̅

ଶݔ̅ + തଶݕ + ଶݖ̅ − ܿଶ̅ݐଶ

ଶݔඥ̅ݒ̅ݐ2− + തଶݕ + ଶݖ̅ − ଶݔ̅)ଶݒ + തଶݕ + (ଶݖ̅
ܿଶ

1 − ଶݒ

ܿଶ

, 

=
௫̅మା௬തమା௭̅మା(௩௧̅)మି௖మ௧̅మିೡమ൫ഥೣమశ೤ഥమశ೥തమ൯

೎మ

ଵିೡమ

೎మ
,  
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=
൫௫̅మା௬തమା௭̅మ൯൬ଵିೡమ

೎మ൰ି௖మ௧̅మ൬ଵିೡమ

೎మ൰

ଵିೡమ

೎మ
,  

= ଶݔ̅ + തଶݕ + ଶݖ̅ − ܿଶ̅ݐଶ.  

Thus, we have clearly proved that ݔଶ + ଶݕ +
ଶݖ − ܿଶݐଶ = ଶݔ̅ + തଶݕ + ଶ̅ݖ − ܿଶ̅ݐଶ. Hence, the 
space-time interval equation is invariant under 
the 3D Lorentz transformation equations. 

3.3 Matrix Form of 3D Lorentz Transformation 
Equations 

In former 1D Lorentz transformations, the 
relative motion between inertial frames is 
constrained along a single axis (say X-axis). 
Hence, we take the account of single space 
coordinates and the transformation of time 
coordinate depends only upon X coordinates [see 
Eq. (1)]. Unlike it, in 3D Lorentz 
transformations, we have simultaneous relative 
motion between inertial frames along the X-, Y-, 
and Z-directions. Hence, we need to have the 
transformation equations for all X, Y, and Z 
space coordinates, and the transformation of the 
time coordinate should depend upon all space 
coordinates [see Eq. (4)]. For that, let’s write the 
corresponding values of space coordinates from 
Eqs. (20)-(22) as follows: 

ݔ = ଵݔ = ݎ sin ߙ cos  (81)  ,ߚ

ݕ = ଶݔ = ݎ sin ߙ sin  (82)  ,ߚ

ݖ = ଷݔ = ݎ cos  (83)  .ߙ

Equations (81)-(83) represent the value of 
space coordinates along the X-, Y-, and Z-axes 
in the rest frame of reference. The corresponding 
expression of space coordinates in a moving 
frame can be written from Eqs. (24)-(26) as 
follows: 

ݔ̅ = ଵݔ̅ = ݎ̅ sin ߙ cos  (84)  ,ߚ

തݕ = ଶݔ̅ = ݎ̅ sin ߙ sin  (85)  ,ߚ

̅ݖ = ଷݔ̅ = ݎ̅ cos  (86)  .ߙ

In fact, the above equations represent the 
three components of the resultant radius vector 
 Now, we wish to find the components of the .ݎ̅
time coordinate, or more conveniently ݅ܿݐ, under 
the 3D Lorentz transformation equations. For 
that, let us write the equation of the wavefront of 
light along the X-axis from Eq. (29) in the 
following form: 

ଶݔ − ݐܿ) sin ߙ cos ଶ(ߚ = ଶݔ̅ − ̅ݐܿ) sin ߙ cos   ,ଶ(ߚ

ଶݔ + ݐܿ݅) sin ߙ cos ଶ(ߚ =
ଶݔ̅ + ̅ݐܿ݅) sin ߙ cos ଶ(ߚ

ଵݔ
ଶ + ସݔ

ଶ = ଵݔ̅
ଶ + ସݔ̅

ଶ
ቑ.  (87) 

Equation (87) shows the invariance of the 
space-time interval along the X-direction. Hence, 
it is obvious that ݔସ = ݐܿ݅ sin ߙ cos  must ߚ
represent the time coordinate corresponding to 
the space coordinate ݔଵ = ݎ sin ߙ cos  .ߚ
Similarly, let us write the equation of the 
wavefront of light along the Y-axis from Eq. 
(43) in the following form: 

ଶݕ − ݐܿ) sin ߙ sin ଶ(ߚ = തଶݕ − ̅ݐܿ) sin ߙ sin   ,ଶ(ߚ

ଶݕ + ݐܿ݅) sin ߙ sin ଶ(ߚ =
തଶݕ + ̅ݐܿ݅) sin ߙ sin ଶ(ߚ

ଶݔ
ଶ + ହݔ

ଶ = ଶݔ̅
ଶ + ହݔ̅

ଶ
ቑ.  (88) 

Equation (88) shows the invariance of the 
space-time interval along the Y-direction. Hence, 
it is obvious that ݔହ = ݐܿ݅ sin ߙ sin  must ߚ
represent the time coordinate corresponding to 
the space coordinate ݔଶ = ݎ sin ߙ sin  .ߚ
Similarly, let us write the equation of the 
wavefront of light along the Z-axis from Eq. (55) 
in the following form: 

ଶݖ − ݐܿ) cos ଶ(ߙ = ଶ̅ݖ − ̅ݐܿ) cos   ,ଶ(ߙ

ଶݖ + ݐܿ݅) cos ଶ(ߙ = ଶ̅ݖ + ̅ݐܿ݅) cos ଶ(ߙ

ଷݔ
ଶ + ଺ݔ

ଶ = ଷݔ̅
ଶ + ଺ݔ̅

ଶ ൠ.  (89) 

Equation (89) shows the invariance of the 
space-time interval along the Z-direction. Hence, 
it is obvious that ݔ଺ = ݐܿ݅ cos  must represent ߙ
the time coordinate corresponding to the space 
coordinate ݔଷ = ݎ cos  Thus, the time .ߙ
coordinates, namely the components of ݅ܿݐ, 
under the 3D Lorentz transformation equations 
in the rest frame, can be written from Eqs. (87)-
(89) in the following form: 

ସݔ = ݐܿ݅ sin ߙ cos  (90)  ,ߚ

ହݔ = ݐܿ݅ sin ߙ sin  (91)  ,ߚ

଺ݔ = ݐܿ݅ cos  (92)  .ߙ

The corresponding expression of components 
of ݅ܿ̅ݐ in a moving frame can be written from 
Eqs. (87)-(89) as follows: 

ସݔ̅ = ̅ݐܿ݅ sin ߙ cos  (93)  ,ߚ

ହݔ̅ = ̅ݐܿ݅ sin ߙ sin  (94)  ,ߚ

଺ݔ̅ = ̅ݐܿ݅ cos  (95)  .ߙ

From the above mathematical manipulations, 
it is obvious that time has three coordinates, 
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namely (ݔସ , ,ହݔ  ଺), like space has threeݔ
coordinates, namely (ݔଵ, ,ଶݔ  ଷ). Hence, an eventݔ
in the spacetime continuum should be 
represented by six coordinates (let’s name them 
six-vectors), out of which the first three 
represent the space coordinates and the 
remaining three represent the time coordinates. 
Now, our main task is to write the 3D Lorentz 
transformation in terms of six-vectors. For this, 
let’s write the Lorentz transformation equation 
along the X-axis with ߩ = ݒ ܿ⁄  from Eq. (36) as 
follows: 
ݔ̅ = ݔ)ߛ − ݐݒ sin ߙ cos   ,(ߚ

ݔ̅ = ߛ ቀݔ − ௩
௖

ݐܿ sin ߙ cos   ,ቁߚ

ݔ̅ = ݔ)ߛ − ݐܿߩ sin ߙ cos   ,(ߚ
ݔ̅ = ݔ)ߛ + ݅ଶݐܿߩ sin ߙ cos   ,(ߚ

Substituting Eqs. (81), (84), and (90) into the 
above expression results in 

ଵݔ̅ = ଵݔ)ߛ +  ସ).  (96)ݔߩ݅

Similarly, let’s write the Lorentz 
transformation equation along the Y-axis with 
ߩ = ݒ ܿ⁄  from Eq. (49) as follows:  
തݕ = ݕ)ߛ − ݐݒ sin ߙ sin   ,(ߚ

തݕ = ߛ ቀݕ − ௩
௖

ݐܿ sin ߙ sin   ,ቁߚ

തݕ = ݕ)ߛ − ݐܿߩ sin ߙ sin   ,(ߚ
തݕ = ݕ)ߛ + ݅ଶݐܿߩ sin ߙ sin   ,(ߚ

Substituting Eqs. (82), (85), and (91) into the 
above expression results in 

ଶݔ̅ = ଶݔ)ߛ +  ହ).  (97)ݔߩ݅

Similarly, let us write the Lorentz 
transformation equation along the Z-axis with 
ߩ = ݒ ܿ⁄  from Eq. (61) as follows:  
̅ݖ = ݖ)ߛ − ݐݒ cos   ,(ߙ

̅ݖ = ߛ ቀݖ − ௩
௖

ݐܿ cos   ,ቁߙ

̅ݖ = ݖ)ߛ − ݐܿߩ cos   ,(ߙ
̅ݖ = ݖ)ߛ + ݅ଶݐܿߩ cos   ,(ߙ

Substituting Eqs. (83), (86), and (92) into the 
above expression results in 

ଷݔ̅ = ଷݔ)ߛ +  ଺).  (98)ݔߩ݅

Equations (96)-(98) are the 3D Lorentz 
transformations of space coordinates in terms of 
six-vectors. To find the transformation equations 
of time in terms of six-vectors, let us write Eq. 
(38) with ߩ = ݒ ܿ⁄  in the following form: 

̅ݐ = ߛ ቀݐ − ௩௫
௖మ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ቁ,  

̅ݐ = ߛ ቀݐ − ఘ௫
௖ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ቁ,  

̅ݐܿ sin ߙ cos ߚ = ݐܿ)ߛ sin ߙ cos ߚ −   ,(ݔߩ
̅ݐܿ݅ sin ߙ cos ߚ = ݐܿ݅)ߛ sin ߙ cos ߚ −   ,(ݔߩ݅

Substituting Eqs. (81), (90), and (93) into the 
above expression results in 

ସݔ̅ = ସݔ)ߛ −  ଵ).  (99)ݔߩ݅

Similarly, let us write Eq. (51) with ߩ = ݒ ܿ⁄  
in the following form: 

̅ݐ = ߛ ቀݐ − ௩௬
௖మ ୱ୧୬ ఈ ୱ୧୬ ఉ

ቁ,  

̅ݐ = ߛ ቀݐ − ఘ௬
௖ ୱ୧୬ ఈ ୱ୧୬ ఉ

ቁ,  

̅ݐܿ sin ߙ sin ߚ = ݐܿ)ߛ sin ߙ sin ߚ −   ,(ݕߩ
̅ݐܿ݅ sin ߙ sin ߚ = ݐܿ݅)ߛ sin ߙ sin ߚ −   ,(ݕߩ݅

