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Abstract: This research examines various types of orbits around Mars. The effects of 
Mars's non-spherical shape, atmospheric drag, and solar attraction on these orbits were 
included in the calculations. The objective was to determine the optimal orbital elements to 
obtain a stable orbit of a satellite around Mars. The values of angles w and Ω were taken as 
40° and 20°, respectively, while the orbit inclination was examined at three experimental 
values: i = 88°, 89°, and 90°. The perigee height above the Martian surface was assessed at 
three altitudes (hp = 50, 100, and 150 km) considering all perturbations except atmospheric 
drag. The orbital eccentricity was tested at values of e = 0.01, 0.02, 0.05, 0.08, and 0.1. The 
findings indicate that the most stable orbit was achieved with a low-altitude perigee (hp = 
50 km), low eccentricity (e = 0.05), and an inclination of i = 90o. 
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1. Introduction 

When a spacecraft moves around Mars, the 
perturbation forces must be accounted for. The 
most significant perturbation is due to the non-
spherical shape of Mars, which introduces 
periodic variations in the orbit. By applying 
relationships between Keplerian orbital elements 
and Cartesian coordinates, orbital perturbations 
in the position and velocity vectors can be 
measured [1]. 

Spacecraft exploring the solar system often orbit 
various planets before escaping and re-entering 
an orbit around Earth. These spacecraft are 
transferred to their targets and follow orbits 
around the Sun as they travel between planets. 
When a spacecraft is close to its target, the 
planet’s gravitational field deflects it into a 
modified orbit, causing it to either gain or lose 
energy. 

To enter an orbit around a planet, the 
spacecraft or satellite’s relative velocity must be 
reduced using a rocket when the satellite is near 

to its new orbit. This step allows the spacecraft 
to be captured into an elliptical orbit. Finally, to 
return to Earth, the spacecraft must gain enough 
momentum to complete the process in the 
opposite direction successfully [2].  

2. The Orbital Elements of the 
Elliptical Orbit 

An orbit is called an ellipse when its plane is 
inclined, and it is characterized by six orbital 
elements: semi-major axis (a), eccentricity (e),  
inclination (i), argument of perigee (w), right 
ascension of ascending node (Ω), and mean 
anomaly (M). To decrease the size of the transfer 
orbit and achieve a stable final orbit for a 
satellite around Mars, it is necessary to increase 
the height of the perigee (hp) while decreasing 
both the semi-major axis (a) and an eccentricity 
(e) [3]. 
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The inclination (i) is the angle between the 
orbital plane and the plane of the equator, 
calculated as: 

݅ = ଵି݊ܽݐ
ට௛ೣ

మା௛೤
మ

௛೥
            (1) 

The argument of perigee (w) is the angle 
between the ascending node and the perigee, 
calculated as: 

ݓ = ଵି݊ܽݐ ௭௛
௬௛ೣି௫௛೤

            (2) 

The right ascension of the ascending node 
(Ω) is the angle between the vernal equinox and 
the ascending node on the equatorial plain, 
calculated as: 

ߗ = −)ଵି݊ܽݐ ௛ೣ
௛೤

)           (3) 

Equations (1), (2), and (3), known as the 
Euler angles, describe the orbit’s direction in 

space. Here, hx, hy, and hz are the angular 
momentum components of x, y, and z directions, 
and h is given by: 

 ℎ = ටℎ௫
ଶ + ℎ௬

ଶ + ℎ௭
ଶ  

The mean anomaly (M) is calculated from 
perigee to the position of the satellite. It is 
defined as the fraction of an orbit period and is 
measured by the equation: 

ܯ = ܧ −  (4)            ܧ݊݅ݏ ݁

or 

ܯ = ݊൫ݐ −  ௣൯             (5)ݐ

where E is the eccentric anomaly, n is the mean 
motion, t is epoch time, and tp is the time at 
which the satellite passes the perigee point [3, 4]. 

 
FIG. 1. The orbital elements of a satellite during it is spin around a planet [5]. 

TABLE 1. The main six orbital elements and their coefficients for Mars orbit around the Sun for the 
year 1900 [6]. 

Orbital element a0 a1 a2 a3 

L 293.737334 +19141.69551 +0.0003107 --------- 
a 1.5236883 ----------- --------- --------- 
e 0.09331290 +0.000092064 - 0.000000077 --------- 
i 1.850333 -0.0006750 +0.0000126 --------- 
w 285.431761 +1.0697667 +0.0001313 +0.00000414 
Ω 48.786442 +0.7709917 -0.0000014 -0.00000533 

 

The orbital elements = a0+a1T+a2T2+a3T3        (6) 

where ܶ = ௃஽ିଶସଵହ଴ଶ଴.଴
ଷ଺ହଶହ

           (7) 

JD = INT(365.25 y) + INT(30.6001(m+1)) + 
DD.dd + 1720994.5 + B           (8) 

where Y, m, and DD.dd are the year, month, and 
day with time, respectively. B is the Gregorian 

correction on the date, where B = 0 before 
15/10/1582 AD. 

The longitude of the perihelion point (α) is 
calculated as: 

ߙ = ݓ +  (9)             ߗ

The mean anomaly of the planets is 
calculated as: 
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ܯ = ܮ − ݓ − Ω          (10) 

For the major axis: 
 2ܽ = ௣ݎ + ௔ݎ  

where rp is the perigee distance and, ra is the 
apogee distance, calculated as: 

௣ݎ = ܽ(1 − ݁)           (11) 

௔ݎ = ܽ(1 + ݁)           (12) 
TABLE 2. Mars Euler angles values for the year 2000 [6]. 