Substituting Eqs. (82), (91), and (94) into the 
above expression results in 

ହݔ̅ = ହݔ)ߛ −  ଶ).  (100)ݔߩ݅

Similarly, let us write Eq. (63) with ߩ = ݒ ܿ⁄  
in the following form: 

̅ݐ = ߛ ቀݐ − ௩௭
௖మ ୡ୭ୱ ఈ

ቁ,  

̅ݐ = ߛ ቀݐ − ఘ௭
௖ ୡ୭ୱ ఈ

ቁ,  

̅ݐܿ cos ߙ = ݐܿ)ߛ cos ߙ −   ,(ݖߩ
̅ݐܿ݅ cos ߙ = ݐܿ݅)ߛ cos ߙ −   ,(ݖߩ݅

Substituting Eqs. (82), (92), and (95) into the 
above expression results in 

଺ݔ̅ = ଺ݔ)ߛ −  ଷ).  (101)ݔߩ݅

Equations (99)-(101) are the transformation 
formulas for three coordinates of time, i.e., 
,ସݔ̅) ,ହݔ̅  ଺). Equations (96)-(98) represent theݔ̅
Lorentz transformation equations of the first 
three space coordinates of six-vectors, while 
Eqs. (99)-(101) represent the Lorentz 
transformation equations of the remaining three 
time coordinates of the six-vectors. Equations 
(96)-(101) can be written in the following form: 
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ଵݔ̅ = .ߛ ଵݔ + 0. ଶݔ + 0. ଷݔ
.ߛߩ݅+ ସݔ + 0. ହݔ + 0. ଺ݔ

ଶݔ̅ = 0. ଵݔ + .ߛ ଶݔ + 0. ଷݔ
+0. ସݔ + .ߛߩ݅ ହݔ + 0. ଺ݔ

ଷݔ̅ = 0. ଵݔ + 0. ଶݔ + .ߛ ଷݔ
+0. ସݔ + 0. ହݔ + .ߛߩ݅ ଺ݔ

ସݔ̅ = .ߛߩ݅− ଵݔ + 0. ଶݔ + 0. ଷݔ
.ߛ+ ସݔ + 0. ହݔ + 0. ଺ݔ

ହݔ̅ = 0. ଵݔ − .ߛߩ݅ ଶݔ + 0. ଷݔ
+0. ସݔ + .ߛ ହݔ + 0. ଺ݔ

଺ݔ̅ = 0. ଵݔ + 0. ଶݔ − .ߛߩ݅ ଷݔ
+0. ସݔ + 0. ହݔ + .ߛ ଺ݔ ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

,  (102) 

In matrix form above equations can be 
written as: 

⎣
⎢
⎢
⎢
⎢
⎡
ଵݔ̅
ଶݔ̅
ଷݔ̅
ସݔ̅
ହݔ̅
⎦଺ݔ̅

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

ߛ 0 0 ߛߩ݅ 0 0
0 ߛ 0 0 ߛߩ݅ 0
0 0 ߛ 0 0 ߛߩ݅

ߛߩ݅− 0 0 ߛ 0 0
0 ߛߩ݅− 0 0 ߛ 0
0 0 ߛߩ݅− 0 0 ߛ ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
ଵݔ
ଶݔ
ଷݔ
ସݔ
ହݔ
⎦଺ݔ

⎥
⎥
⎥
⎥
⎤

.  

(103) 

Equation (103) represents the matrix form of 
the three-dimensional Lorentz transformation 
equations in terms of six-vectors. The inverse of 
this equation that transforms coordinates from a 
moving frame to a rest frame can be achieved by 
exchanging space-time coordinates and replacing 
 :in Eq. (103) as follows ߩ− with ߩ

⎣
⎢
⎢
⎢
⎢
⎡
ଵݔ
ଶݔ
ଷݔ
ସݔ
ହݔ
⎦଺ݔ

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

ߛ 0 0 ߛߩ݅− 0 0
0 ߛ 0 0 ߛߩ݅− 0
0 0 ߛ 0 0 ߛߩ݅−

ߛߩ݅ 0 0 ߛ 0 0
0 ߛߩ݅ 0 0 ߛ 0
0 0 ߛߩ݅ 0 0 ߛ ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
ଵݔ̅
ଶݔ̅
ଷݔ̅
ସݔ̅
ହݔ̅
⎦଺ݔ̅

⎥
⎥
⎥
⎥
⎤

.  

(104) 

Equations (103) and (104) represent the 
matrix form of 3D direct and inverse Lorentz 
transformation equations, respectively, when the 
motion between inertial frames takes place along 
the X-, Y-, and Z-directions simultaneously. 
However, when the motion between inertial 
frames takes place along a single X-axis, we 
should have ߙ = గ

ଶ
 and ߚ = 0 (see Fig. 1), and 

Eqs. (81), (82) and (83) achieve the following 
form under such one-dimensional conditions. 

ݔ = ଵݔ = ݎ sin గ
ଶ

cos 0 =  (105)  ,ݎ

ݕ = ଶݔ = ݎ sin గ
ଶ

sin 0 = 0,  (106) 

ݖ = ଷݔ = ݎ cos గ
ଶ

= 0.  (107) 

Equations (90)-(92) take the following form 
when ߙ = గ

ଶ
 and ߚ = 0. 

ସݔ = ݐܿ݅ sin గ
ଶ

cos 0 =  (108)  ,ݐܿ݅

ହݔ = ݐܿ݅ sin గ
ଶ

sin 0 = 0,  (109) 

଺ݔ = ݐܿ݅ cos గ
ଶ

= 0.  (110) 

Substituting Eqs. (105)-(110) into six Lorentz 
transformations, namely Eq. (102) results in 

ଵݔ̅ = .ߛ ଵݔ + 0.0 + 0.0 +
.ߛߩ݅ ସݔ + 0.0 + 0.0

ଶݔ̅ = 0. ଵݔ + .ߛ 0 + 0.0 +
0. ସݔ + .ߛߩ݅ 0 + 0.0 = 0

ଷݔ̅ = 0. ଵݔ + 0.0 + .ߛ 0 +
0. ସݔ + 0.0 + .ߛߩ݅ 0 = 0

ସݔ̅ = .ߛߩ݅− ଵݔ + 0.0 + 0. ଷݔ +
.ߛ ସݔ + 0.0 + 0.0

ହݔ̅ = 0. ଵݔ − .ߛߩ݅ 0 + 0. ଷݔ +
0. ସݔ + .ߛ 0 + 0.0 = 0

଺ݔ̅ = 0. ଵݔ + 0.0 − .ߛߩ݅ 0 +
0. ସݔ + 0.0 + .ߛ 0 = 0 ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

.  (111) 

From the above mathematical calculations, it 
is clear that the value of Y and Z space-time 
coordinates drops out (̅ݔଶ = ଷݔ̅ = ହݔ̅ = ଺ݔ̅ = 0) 
when the motion between inertial frames takes 
place along a single X-axis only. If we remove 
the coordinates having zero values from Eq. 
(111), then we get: 
ଵݔ̅ = .ߛ ଵݔ + +0.0 + 0.0 + .ߛߩ݅ ସݔ + 0.0 + 0.0
ସݔ̅ = .ߛߩ݅− ଵݔ + 0.0 + 0.0 + .ߛ ସݔ + 0.0 + 0.0ൠ,  

(112) 

In matrix form above equations can be 
written as: 

൤̅ݔଵ
ସݔ̅

൨ = ൤ ߛ ߛߩ݅
ߛߩ݅− ߛ ൨ ቂ

ଵݔ
ସݔ

ቃ.  (113) 

Equation (113) represents the matrix form of 
the one-dimensional Lorentz transformation 
equations. Also, Eqs. (84) and (93) achieve the 
following form under one-dimensional 
conditions, i.e., ߙ = గ

ଶ
 and ߚ = 0: 

ݔ̅ = ଵݔ̅ = ݎ̅ sin గ
ଶ

cos 0 =  (114)  ,ݎ̅

ସݔ̅ = ̅ݐܿ݅ sin గ
ଶ

cos 0 =  (115)  .̅ݐܿ݅

Substituting Eqs. (105), (108), (114), and 
(115) into Eq. (113) results in 

ቂ ݔ̅
ቃ̅ݐܿ݅ = ൤ ߛ ߛߩ݅

ߛߩ݅− ߛ ൨ ቂ ݔ
 ቃ.  (116)ݐܿ݅
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Solution of the above matrix Eq. (116) gives 
exact one-dimensional Lorentz transformation 
equations as follows: 

ݔ̅ = ݔߛ + ݅ଶݐܿߩߛ = ௫ି௩௧

ටଵିೡమ

೎మ

.  

and, 

̅ݐܿ݅ = ݔߛߩ݅− + ߛݐܿ݅ =
௜௖௧ି೔ೡೣ

೎

ටଵିೡమ

೎మ

,  

̅ݐ =
௧ିೡೣ

೎మ

ටଵିೡమ

೎మ

.  

For the invariance of the space-time interval 
in terms of the six-vector, let us add the Eqs. 
(87)-(89): 

ଵݔ
ଶ + ଶݔ

ଶ + ଷݔ
ଶ + ସݔ

ଶ + ହݔ
ଶ + ଺ݔ

ଶ = ଵݔ̅
ଶ +

ଶݔ̅
ଶ + ଷݔ̅

ଶ + ସݔ̅
ଶ + ହݔ̅

ଶ + ଺ݔ̅
ଶ.  (117) 

This equation represents the invariance of the 
spacetime interval under the extended new six 
Lorentz transformation equations. 

3.4 Invariance of the Wave Equation 

In Fig. 1, frame K' is moving with velocity ݒ 
relative to frame K along the radius vector ݎ in 
3D space. If an electromagnetic wave is 
travelling in frame K, then the propagation 
equation for such a wave is of the form, 

ቄ∇ଶ − డమ

డ(௖௧)మቅ ߔ = ቄ డమ

డ௥మ + డమ

డ(௜௖௧)మቅ ߔ = 0,  

Here, ݎ denotes the resultant vector, which 
has three components, namely ݔଵ = ଶݔ ,ݔ =  ,ݕ
and ݔଷ =  .as discussed in Eqs. (81)-(83) ,ݖ
Hence, the above expression can be extended in 
terms of components of ݎ as follows, 

ቄ డమ

డ௫మ + డమ

డ௬మ + డమ

డ௭మ + డమ

డ(௜௖௧)మቅ ߔ = ቄ డమ

డ௫భమ + డమ

డ௫మమ +
డమ

డ௫యమ + డమ

డ(௜௖௧)మቅ ߔ = 0,  

Similarly, ݅ܿݐ has three components, namely, 
 .଺ as discussed in Eqs. (90)-(92)ݔ ହ, andݔ ,ସݔ
Hence, the above expression can be extended in 
terms of components of ݅ܿݐ as follows, 

ቄ డమ

డ௫భమ + డమ

డ௫మమ + డమ

డ௫యమ + డమ

డ௫రమ + డమ

డ௫ఱమ + డమ

డ௫లమቅ ߔ = 0.  
(118) 

Equation (118) represents the equation of an 
electromagnetic wave in a six-dimensional 
space-time continuum. Now, the propagation 
equation of the same wave in frame K' is given 
by 

ቄ డమ

డ௫̅భ
మ + డమ

డ௫̅మ
మ + డమ

డ௫̅య
మ + డమ

డ௫̅ర
మ + డమ

డ௫̅ఱ
మ + డమ

డ௫̅ల
మቅ ߔ = 0.  

(119) 

Here ߔ is a function of ̅ݔଵ, ,ଶݔ̅ ,ଷݔ̅ ,ସݔ̅  ହ andݔ̅
 ଺ and thus it may be written asݔ̅
,ଵݔ̅)ߔ ,ଶݔ̅ ,ଷݔ̅ ,ସݔ̅ ,ହݔ̅  ଺). Hence, we can write theݔ̅
following differential operator: 
డః
డ௫భ

= డః
డ௫̅భ

డ௫̅భ
డ௫భ

+ డః
డ௫̅మ

డ௫̅మ
డ௫భ

+ డః
డ௫̅య

డ௫̅య
డ௫భ

+ డః
డ௫̅ర

డ௫̅ర
డ௫భ

+
డః
డ௫̅ఱ

డ௫̅ఱ
డ௫భ

+ డః
డ௫̅ల

డ௫̅ల
డ௫భ

,  

డ
డ௫భ

= డ
డ௫̅భ

డ௫̅భ
డ௫భ

+ డ
డ௫̅మ

డ௫̅మ
డ௫భ

+ డ
డ௫̅య

డ௫̅య
డ௫భ

+ డ
డ௫̅ర

డ௫̅ర
డ௫భ

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫భ

+ డ
డ௫̅ల

డ௫̅ల
డ௫భ

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫భ

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫భ

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫భ

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫భ

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫భ

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫భ

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫భ

,  
డ

డ௫భ
= డ

డ௫̅భ
ߛ + డ

డ௫̅మ
0 + డ

డ௫̅య
0 − డ

డ௫̅ర
ߩߛ݅ + డ

డ௫̅ఱ
0 +

డ
డ௫̅ల

0,  
డ

డ௫భ
= ߛ డ

డ௫̅భ
− ߩߛ݅ డ

డ௫̅ర
,  

Multiplying the above equation by itself, we 
get: 

డమ

డ௫భమ = ቀߛ డ
డ௫̅భ

− ߩߛ݅ డ
డ௫̅ర

ቁ ቀߛ డ
డ௫̅భ

− ߩߛ݅ డ
డ௫̅ర

ቁ,  

డమ

డ௫భమ = ଶߛ డమ

డ௫̅భ
మ − ଶߛߩ2݅ డ

డ௫̅భ

డ
డ௫̅ర

− ଶ ߛଶߩ డమ

డ௫̅ర
మ.  
(120) 

Similarly, we can write the following 
differential operator: 
డః
డ௫ర

= డః
డ௫̅భ

డ௫̅భ
డ௫ర

+ డః
డ௫̅మ

డ௫̅మ
డ௫ర

+ డః
డ௫̅య

డ௫̅య
డ௫ర

+ డః
డ௫̅ర

డ௫̅ర
డ௫ర

+
డః
డ௫̅ఱ

డ௫̅ఱ
డ௫ర

+ డః
డ௫̅ల

డ௫̅ల
డ௫ర

,  
డ

డ௫ర
= డ

డ௫̅భ

డ௫̅భ
డ௫ర

+ డ
డ௫̅మ

డ௫̅మ
డ௫ర

+ డ
డ௫̅య

డ௫̅య
డ௫ర

+ డ
డ௫̅ర

డ௫̅ర
డ௫ర

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫ర

+ డ
డ௫̅ల

డ௫̅ల
డ௫ర

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫ర

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫ర

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫ర

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫ర

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫ర

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫ర

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫ర

,  
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డ
డ௫ర

= డ
డ௫̅భ

ߩߛ݅ + డ
డ௫̅మ

0 + డ
డ௫̅య

0 + డ
డ௫̅ర

ߛ + డ
డ௫̅ఱ

0 +
డ

డ௫̅ల
0,  

డ
డ௫ర

= ߛ డ
డ௫̅ర

+ ߩߛ݅ డ
డ௫̅భ

,  

Multiplying the above equation by itself, we 
get: 

డమ

డ௫రమ = ቀߛ డ
డ௫̅ర

+ ߩߛ݅ డ
డ௫̅భ

ቁ ቀߛ డ
డ௫̅ర

+ ߩߛ݅ డ
డ௫̅భ

ቁ,  

డమ

డ௫రమ = ଶߛ డమ

డ௫̅ర
మ + ଶߛߩ2݅ డ

డ௫̅భ

డ
డ௫̅ర

− ଶ ߛଶߩ డమ

డ௫̅భ
మ.  
(121) 

Adding Eqs. (121) and (120) results in 
డమ

డ௫భమ + డమ

డ௫రమ = ଶߛ డమ

డ௫̅భ
మ − ଶߛߩ2݅ డ

డ௫̅భ

డ
డ௫̅ర

−

ଶ ߛଶߩ డమ

డ௫̅ర
మ + ଶߛ డమ

డ௫̅ర
మ + ଶߛߩ2݅ డ

డ௫̅భ

డ
డ௫̅ర

−

ଶ ߛଶߩ డమ

డ௫̅భ
మ,  

డమ

డ௫భమ + డమ

డ௫రమ = ଶߛ ቀ డమ

డ௫̅భ
మ − ଶߩ డమ

డ௫̅ర
మ + డమ

డ௫̅ర
మ −

ଶߩ డమ

డ௫̅భ
మቁ,  

డమ

డ௫భమ + డమ

డ௫రమ = ଵ

ଵିೡమ

೎మ

ቀ డమ

డ௫̅భ
మ − ௩మ

௖మ
డమ

డ௫̅భ
మ + డమ

డ௫̅ర
మ −

௩మ

௖మ
డమ

డ௫̅ర
మቁ,  

డమ

డ௫భమ + డమ

డ௫రమ = ଵ

ଵିೡమ

೎మ

ቂቀ1 − ௩మ

௖మቁ డమ

డ௫̅భ
మ +

ቀ1 − ௩మ

௖మቁ డమ

డ௫̅ర
మቃ,  

డమ

డ௫భమ + డమ

డ௫రమ = డమ

డ௫̅భ
మ + డమ

డ௫̅ర
మ.  (122) 

Similarly, we can write the following 
differential operator: 

డ
డ௫మ

= డ
డ௫̅భ

డ௫̅భ
డ௫మ

+ డ
డ௫̅మ

డ௫̅మ
డ௫మ

+ డ
డ௫̅య

డ௫̅య
డ௫మ

+ డ
డ௫̅ర

డ௫̅ర
డ௫మ

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫మ

+ డ
డ௫̅ల

డ௫̅ల
డ௫మ

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫మ

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫మ

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫మ

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫మ

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫మ

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫మ

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫మ

,  
డ

డ௫మ
= డ

డ௫̅భ
0 + డ

డ௫̅మ
ߛ + డ

డ௫̅య
0 + డ

డ௫̅ర
0 − డ

డ௫̅ఱ
ߩߛ݅ +

డ
డ௫̅ల

0,  
డ

డ௫మ
= ߛ డ

డ௫̅మ
− ߩߛ݅ డ

డ௫̅ఱ
,  

Multiplying the above equation by itself, we 
get: 

డమ

డ௫మమ = ቀߛ డ
డ௫̅మ

− ߩߛ݅ డ
డ௫̅ఱ

ቁ ቀߛ డ
డ௫̅మ

− ߩߛ݅ డ
డ௫̅ఱ

ቁ,  

డమ

డ௫మమ = ଶߛ డమ

డ௫̅మ
మ − ଶߛߩ2݅ డ

డ௫̅మ

డ
డ௫̅ఱ

− ଶ ߛଶߩ డమ

డ௫̅ఱ
మ.  
(123) 

Similarly, we can write the following 
differential operator: 

డ
డ௫ఱ

= డ
డ௫̅భ

డ௫̅భ
డ௫ఱ

+ డ
డ௫̅మ

డ௫̅మ
డ௫ఱ

+ డ
డ௫̅య

డ௫̅య
డ௫ఱ

+ డ
డ௫̅ర

డ௫̅ర
డ௫ఱ

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫ఱ

+ డ
డ௫̅ల

డ௫̅ల
డ௫ఱ

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫ఱ

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫ఱ

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫ఱ

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫ఱ

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫ఱ

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫ఱ

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫ఱ

,  
డ

డ௫ఱ
= డ

డ௫̅భ
0 + డ

డ௫̅మ
ߩߛ݅ + డ

డ௫̅య
0 + డ

డ௫̅ర
0 + డ

డ௫̅ఱ
ߛ +

డ
డ௫̅ల

0,  
డ

డ௫ఱ
= ߛ డ

డ௫̅ఱ
+ ߩߛ݅ డ

డ௫̅మ
,  

Multiplying the above equation by itself, we 
get: 

డమ

డ௫ఱమ = ቀߛ డ
డ௫̅ఱ

+ ߩߛ݅ డ
డ௫̅మ

ቁ ቀߛ డ
డ௫̅ఱ

+ ߩߛ݅ డ
డ௫̅మ

ቁ,  

డమ

డ௫ఱమ = ଶߛ డమ

డ௫̅ఱ
మ + ଶߛߩ2݅ డ

డ௫̅మ

డ
డ௫̅ఱ

− ଶ ߛଶߩ డమ

డ௫̅మ
మ.  
(124) 

Adding Eqs. (123) and (124) results in 
డమ

డ௫మమ + డమ

డ௫ఱమ = ଶߛ డమ

డ௫̅మ
మ − ଶߛߩ2݅ డ

డ௫̅మ

డ
డ௫̅ఱ

−

ଶ ߛଶߩ డమ

డ௫̅ఱ
మ + ଶߛ డమ

డ௫̅ఱ
మ + ଶߛߩ2݅ డ

డ௫̅మ

డ
డ௫̅ఱ

−

ଶ ߛଶߩ డమ

డ௫̅మ
మ,  

డమ

డ௫మమ + డమ

డ௫ఱమ = ଶߛ ቀ డమ

డ௫̅మ
మ − ଶߩ డమ

డ௫̅ఱ
మ + డమ

డ௫̅ఱ
మ −

ଶߩ డమ

డ௫̅మ
మቁ,  

డమ

డ௫మమ + డమ

డ௫ఱమ = ଶߛ ቀ డమ

డ௫̅మ
మ − ଶߩ డమ

డ௫̅ఱ
మ + డమ

డ௫̅ఱ
మ −

ଶߩ డమ

డ௫̅మ
మቁ,  

డమ

డ௫మమ + డమ

డ௫ఱమ = ଵ

ଵିೡమ

೎మ

ቀ డమ

డ௫̅మ
మ − ௩మ

௖మ
డమ

డ௫̅మ
మ + డమ

డ௫̅ఱ
మ −

௩మ

௖మ
డమ

డ௫̅ఱ
మቁ,  
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డమ

డ௫మమ + డమ

డ௫ఱమ = ଵ

ଵିೡమ

೎మ

ቂቀ1 − ௩మ

௖మቁ డమ

డ௫̅మ
మ +

ቀ1 − ௩మ

௖మቁ డమ

డ௫̅ఱ
మቃ,  

డమ

డ௫మమ + డమ

డ௫ఱమ = డమ

డ௫̅మ
మ + డమ

డ௫̅ఱ
మ.  (125) 

Similarly, we can write the following 
differential operator: 

డ
డ௫య

= డ
డ௫̅భ

డ௫̅భ
డ௫య

+ డ
డ௫̅మ

డ௫̅మ
డ௫య

+ డ
డ௫̅య

డ௫̅య
డ௫య

+ డ
డ௫̅ర

డ௫̅ర
డ௫య

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫య

+ డ
డ௫̅ల

డ௫̅ల
డ௫య

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫య

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫య

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫య

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫య

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫య

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫య

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫య

,  
డ

డ௫య
= డ

డ௫̅భ
0 + డ

డ௫̅మ
0 + డ

డ௫̅య
ߛ + డ

డ௫̅ర
0 + డ

డ௫̅ఱ
0 −

డ
డ௫̅ల

  ,ߩߛ݅
డ

డ௫య
= ߛ డ

డ௫̅య
− ߩߛ݅ డ

డ௫̅ల
,  

Multiplying the above equation by itself, we 
get 

డమ

డ௫యమ = ቀߛ డ
డ௫̅య

− ߩߛ݅ డ
డ௫̅ల

ቁ ቀߛ డ
డ௫̅య

− ߩߛ݅ డ
డ௫̅ల

ቁ,  

డమ

డ௫యమ = ଶߛ డమ

డ௫̅య
మ − ଶߛߩ2݅ డ

డ௫̅య

డ
డ௫̅ల

− ଶ ߛଶߩ డమ

డ௫̅ల
మ.  
(126) 

Similarly, we can write the following 
differential operator: 

డ
డ௫ల

= డ
డ௫̅భ

డ௫̅భ
డ௫ల

+ డ
డ௫̅మ

డ௫̅మ
డ௫ల

+ డ
డ௫̅య

డ௫̅య
డ௫ల

+ డ
డ௫̅ర

డ௫̅ర
డ௫ల

+
డ

డ௫̅ఱ

డ௫̅ఱ
డ௫ల

+ డ
డ௫̅ల

డ௫̅ల
డ௫ల

,  

Substituting Eqs. (96)-(101) into the above 
expression results in 

డ
డ௫ల

= డ
డ௫̅భ

డ{ఊ(௫భା௜ఘ௫ర)}
డ௫ల

+ డ
డ௫̅మ

డ{ఊ(௫మା௜ఘ௫ఱ)}
డ௫ల

+
డ

డ௫̅య

డ{ఊ(௫యା௜ఘ௫ల)}
డ௫ల

+ డ
డ௫̅ర

డఊ(௫రି௜ఘ௫భ)
డ௫ల

+
డ

డ௫̅ఱ

డఊ(௫ఱି௜ఘ௫మ)
డ௫ల

+ డ
డ௫̅ల

డఊ(௫లି௜ఘ௫య)
డ௫ల

,  
డ

డ௫ల
= డ

డ௫̅భ
0 + డ

డ௫̅మ
0 + డ

డ௫̅య
ߩߛ݅ + డ

డ௫̅ర
0 + డ

డ௫̅ఱ
0 +

డ
డ௫̅ల

  ,ߛ
డ

డ௫ల
= ߛ డ

డ௫̅ల
+ ߩߛ݅ డ

డ௫̅య
,  

Multiplying the above equation by itself, we 
get, 

డమ

డ௫లమ = ቀߛ డ
డ௫̅ల

+ ߩߛ݅ డ
డ௫̅య

ቁ ቀߛ డ
డ௫̅ల

+ ߩߛ݅ డ
డ௫̅య

ቁ,  

డమ

డ௫లమ = ଶߛ డమ

డ௫̅ల
మ + ଶߛߩ2݅ డ

డ௫̅య

డ
డ௫̅ల

− ଶ ߛଶߩ డమ

డ௫̅య
మ.  
(127) 

Adding Eqs. (126) and (127) results in 
డమ

డ௫యమ + డమ

డ௫లమ = ଶߛ డమ

డ௫̅య
మ − ଶߛߩ2݅ డ

డ௫̅య

డ
డ௫̅ల

−

ଶ ߛଶߩ డమ

డ௫̅ల
మ + ଶߛ డమ

డ௫̅ల
మ + ଶߛߩ2݅ డ

డ௫̅య

డ
డ௫̅ల

−

ଶ ߛଶߩ డమ

డ௫̅య
మ,  

డమ

డ௫యమ + డమ

డ௫లమ = ଶߛ ቀ డమ

డ௫̅య
మ − ଶߩ డమ

డ௫̅ల
మ + డమ

డ௫̅ల
మ −

ଶߩ డమ

డ௫̅య
మቁ,  

డమ

డ௫యమ + డమ

డ௫లమ = ଶߛ ቀ డమ

డ௫̅య
మ − ଶߩ డమ

డ௫̅ల
మ + డమ

డ௫̅ల
మ −

ଶߩ డమ

డ௫̅య
మቁ,  

డమ

డ௫యమ + డమ

డ௫లమ = ଵ

ଵିೡమ

೎మ

ቀ డమ

డ௫̅య
మ − ௩మ

௖మ
డమ

డ௫̅య
మ + డమ

డ௫̅ల
మ −

௩మ

௖మ
డమ

డ௫̅ల
మቁ,  

డమ

డ௫యమ + డమ

డ௫లమ = ଵ

ଵିೡమ

೎మ

ቂቀ1 − ௩మ

௖మቁ డమ

డ௫̅య
మ +

ቀ1 − ௩మ

௖మቁ డమ

డ௫̅ల
మቃ,  

డమ

డ௫యమ + డమ

డ௫లమ = డమ

డ௫̅య
మ + డమ

డ௫̅ల
మ.  (128) 

Adding Eqs. (122), (125), and (128), we get, 
డమ

డ௫భమ + డమ

డ௫మమ + డమ

డ௫యమ + డమ

డ௫రమ + డమ

డ௫ఱమ + డమ

డ௫లమ =
డమ

డ௫̅భ
మ + డమ

డ௫̅మ
మ + డమ

డ௫̅య
మ + డమ

డ௫̅ర
మ + డమ

డ௫̅ఱ
మ + డమ

డ௫̅ల
మ.  

(129) 

From Eqs. (118), (119), and (129), we can 
conclude that the propagation equation of the 
electromagnetic wave or D’Alembert operator is 
invariant under the six new relativistic Lorentz 
transformation equations. 

3.5 Transformation of Energy and Momentum 

Let us suppose once again that the frame K' 
moves relative to the frame k with velocity ݒ in 
three dimensions of space as indicated in Fig. 2. 
Here, the symbols ݑ and ݑത will be used for 
velocities of the particle measured from the 
inertial frames K and K', respectively. Symbol ݒ 
will only be used for the relative velocity 
between inertial frames (see Fig. 2), and symbol 
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will always represent 1 ߛ ඥ1 − ଶݒ ܿଶ⁄⁄ . Symbol 
݉଴ will be used to represent the rest mass of the 
particle so that the relativistic mass of the 
particle measured from the frames K and K' 
isgiven by the following: 

݉ = ௠బ

ටଵିೠమ

೎మ

, ഥ݉ = ௠బ

ටଵିೠഥమ

೎మ

.  

Here, ݉ and ഥ݉  represent the relativistic mass 
of the particle measured from the inertial frames 
K and K', respectively. 

  
FIG. 2. Velocity of a moving particle observed from frames K and K'. 

The position vector of a particle measured 
from frame K at any instant of time ݐ can be 
written as follows: 

ݎ⃗ = ଓ⃗ݔ + ଔ⃗ݕ + ሬ݇⃗ݖ ,  

Differentiating this equation with respect to ݐ, 
we get: 
ௗ௥⃗
ௗ௧

= ௗ௫
ௗ௧

ଓ⃗ + ௗ௬
ௗ௧

ଔ⃗ + ௗ௭
ௗ௧

ሬ݇⃗

ሬ⃗ݑ = ଵݑ ଓ⃗ + ଶଔ⃗ݑ + ଷݑ ሬ݇⃗
ൡ.  (130) 

Multiplying both sides by the relativistic 
mass ݉ = ݉଴ ඥ1 − ଶݑ ܿଶ⁄⁄  of the particle as 
measured in frame K we get: 

ሬ⃗ݑ݉ = ଵଓ⃗ݑ݉ + ଶଔ⃗ݑ݉ + ଷݑ݉ ሬ݇⃗

⃗݌ = ଵଓ⃗݌ + ଶଔ⃗݌ + ଷ݌ ሬ݇⃗
ቋ.  (131) 

Here, ݌ଵ, ݌ଶ, and ݌ଷ represent the component 
of linear momentum along the X-, Y-, and Z-
directions in the K frame of reference. Also, 
using Eqs. (20)-(22), the position of the same 
particle in the form of polar coordinates can be 
written as follows: 

ݎ⃗ = ଓ⃗ݔ + ଔ⃗ݕ + ሬ݇⃗ݖ ,  

ݎ⃗ = ݎ sin ߙ cos ߚ ଓ⃗ + ݎ sin ߙ sin ߚ ଔ⃗ + ݎ cos ߙ ሬ݇⃗ ,  

Differentiating this equation with respect to ݐ, 
we get: 
ௗ௥⃗
ௗ௧

= ௗ(௥ ୱ୧୬ ఈ ୡ୭ୱ ఉ)
ௗ௧

ଓ⃗ + ௗ(୰ୱ୧୬ ఈ ୱ୧୬ ఉ)
ௗ௧

ଔ⃗ +
ௗ(௥ ୡ୭ୱ ఈ)

ௗ௧
ሬ݇⃗ ,  

ௗ௥⃗
ௗ௧

= ௗ௥
ௗ௧

sin ߙ cos ߚ ଓ⃗ + ௗ௥
ௗ௧

sin ߙ sin ߚ ଔ⃗ +
ௗ௥
ௗ௧

cos ߙ ሬ݇⃗ ,  

ሬ⃗ݑ = ݑ sin ߙ cos ߚ ଓ⃗ + ݑ sin ߙ sin ߚ ଔ⃗ + ݑ cos ߙ ሬ݇⃗ ,  
(132) 

Multiplying both sides by the relativistic 
mass ݉ = ݉଴ ඥ1 − ଶݑ ܿଶ⁄⁄  of the particle as 
measured in frame K, we get: 

ሬ⃗ݑ݉ = ݑ݉ sin ߙ cos ߚ ଓ⃗ + ݑ݉ sin ߙ sin ߚ ଔ⃗ +
ݑ݉ cos ߙ ሬ݇⃗ ,  

⃗݌ = ݌ sin ߙ cos ߚ ଓ⃗ + ݌ sin ߙ sin ߚ ଔ⃗ + ݌ cos ߙ ሬ݇⃗ ,  
(133) 

Now, comparing the corresponding 
coefficients of Eqs. (130) and (132), we get: 
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ଵݑ = ݑ sin ߙ cos ߚ , ଶݑ = ݑ sin ߙ sin ߚ , ଷݑ =
ݑ cos  (134)  ,ߙ

Also, comparing the corresponding 
coefficients of Eqs. (131) and (133), we get: 

ଵ݌ = ݌ sin ߙ cos ߚ , ଶ݌ = ݌ sin ߙ sin ߚ , ଷ݌ =
݌ cos  (135)  ,ߙ

Similarly, the position vector of the same 
particle measured from frame K' at any instant of 
time ̅ݐ can be written as follows: 

ݎ̅⃗ = ଓ⃗ݔ̅ + തଔ⃗ݕ + ̅ݖ ሬ݇⃗ ,  

Differentiating this equation with respect to ̅ݐ, 
we get: 
ௗ௥⃗̅
ௗ௧̅ = ௗ௫̅

ௗ௧̅ ଓ⃗ + ௗ௬ത
ௗ௧̅ ଔ⃗ + ௗ௭̅

ௗ௧̅
ሬ݇⃗

തሬ⃗ݑ  = തଵଓ⃗ݑ + തଶଔ⃗ݑ + തଷݑ ሬ݇⃗
ൡ.  (136) 

Multiplying both sides by the relativistic 
mass ഥ݉ = ݉଴ ඥ1 − തଶݑ ܿଶ⁄⁄  of the particle as 
measured in frame K', we get: 

ഥ݉ݑതሬ⃗ = ഥ݉ݑതଵଓ⃗ + ഥ݉ݑതଶଔ⃗ + ഥ݉ݑതଷ ሬ݇⃗

̅⃗݌ = ଵଓ⃗̅݌ + ଶଔ⃗̅݌ + ଷ̅݌ ሬ݇⃗
ቋ.  (137) 

Here, ̅݌ଵ, ̅݌ଶ, and ̅݌ଷ represent the component 
of linear momentum along the X-, Y-, and Z-
directions in the K' frame of reference. Also, 
using Eqs. (24)-(26), the position of the same 
particle in the form of polar coordinates can be 
written as follows: 

ݎ̅⃗ = ଓ⃗ݔ̅ + തଔ⃗ݕ + ̅ݖ ሬ݇⃗ ,  

ݎ̅⃗ = ݎ̅ sin ߙ cos ߚ ଓ⃗ + ݎ̅ sin ߙ sin ߚ ଔ⃗ + ݎ̅ cos ߙ ሬ݇⃗ ,  

Differentiating this equation with respect to ̅ݐ, 
we get: 
ௗ௥⃗̅
ௗ௧̅ = ௗ(௥̅ ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ௗ௧̅ ଓ⃗ + ௗ(௥̅ ୱ୧୬ ఈ ୱ୧୬ ఉ)
ௗ௧̅ ଔ⃗ +

ௗ(௥̅ ୡ୭ୱ ఈ)
ௗ௧̅

ሬ݇⃗ ,  

ௗ௥⃗̅
ௗ௧̅ = sin ߙ cos ߚ ௗ௥̅

ௗ௧̅ ଓ⃗ + sin ߙ sin ߚ ௗ௥̅
ௗ௧̅ ଔ⃗ +

cos ߙ ௗ௥̅
ௗ௧̅

ሬ݇⃗ ,  

തሬ⃗ݑ = തݑ sin ߙ cos ߚ ଓ⃗ + തݑ sin ߙ sin ߚ ଔ⃗ + തݑ cos ߙ ሬ݇⃗ ,  
(138) 

Multiplying both sides by the relativistic 
mass ഥ݉ = ݉଴ ඥ1 − തଶݑ ܿଶ⁄⁄  of the particle as 
measured in frame K', we get: 

തሬ⃗ݑ݉ = തݑ݉ sin ߙ cos ߚ ଓ⃗ + തݑ݉ sin ߙ sin ߚ ଔ⃗ +
തݑ݉ cos ߙ ሬ݇⃗ ,  

̅⃗݌ = ̅݌ sin ߙ cos ߚ ଓ⃗ + ̅݌ sin ߙ sin ߚ ଔ⃗ + ̅݌ cos ߙ ሬ݇⃗ ,  
(139) 

Now, comparing the corresponding 
coefficients of Eqs. (136) and (138), we get: 

തଵݑ = തݑ sin ߙ cos ߚ , തଶݑ = തݑ sin ߙ sin ߚ , തଷݑ =
തݑ cos  (140)  ,ߙ

Similarly, comparing the corresponding 
coefficients of Eqs. (137) and (139) we get: 

ଵ̅݌ = ̅݌ sin ߙ cos ߚ , ଶ̅݌ = ̅݌ sin ߙ sin ߚ , ଷ̅݌ =
̅݌ cos  (141)  ,ߙ

Now we find formulas relating the velocity of 
the particle in one inertial frame to its velocity in 
a second inertial frame. From Eqs. (78), (77), 
(61), (49), and (36), we can write the following 
relativistic space-time coordinates 
transformation equations in differential form 
with the Lorentz factor ߛ = 1 ඥ1 − ଶݒ ܿଶ⁄⁄ . 

̅ݐ݀ = ߛ ቀ݀ݐ − ௩
௖మ  ቁ,  (142)ݎ݀

ݎ̅݀ = ݎ݀)ߛ −  (143)  (ݐ݀ݒ

ݔ̅݀ = ݔ݀)ߛ − ݒ sin ߙ cos ߚ  (144)  ,(ݐ݀

തݕ݀ = ݕ݀)ߛ − ݒ sin ߙ sin ߚ  (145)  ,(ݐ݀

̅ݖ݀ = ݖ݀)ߛ − ݒ cos ߙ  (146)  ,(ݐ݀

From Eq. (136), the total resultant velocity of 
the particle as measured in frame K' can be 
written as follows: 

തݑ = ௗ௥̅
ௗ௧̅,  

After the substitution of Eqs. (142) and (143), 
the following is obtained 

തݑ = ఊ(ௗ௥ି௩ௗ௧)

ఊቀௗ௧ି ೡ
೎మௗ௥ቁ

=
೏ೝ
೏೟ି௩

ଵି ೡ
೎మ

೏ೝ
೏೟

,  

തݑ = ௨ି௩
ଵିೠೡ

೎మ
.  (147) 

Equation (147) determines the transformation 
of the velocity of the particle along the radial 
line. To determine the velocity transformation 
formulas for the X-, Y-, and Z-components, let’s 
write the X-component of velocity of the particle 
from Eq. (136) as follows: 

തଵݑ = ௗ௫̅
ௗ௧̅ ,  

After the substitution of the Eqs. (142) and 
(144), the following is obtained: 

തଵݑ = ఊ(ௗ௫ି௩ ୱ୧୬ ఈ ୡ୭ୱ ఉௗ௧)

ఊቀௗ௧ି ೡ
೎మௗ௥ቁ

=
೏ೣ
೏೟ି௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ଵି ೡ
೎మ

೏ೝ
೏೟

,  
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തଵݑ = ௨భି௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ
ଵିೠೡ

೎మ
.  (148) 

Similarly, let’s write the Y-component of 
velocity of the particle from Eq. (136) as 
follows: 

തଶݑ = ௗ௬ത
ௗ௧̅ ,  

After the substitution of the Eqs. (142) and 
(145), the following is obtained: 

തଶݑ = ఊ(ௗ௬ି௩ ୱ୧୬ ఈ ୱ୧୬ ఉௗ௧)

ఊቀௗ௧ି ೡ
೎మௗ௥ቁ

=
೏೤
೏೟ି௩ ୱ୧୬ ఈ ୱ୧୬ ఉ

ଵି ೡ
೎మ

೏ೝ
೏೟

,  

തଶݑ = ௨మି௩ ୱ୧୬ ఈ ୱ୧୬ ఉ
ଵିೠೡ

೎మ
.  (149) 

Similarly, let’s write the Z-component of 
velocity of the particle from Eq. (136) as 
follows: 

തଷݑ = ௗ௭̅
ௗ௧̅,  

After the substitution of the Eqs. (142) and 
(146), the following is obtained: 

തଷݑ = ఊ(ௗ௭ି௩ ୡ୭ୱ ఈௗ௧)

ఊቀௗ௧ି ೡ
೎మௗ௥ቁ

=
೏೥
೏೟ି௩ ୡ୭ୱ ఈ

ଵି ೡ
೎మ

೏ೝ
೏೟

,  

തଷݑ = ௨యି௩ ୡ୭ୱ ఈ
ଵିೠೡ

೎మ
.  (150) 

Equation (147) represents the transformation 
of the resultant velocity along the radial line, 
whereas Eqs. (148), (149), and (150) give the 
relativistic velocity-addition formulas for the Z-
components, respectively. The corresponding 
inverse velocity-transformation equations along 
the radial direction and the X-, Y-, and Z-axes 
are obtained by interchanging the coordinates 
and replacing ݒ with −ݒ in Eqs. (147)-(150). 
These inverse transformations take the following 
forms: 

ݑ = ௨ഥା௩

ଵାೠഥೡ
೎మ

,  (151) 

ଵݑ = ௨ഥభା௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ଵାೠഥೡ
೎మ

,  (152) 

ଶݑ = ௨ഥమା௩ ୱ୧୬ ఈ ୱ୧୬ ఉ

ଵାೠഥೡ
೎మ

,  (153) 

ଷݑ = ௨ഥయା௩ ୡ୭ୱ ఈ

ଵାೠഥೡ
೎మ

.  (154) 

In the inertial frame K, the total resultant 
linear momentum of the particle along the radial 
line [see also Eq. (131)] is given by the relation: 

݌ = ݑ݉ = ௠బ௨

ටଵିೠమ

೎మ

,  

And total energy is defined by the relation: 

ܧ = ݉ܿଶ = ௠బ௖మ

ටଵିೠమ

೎మ

,  

The corresponding quantities in frame K' are 
defined as: 

̅݌ = ഥ݉ݑത = ௠బ௨ഥ

ටଵିೠഥమ

೎మ

,  (155) 

തܧ = ഥ݉ܿଶ = ௠బ௖మ

ටଵିೠഥమ

೎మ

,  (156) 

From Eq. (147), the velocity transformation 
formula along the radial line is given by the 
equation: 

തݑ = ௨ି௩
ଵିೠೡ

೎మ
,  (157) 

௨ഥమ

௖మ =
ቀೠ

೎ ିೡ
೎ቁ

మ

ቀଵିೠೡ
೎మቁ

మ,  

1 − ௨ഥమ

௖మ =
ቀଵିೠೡ

೎మቁ
మ

ିቀೠ
೎ ିೡ

೎ቁ
మ

ቀଵିೠೡ
೎మ ቁ

మ =
ଵାೠమೡమ

೎ర ିೠమ

೎మ ିೡమ

೎మ

ቀଵିೠೡ
೎మ ቁ

మ ,  

1 − ௨ഥమ

௖మ =
൬ଵିೠమ

೎మ ൰ିೡమ

೎మ൬ଵିೠమ

೎మ ൰

ቀଵିೠೡ
೎మቁ

మ =
൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰

ቀଵିೠೡ
೎మ ቁ

మ ,  

ට1 − ௨ഥమ

௖మ =
ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰

ଵିೠೡ
೎మ

,  (158) 

Substituting this value in Eq. (155) and also 
using Eq. (157), one obtains 

̅݌ = ௠బ௨ഥ

ටଵିೠഥమ

೎మ

=
௠బ௨ഥቀଵିೠೡ

೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

̅݌ = ௠బ(௨ି௩)
ଵିೠೡ

೎మ
×

ቀଵିೠೡ
೎మቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

̅݌ = ௠బ

ටଵିೠమ

೎మ

× (௨ି௩)

ටଵିೡమ

೎మ

= ௠௨ି௠௩

ටଵିೡమ

೎మ

,  

But, ݌ = ݉ and ݑ݉ = ா
௖మ. Hence, 

̅݌ =
௣ିಶೡ

೎మ

ටଵିೡమ

೎మ

= ߛ ቀ݌ − ா௩
௖మቁ,  (159) 

Now, from Eqs. (156) and (158) we get: 
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തܧ = ௠బ௖మ

ටଵିೠഥమ

೎మ

=
௠బ௖మቀଵିೠೡ

೎మቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

തܧ = ௠బ

ටଵିೠమ

೎మ

× ൫௖మି௨௩൯

ටଵିೡమ

೎మ

= ଶܿ݉)ߛ −   ,(ݒݑ݉

തܧ = ܧ)ߛ −  (160)  .(ݒ݌

Similarly, one has the inverse relations: 

݌ = ߛ ቀ̅݌ + ாത௩
௖మ ቁ,  (161) 

ܧ = തܧ)ߛ +  (162)  .(ݒ̅݌

Equations (159) and (161) represent the 
transformation of total resultant linear 
momentum along the radial line. Now we wish 
to determine the transformation equations for the 
X-, Y-, and Z-components of linear momentum. 
The components of momentum along the X-, Y-, 
and Z-directions in frame S are defined by the 
relations [see also Eq. (131)]: 

ଵ݌ = ଵݑ݉ = ௠బ௨భ

ටଵିೠమ

೎మ

,  (163) 

ଶ݌ = ଶݑ݉ = ௠బ௨భ

ටଵିೠమ

೎మ

,  (164) 

ଶ݌ = ଶݑ݉ = ௠బ௨భ

ටଵିೠమ

೎మ

.  (165) 

The corresponding quantities in frame K' are 
defined as [see also Eq. (137)]: 

ଵതതത݌ = ഥ݉ݑଵതതത = ௠బ௨భതതതത

ටଵିೠഥమ

೎మ

,  (166) 

ଶതതത݌ = ഥ݉ݑଶതതത = ௠బ௨మതതതത

ටଵିೠഥమ

೎మ

,  (167) 

ଷതതത݌ = ഥ݉ݑଷതതത = ௠బ௨యതതതത

ටଵିೠഥమ

೎మ

.  (168) 

Substituting Eqs. (148) and (158) into Eq. 
(166), one obtains 

ଵതതത݌ = ௠బ௨భതതതത

ටଵିೠഥమ

೎మ

=
௠బ௨భതതതതቀଵିೠೡ

೎మቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଵതതത݌ = ௠బ(௨భି௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ)
ଵିೠೡ

೎మ
×

ቀଵିೠೡ
೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଵതതത݌ = ௠బ

ටଵିೠమ

೎మ

× (௨భି௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ටଵିೡమ

೎మ

=

௠௨భି௠௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೡమ

೎మ

,  

ଵതതത݌ =
௣భିಶೡ ౩౟౤ ഀ ౙ౥౩ ഁ

೎మ

ටଵିೡమ

೎మ

= ߛ ቀ݌ଵ − ா௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖మ ቁ.  

(169) 

Similarly, substituting Eqs. (149) and (158) 
into Eqs (167), one obtains 

ଶതതത݌ = ௠బ௨మതതതത

ටଵିೠഥమ

೎మ

=
௠బ௨మതതതതቀଵିೠೡ

೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଶതതത݌ = ௠బ(௨మି௩ ୱ୧୬ ఈ ୱ୧୬ ఉ)
ଵିೠೡ

೎మ
×

ቀଵିೠೡ
೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଶതതത݌ = ௠బ

ටଵିೠమ

೎మ

× (௨మି௩ ୱ୧୬ ఈ ୱ୧୬ ఉ)

ටଵିೡమ

೎మ

=

௠௨మି௠௩ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೡమ

೎మ

,  

ଶതതത݌ =
௣మିಶೡ ౩౟౤ ഀ ౩౟౤ ഁ

೎మ

ටଵିೡమ

೎మ

= ߛ ቀ݌ଶ − ா௩ ୱ୧୬ ఈ ୱ୧୬ ఉ
௖మ ቁ.  

(170) 

Similarly, substituting Eqs. (150) and (158) 
into Eq. (168), one obtains 

ଷതതത݌ = ௠బ௨యതതതത

ටଵିೠഥమ

೎మ

=
௠బ௨యതതതതቀଵିೠೡ

೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଷതതത݌ = ௠బ(௨యି௩ ୡ୭ୱ ఈ)
ଵିೠೡ

೎మ
×

ቀଵିೠೡ
೎మ ቁ

ට൬ଵିೠమ

೎మ ൰൬ଵିೡమ

೎మ൰
,  

ଷതതത݌ = ௠బ

ටଵିೠమ

೎మ

× (௨యି௩ ୡ୭ୱ ఈ)

ටଵିೡమ

೎మ

= ௠௨యି௠௩ ୡ୭ୱ ఈ

ටଵିೡమ

೎మ

,  

ଷതതത݌ =
௣యିಶೡ ౙ౥౩ ഀ

೎మ

ටଵିೡమ

೎మ

= ߛ ቀ݌ଷ − ா௩ ୡ୭ୱ ఈ
௖మ ቁ.  (171) 

Equations (169), (170), and (171) represent 
the relativistic momentum transformation 
formulas for the X-, Y-, and Z-components, 
respectively. The respective inverse momentum 
transformation equations along the X-, Y-, and 
Z-axes are obtained by interchanging the 
coordinates and replacing ݒ with −ݒ in Eqs. 
(169)-(171). These inverse transformations take 
the following forms: 

ଵ݌ = ߛ ቀ݌ଵതതത + ாത௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖మ ቁ,  (172) 

ଶ݌ = ߛ ቀ݌ଶതതത + ாത௩ ୱ୧୬ ఈ ୱ୧୬ ఉ
௖మ ቁ,  (173) 

ଷ݌ = ߛ ቀ݌ଷതതത + ாത௩ ୡ୭ୱ ఈ
௖మ ቁ.  (174) 
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These equations represent the transformation 
relations for the first three spatial components of 
the four-momentum vector (݌ଵ, ,ଶ݌ ,ଷ݌ ܧ݅ ܿ⁄ ) in 
ordinary four-dimensional Minkowski space. 
However, in the extended space–time continuum 
considered in this work, it will be shown in the 
derivation presented in the forthcoming Section 
3.6 that the time part of the momentum also 
yields three distinct components. This leads 
naturally to the concept of a six-momentum. The 
six-momentum vector thus defined has six 
components, of which the first three represent 
the spatial momenta (݌ଵ, ,ଶ݌  ଷ) i.e., momentum݌
components along the X, Y and Z-directions, 
while the remaining three represent the time 
components of momentum, which are of the 
following form (see the forthcoming Section 3.6 
for the explicit derivation): 

ସ݌ = ௜ா ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

, ହ݌ = ௜ா ୱ୧୬ ఈ ୱ୧୬ ఉ
௖

, ଺݌ = ௜ா ୡ୭ୱ ఈ
௖

,  
(175) 

These time components of the six-momentum 
are defined for the frame K; however, they must 
be defined for the frame K' in the following way 
(see the forthcoming Section 3.6 for the explicit 
derivation): 

ସ̅݌ = ௜ாത ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

, ହ̅݌ = ௜ாത ୱ୧୬ ఈ ୱ୧୬ ఉ
௖

, ଺̅݌ = ௜ாത ୡ୭ୱ ఈ
௖

.  
(176) 

Using Eq. (175) in Eqs. (169), (170), and 
(171), the following expressions are obtained 
with the factor ߩ = ݒ ܿ⁄ : 

ଵതതത݌ = ߛ ቀ݌ଵ − ߩ ா ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

ቁ = ߛ ቀ݌ଵ +

ߩ ௜మா ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

ቁ = ଵ݌)ߛ +  ସ),  (178)݌ߩ݅

ଶതതത݌ = ߛ ቀ݌ଶ − ߩ ா ୱ୧୬ ఈ ୱ୧୬ ఉ
௖

ቁ = ߛ ቀ݌ଶ +

ߩ ௜మா ୱ୧୬ ఈ ୱ୧୬ ఉ
௖

ቁ = ଶ݌)ߛ +  ହ),  (179)݌ߩ݅

ଷതതത݌ = ߛ ቀ݌ଷ − ߩ ா ୡ୭ୱ ఈ
௖

ቁ = ߛ ቀ݌ଷ + ߩ ௜మா ୡ୭ୱ ఈ
௖

ቁ =
ଷ݌)ߛ +  ଺).  (180)݌ߩ݅

Now, multiplying both sides of Eq. (160) by 
݅ sin ߙ cos ߚ ܿ⁄ , we get: 

തܧ = ܧ)ߛ −   ,(ݒ݌
௜ாത ୱ୧୬ ఈ ୡ୭ୱ ఉ

௖
= ߛ ቀ௜ா ୱ୧୬ ఈ ୡ୭ୱ ఉ

௖
− ௜௣௩ ୱ୧୬ ఈ ୡ୭ୱ ఉ

௖
ቁ,  

After the substitution of Eqs. (135), (175), 
and (176), the following is obtained with factor 
ߩ = ݒ ܿ⁄ :  

௜ாത ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

= ߛ ቀ௜ா ୱ୧୬ ఈ ୡ୭ୱ ఉ
௖

− ௜௩௣భ
௖

ቁ,  

ସ̅݌ = ସ݌)ߛ −  ଵ).  (181)݌ߩ݅

Similarly, let us multiply both sides of Eq. 
(160) by ݅ sin ߙ sin ߚ ܿ⁄  to get: 

തܧ = ܧ)ߛ −   ,(ݒ݌
௜ாത ୱ୧୬ ఈ ୱ୧୬ ఉ

௖
= ߛ ቀ௜ா ୱ୧୬ ఈ ୱ୧୬ ఉ

௖
− ௜௣௩ ୱ୧୬ ఈ ୱ୧୬ ఉ

௖
ቁ,  

After the substitution of Eqs. (135), (175), 
and (176), the following is obtained with factor 
ߩ = ݒ ܿ⁄ : 
௜ாത ୱ୧୬ ఈ ୱ୧୬ ఉ

௖
= ߛ ቀ௜ா ୱ୧୬ ఈ ୱ୧୬ ఉ

௖
− ௜௩௣మ

௖
ቁ,  

ହ̅݌ = ହ݌)ߛ −  ଶ).  (182)݌ߩ݅

Similarly, let us multiply both sides of Eq. 
(160) by ݅ cos ߙ ܿ⁄  to get: 

തܧ = ܧ)ߛ −   ,(ݒ݌
௜ாത ୡ୭ୱ ఈ

௖
= ߛ ቀ௜ா ୡ୭ୱ ఈ

௖
− ௜௣௩ ୡ୭ୱ ఈ

௖
ቁ,  

After the substitution of Eqs. (135), (175), 
and (176), the following is obtained with factor 
ߩ = ݒ ܿ⁄ : 
௜ாത ୡ୭ୱ ఈ

௖
= ߛ ቀ௜ா ୡ୭ୱ ఈ

௖
− ௜௩௣య

௖
ቁ,  

଺̅݌ = ଺݌)ߛ −  ଷ).  (183)݌ߩ݅

Equations (178)-(183) represent the Lorentz 
transformation equations for the six-momentum. 
These transformation relations have been 
obtained using the extended three-dimensional 
Lorentz transformation equations. The same six-
momentum transformation equations can also be 
derived directly by employing the matrix 
formulation of the three-dimensional Lorentz 
transformation, as discussed in the forthcoming 
Section 3.6. 

3.6 Six-Velocity and Six-momentum 

Based on the matrix form of the extended 
Lorentz transformation equations, namely Eq. 
(103), an event in the space-time continuum 
should be represented by six coordinates 
,ଵݔ) ,ଶݔ ,ଷݔ ସݔ , ,ହݔ  ଺), out of which the first threeݔ
represent the spatial coordinates and the last 
three represent the temporal coordinates. As a 
result of these six space-time coordinates, we 
need to extend the notion of the ordinary four-
vector analysis to a six-vector. Now, the 
components of the six-velocity in the rest frame 
K can be defined as: 
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௜ݓ = ௗ௫೔
ௗ௧బ

,  

where ݔ௜ = ,ଵݔ) ,ଶݔ ,ଷݔ ,ସݔ ହݔ ,  ଺) denote theݔ
space-time six-vector coordinates of a particle 
moving with velocity ݑ with respect to the rest 

frame K, and ݀ݐ଴ = ට1ݐ݀ − ௨మ

௖మ is the proper 
time. Now, the components of the six-velocity in 
the rest frame are: 

ଵݓ = ௗ௫భ
ௗ௧బ

= ௗ(௥ ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ௗ௧ටଵିೠమ

೎మ

= ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠమ

೎మ

ௗ௥
ௗ௧

=

௨ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠమ

೎మ

,  

ଶݓ = ௗ௫మ
ௗ௧బ

= ௗ(௥ ୱ୧୬ ఈ ୱ୧୬ ఉ)

ௗ௧ටଵିೠమ

೎మ

= ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠమ

೎మ

ௗ௥
ௗ௧

=

௨ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠమ

೎మ

,  

ଷݓ = ௗ௫య
ௗ௧బ

= ௗ(௥ ୡ୭ୱ ఈ)

ௗ௧ටଵିೠమ

೎మ

= ୡ୭ୱ ఈ

ටଵିೠమ

೎మ

ௗ௥
ௗ௧

= ௨ ୡ୭ୱ ఈ

ටଵିೠమ

೎మ

,  

ସݓ = ௗ௫ర
ௗ௧బ

= ௗ(௜௖௧ ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ௗ௧ටଵିೠమ

೎మ

= ݅ܿ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠమ

೎మ

ௗ௧
ௗ௧

=

௜௖ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠమ

೎మ

,  

ହݓ = ௗ௫ఱ
ௗ௧బ

= ௗ(௜௖௧ ୱ୧୬ ఈ ୱ୧୬ ఉ)

ௗ௧ටଵିೠమ

೎మ

= ݅ܿ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠమ

೎మ

ௗ௧
ௗ௧

=

௜௖ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠమ

೎మ

,  

଺ݓ = ௗ௫ల
ௗ௧బ

= ௗ(௜௖௧ ୡ୭ୱ ఈ)

ௗ௧ටଵିೠమ

೎మ

= ݅ܿ ୡ୭ୱ ఈ

ටଵିೠమ

೎మ

ௗ௧
ௗ௧

= ௜௖ ୡ୭ୱ ఈ

ටଵିೠమ

೎మ

,  

The components of six-momentum can be 
defined as 

௜݌ = ݉଴ݓ௜ ,  

where ݉଴ is the rest mass, and ݓ௜ denotes the 
components of the six-velocity. Now, the 
components of the six-momentum are: 
ଵ݌ = ݉଴ݓଵ = ௠బ

ටଵିೠమ

೎మ

× ݑ sin ߙ cos ߚ =

ݑ݉ sin ߙ cos ߚ = ݌ sin ߙ cos   ,ߚ
ଶ݌ = ݉଴ݓଶ = ௠బ

ටଵିೠమ

೎మ

× ݑ sin ߙ sin ߚ =

ݑ݉ sin ߙ sin ߚ = ݌ sin ߙ sin   ,ߚ
ଷ݌ = ݉଴ݓଷ = ௠బ

ටଵିೠమ

೎మ

× ݑ cos ߙ = ݑ݉ cos ߙ =

݌ cos   ,ߙ

ସ݌ = ݉଴ݓସ = ௠బ

ටଵିೠమ

೎మ

× ݅ܿ sin ߙ cos ߚ =

݅݉ܿ sin ߙ cos ߚ = ௜ா
௖

sin ߙ cos   ,ߚ

ହ݌ = ݉଴ݓହ = ௠బ

ටଵିೠమ

೎మ

× ݅ܿ sin ߙ sin ߚ =

݅݉ܿ sin ߙ sin ߚ = ௜ா
௖

sin ߙ sin   ,ߚ

଺݌ = ݉଴ݓ଺ = ௠బ

ටଵିೠమ

೎మ

× ݅ܿ cos ߙ = ݅݉ܿ cos ߙ =

௜ா
௖

cos   ,ߙ

Thus, we can write the following expression 
of the six-momentum for the frame K. 
ଵ݌ = ݌ sin ߙ cos ߚ , ଶ݌ = ݌ sin ߙ sin ߚ , ଷ݌ = ݌ cos ߙ

ସ݌  = ௜ா
௖

sin ߙ cos ߚ , ହ݌ = ௜ா
௖

sin ߙ sin ߚ , ଺݌ = ௜ா
௖

cos   .ቋ ߙ

(184) 

These expressions represent the components 
of the six-momentum of a particle as measured 
in the rest frame K, relative to which the particle 
moves with velocity ݑ. Next, we aim to 
determine the six-momentum in the moving 
frame K', with respect to which the particle 
moves with velocity ݑത. The components of the 
six-velocity in frame K' can now be defined as 

ഥ௜ݓ = ௗ௫̅೔
ௗ௧బ

,  

where ̅ݔ௜ = ,ଵݔ̅) ,ଶݔ̅ ,ଷݔ̅ ,ସݔ̅ ,ହݔ̅  ଺) denote theݔ̅
space-time six-vector coordinates of a particle 
moving with velocity ݑത with respect to the 

moving frame K' and ݀ݐ଴ = ට1̅ݐ݀ − ௨ഥమ

௖మ be the 
proper time. Now, the components of the six-
velocity in the moving frame are: 

ഥଵݓ = ௗ௫̅భ
ௗ௧బ

= ௗ(௥̅ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠഥమ

೎మ

ௗ௥̅
ௗ௧̅ =

௨ഥ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠഥమ

೎మ

,  

ഥଶݓ = ௗ௫̅మ
ௗ௧బ

= ௗ(௥̅ ୱ୧୬ ఈ ୱ୧୬ ఉ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠഥమ

೎మ

ௗ௥̅
ௗ௧̅ =

௨ഥ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠഥమ

೎మ

,  

ഥଷݓ = ௗ௫̅య
ௗ௧బ

= ௗ(௥̅ ୡ୭ୱ ఈ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ୡ୭ୱ ఈ

ටଵିೠഥమ

೎మ

ௗ௥̅
ௗ௧̅ = ௨ഥ ୡ୭ୱ ఈ

ටଵିೠഥమ

೎మ

,  

ഥସݓ = ௗ௫̅ర
ௗ௧బ

= ௗ(௜௖௧̅ ୱ୧୬ ఈ ୡ୭ୱ ఉ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ݅ܿ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠഥమ

೎మ

ௗ௧̅
ௗ௧̅ =

௜௖ ୱ୧୬ ఈ ୡ୭ୱ ఉ

ටଵିೠഥమ

೎మ

,  
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ഥହݓ = ௗ௫̅ఱ
ௗ௧బ

= ௗ(௜௖௧̅ ୱ୧୬ ఈ ୱ୧୬ ఉ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ݅ܿ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠഥమ

೎మ

ௗ௧̅
ௗ௧̅ =

௜௖ ୱ୧୬ ఈ ୱ୧୬ ఉ

ටଵିೠഥమ

೎మ

,  

ഥ଺ݓ = ௗ௫̅ల
ௗ௧బ

= ௗ(௜௖௧̅ ୡ୭ୱ ఈ)

ௗ௧̅ටଵିೠഥమ

೎మ

= ݅ܿ ୡ୭ୱ ఈ

ටଵିೠഥమ

೎మ

ௗ௧̅
ௗ௧̅ =

௜௖ ୡ୭ୱ ఈ

ටଵିೠഥమ

೎మ

,  

The components of the six-momentum in the 
moving frame K' can be defined as 

௜̅݌ = ݉଴ݓഥ௜ ,  

where ݉଴ is the rest mass, and ݓഥ௜ denotes the 
components of the six-velocity in frame K'. 
Now, the components of the six-momentum are: 
ଵ̅݌ = ݉଴ݓഥଵ = ௠బ

ටଵିೠഥమ

೎మ

× തݑ sin ߙ cos ߚ =

ഥ݉ݑത sin ߙ cos ߚ = ̅݌ sin ߙ cos   ,ߚ
ଶ̅݌ = ݉଴ݓഥଶ = ௠బ

ටଵିೠഥమ

೎మ

× തݑ sin ߙ sin ߚ =

ഥ݉ݑത sin ߙ sin ߚ = ̅݌ sin ߙ sin   ,ߚ
ଷ̅݌ = ݉଴ݓഥଷ = ௠బ

ටଵିೠഥమ

೎మ

× തݑ cos ߙ = ഥ݉ݑത cos ߙ =

̅݌ cos   ,ߙ
ସ̅݌ = ݉଴ݓഥସ = ௠బ

ටଵିೠഥమ

೎మ

× ݅ܿ sin ߙ cos ߚ =

݅ ഥ݉ܿ sin ߙ cos ߚ = ௜ாത
௖

sin ߙ cos   ,ߚ

ହ̅݌ = ݉଴ݓഥହ = ௠బ

ටଵିೠഥమ

೎మ

× ݅ܿ sin ߙ sin ߚ =

݅ ഥ݉ܿ sin ߙ sin ߚ = ௜ாത
௖

sin ߙ sin   ,ߚ

଺̅݌ = ݉଴ݓഥ଺ = ௠బ

ටଵିೠഥమ

೎మ

× ݅ܿ cos ߙ = ݅ ഥ݉ܿ cos ߙ =

௜ாത
௖

cos   ,ߙ

Thus, we can write the following expression 
for the six-momentum in the frame K'. 

ଵ̅݌ = ̅݌ sin ߙ cos ߚ , ଶ̅݌ = ̅݌ sin ߙ sin ߚ , ଷ̅݌ = ̅݌ cos ߙ
ସ̅݌  = ௜ாത

௖
sin ߙ cos ߚ , ହ̅݌ = ௜ாത

௖
sin ߙ sin ߚ , ଺̅݌ = ௜ாത

௖
cos   .ቋ ߙ

(185) 

These expressions represent the components 
of the six-momentum of a particle as measured 
in the moving frame K', relative to which the 
particle has velocity ݑത. The transformation of 
this six-momentum from frame K to K' follows 
the same rules as the transformation of space-
time coordinates, as discussed in Eq. (103). 
Hence, based on the transformation in Eq. (103), 
the six-momentum transforms as: 

⎣
⎢
⎢
⎢
⎢
⎡
ଵ̅݌
ଶ̅݌
ଷ̅݌
ସ̅݌
ହ̅݌
⎦଺̅݌

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

ߛ 0 0 ߛߩ݅ 0 0
0 ߛ 0 0 ߛߩ݅ 0
0 0 ߛ 0 0 ߛߩ݅

ߛߩ݅− 0 0 ߛ 0 0
0 ߛߩ݅− 0 0 ߛ 0
0 0 ߛߩ݅− 0 0 ߛ ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
ଵ݌
ଶ݌
ଷ݌
ସ݌
ହ݌
⎦଺݌

⎥
⎥
⎥
⎥
⎤

,  

Solution of the above matrix gives the 
following equations: 
ଵതതത݌ = ଵ݌)ߛ +   ,(ସ݌ߩ݅
ଶതതത݌ = ଶ݌)ߛ +   ,(ହ݌ߩ݅
ଷതതത݌ = ଷ݌)ߛ +   ,(଺݌ߩ݅
ସ̅݌ = ସ݌)ߛ −   ,(ଵ݌ߩ݅
ହ̅݌ = ହ݌)ߛ −   ,(ଶ݌ߩ݅
଺̅݌ = ଺݌)ߛ −   .(ଷ݌ߩ݅

These six transformation equations are 
identical to Eqs. (178)–(183) from Section 3.5. 
In Section 3.5, they were derived using the 
extended 3D Lorentz transformations; here, in 
Section 3.6, we obtain the same results directly 
using the matrix form of the 3D Lorentz 
transformation. An important property of a six-
vector is that the square of its magnitude remains 
invariant under Lorentz transformations. Now 
we wish to prove that the square of the length of 
the six-momentum is also invariant under the 
Lorentz transformation. In relativistic 
mechanics, it is well known that the quantity 
ଶ݌ − ଶܧ ܿଶ⁄  remains unchanged in any frame of 
reference, i.e., 

ଶ݌ − ாమ

௖మ = ଶ̅݌ − ாതమ

௖మ .  (186) 

Now from L.H.S. of Eq. (186), 

ଶ݌ − ாమ

௖మ = ଶ(sinଶ݌ ߙ + cosଶ (ߙ − ாమ

௖మ (sinଶ ߙ +
cosଶ   ,(ߙ

= ଶ[sinଶ݌ ߙ (cosଶ ߚ + sinଶ (ߚ + cosଶ [ߙ −
ாమ

௖మ [sinଶ ߙ (cosଶ ߚ + sinଶ (ߚ + cosଶ   ,[ߙ

= ݌) sin ߙ cos ଶ(ߚ + ݌) sin ߙ sin ଶ(ߚ +
݌) cos ଶ(ߙ + ቀ௜ா

௖
sin ߙ cos ቁߚ

ଶ
+

ቀ௜ா
௖

sin ߙ sin ቁߚ
ଶ

+ ቀ௜ா
௖

cos ቁߙ
ଶ

,  

After the substitution of Eq. (184), the 
following is obtained:  

ଶ݌ − ாమ

௖మ = ଶ(ଵ݌) + ଶ(ଶ݌) + ଶ(ଷ݌) + ଶ(ସ݌) +
ଶ(ହ݌) +  ଶ.  (187)(଺݌)

Similarly, from R.H.S. of Eq. (186), 
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ଶ̅݌ − ாതమ

௖మ = ଶ(sinଶ̅݌ ߙ + cosଶ (ߙ − ாതమ

௖మ (sinଶ ߙ +
cosଶ   ,(ߙ

= ଶ[sinଶ̅݌ ߙ (cosଶ ߚ + sinଶ (ߚ + cosଶ [ߙ −
ாതమ

௖మ [sinଶ ߙ (cosଶ ߚ + sinଶ (ߚ + cosଶ   ,[ߙ

= ̅݌) sin ߙ cos ଶ(ߚ + ̅݌) sin ߙ sin ଶ(ߚ +

̅݌) cos ଶ(ߙ + ቀ௜ாത
௖

sin ߙ cos ቁߚ
ଶ

+

ቀ௜ாത
௖

sin ߙ sin ቁߚ
ଶ

+ ቀ௜ாത
௖

cos ቁߙ
ଶ

,  

After the substitution of Eq. (185), the 
following is obtained:  

ଶ̅݌ − ாതమ

௖మ = ଶ(ଵ̅݌) + ଶ(ଶ̅݌) + ଶ(ଷ̅݌) + ଶ(ସ̅݌) +
ଶ(ହ̅݌) +  ଶ.  (188)(଺̅݌)

Now, after the substitution of Eqs. (187) and 
(188) into Eq. (186), the following is obtained:  

ଶ(ଵ݌) + ଶ(ଶ݌) + ଶ(ଷ݌) + ଶ(ସ݌) + ଶ(ହ݌) +
ଶ(଺݌) = ଶ(ଵ̅݌) + ଶ(ଶ̅݌) + ଶ(ଷ̅݌) + ଶ(ସ̅݌) +
ଶ(ହ̅݌) +   .ଶ(଺̅݌)
From the above expression, one can conclude 

that the square of the length of the six-
momentum vector remains unchanged in any 
frame of reference. 

4. Conclusion 
In this investigation, we have derived 

extended relativistic Lorentz transformation 
equations for three-dimensional motion between 
inertial frames of reference. Both polar and 
Cartesian coordinate systems were introduced to 
specify the position of a point in 3D space. The 
Lorentz transformation equations along the X-, 
Y-, and Z-directions were thoroughly obtained 
for the case where the relative motion between 
inertial frames occurs in three dimensions. To 
formulate the matrix representation of these 3D 
transformations, namely Eqs. (37), (39), (50), 
and (62), we first expressed the X-, Y-, and Z-
coordinates as given in Eqs. (81)-(83), which 
take the following form: 
ଵݔ = ݎ sin ߙ cos   ,ߚ
ଶݔ = ݎ sin ߙ sin   ,ߚ
ଷݔ = ݎ cos   .ߙ

In fact, these equations represent the 
components of the radius vector ݎ along the X-, 
Y-, and Z-directions. In the same way, we 
considered that the time coordinate ݅ܿݐ must 
have three components, like space coordinate ݎ 
has. For that, we have first analyzed invariance 
of the space-time interval equations along the  
X-, Y-, and Z-directions [see Eqs. (87)-(89)] and 
these invariance equations explicitly clarify that 
the temporal coordinate ݅ܿݐ has three 
components in following form [see Eqs. (90)-
(92)]: 
ସݔ = ݐܿ݅ sin ߙ cos   ,ߚ
ହݔ = ݐܿ݅ sin ߙ sin   ,ߚ
଺ݔ = ݐܿ݅ cos   .ߙ

Based on the concept of six-vectors, an event 
in the space-time continuum should be 
represented by six coordinates (ݔଵ, ,ଶݔ ,ଷݔ
,ସݔ ,ହݔ  ଺), of which the first three representݔ
spatial coordinates, and the last three represent 
temporal coordinates. Using these six-vectors, 
we obtained six new Lorentz transformation 
equations, including their 6 × 6 matrix form [see 
Eq. (103)]. Furthermore, the D’Alembert 
operator, the fundamental component of the 
wave equation, is shown to be form-invariant 
under these six Lorentz transformations [see Eq. 
(129)]. Correct transformation equations of 
linear momentum between inertial frames were 
also theoretically interpreted using the matrix 
form of the six-vector Lorentz transformations, 
as discussed in Sections 3.5 and 3.6. To the best 
of our knowledge, this is the first study to 
formulate Lorentz transformation equations in 
terms of six-vectors. This work could serve as a 
milestone, providing a potential new framework 
to explore further consequences of relativistic 
mechanics using the obtained six-vector Lorentz 
transformations.  
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