Euler angle a0 a1 a2 a3 

I 1.845113 -0.0081839 -0.00002305 -0.000000045 
W 285.597172 +0.7385934 +0.00046647 +0.000006962 
Ω 49.319212 -0.2940497 -0.00064435 -0.000008182 

 

3. Perturbation Forces 
3.1. Solar Radiation Pressure 

Solar radiation pressure is a force exerted on a 
satellite due to the momentum flux of sunlight 
reaching Mars. For most satellites, this force acts 
radially away from the Sun. The magnitude of 
the resulting acceleration on the satellite is given 
by: 

aୱ୰୮ = k ∗ p ∗ ቀ ୅
୫

ቁ ∗ (୰ౣ౗౨౩ି୰౩౗౪
ୖ౩౫౤షౣ౗౨౩

)        (13) 

where: 
 asrp is solar radiation pressure 

acceleration, 
 k is a constant = 1.3 and (p) is = 4.56 x 

10-6 , 
 A/m is a cross-sectional area of the 

satellite, 
 rmars is the Mars position, 
 rsat is the satellite position, 
 Rsun-mars is the distance between the Sun 

and Mars.  

In general, it is assumed that the sun-line a 
perpendicular to the cross-sectional area, 
because it is taken as the maximum cross-
sectional area to calculate the worst possible case 
[5]. 

3.2. Atmospheric Drag 

Assume that the cross-sectional area of the 
satellite (A/m) is perpendicular to its velocity 
vector, which maximizes the atmospheric drag 
force. By changing the satellite's orientation, we 
can adjust the atmospheric drag from zero to its 
maximum value. If we further assume that the 
only other force acting on the satellite is Mars's 
gravitational attraction, then as soon as the 
atmospheric drag on the satellite is set to zero, 
that satellite would rotate smoothly in an ideal 
Kepler orbit from its current position and 
velocity [7, 8]. 

The lower atmosphere of Mars extends from 
the planet's surface to about 7 km. Within this 
range, temperature (T) decreases linearly, and 
pressure (P) decreases exponentially. The 
relationships between T and P are as follows: 

If h ˂ 7 km, then, T = -31 – 0.000998 h, p = 
0.699 * ݁ି଴.଴଴଴଴ଽ ௛  

If h ˃ 7 km, then, T = - 23.4 – 0.00222 h, p = 
0.699 * ݁ି଴.଴଴଴଴ଽ ௛  

ρ = p / (0.1921 * (T + 273.1))         (17) 

where ρ is density [4, 7]. 

The perturbing acceleration of the satellite 
can be represented as:  

aDrag = - ଵ
ଶ

 Cୈ  ୅.
୫.

v୰ (୫ୟ୥) ߩ 
ଶ         (18) 

where v୰(୫ୟ୥) is the relative speed between the 
satellite and the atmosphere, Cୈ is the drag 
coefficient, and ߩ is the air density at the 
satellite’s altitude [9]. 

A precise prediction of the satellite motion 
under the influence of drag involves a good 
density model of the upper atmosphere. An 
empirical atmospheric density model is used for 
this purpose. The velocity of the satellite relative 
to the atmosphere is defined as [10]:  

v୰ = v୧୬ + r ×  w୉ୟ୰୲୦   
3.3. Planetary Oblateness  

Planetary oblateness is a measure of how 
much a planet is flattened by its rotation. It is a 
unitless magnitude.  

Several Martian satellites, such as MRO and 
MGS, are positioned in Sun-synchronous orbits 
(SSO). 

Recent studies suggest that to achieve a 
stable, Martian frozen orbit, the initial values of 
eccentricity (e) and the angle of ascending node 
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(ω) should be carefully chosen based on given 
values for the semi-major axis (a) and inclination 
(i). For Mars, the J2 = 1.9555 × 10−3, and J3= 
3.14498 × 10−5 [5-7]. 

The J2 perturbation, which affects satellite 
orbits in three Cartesian components, is 
calculated using the following equation: 

2ܬ = ቀ2 ఢಾ
ଷ

ቁ − (ோಾ
య ఠಾ

మ

ଷீெಾ
)          (19) 

where ɛM is Mars's oblateness, RM is Mars's 
mean equatorial radius, ωM is the Mars rotation 
rate, G is the universal gravitational constant, 
and MM is Mars’s mass. 
3.4. Solar Gravity 

The main external perturbations come from 
the Sun and the planet’s moons. In this study, we 
focused only on the Sun's gravitational effect, 
excluding the perturbation effects from Mars's 
moons. The satellite receives a stronger 
gravitational pull when it is closer to these 
external influences. The gravitational attraction 
exerted by the Sun on a satellite around Mars is 
denoted by the symbol (Mus) and is calculated 
using Newton’s universal law of gravitation [8]: 

(ݏݑܯ)ܨ = ܩ ∗ ெ∗௠
ோమ           (20) 

Mus = 1.6100839093*1021 N. 

4. Mars Coordinates from the Sun 
To determine the coordinates of Mars relative 

to the Sun, the following results can be obtained 
using a MATLAB program: 

l = 293.737334+19141.69551*T+0.0003107*T2  
(21) 

a = 1.5236883           (22) 

e = 0.0933129+0.000092064*T-0.000000077*T2  
(23) 

i = 1.857806-0.0081565 * T2 -0.00002304 * T2
2 

+ 0.000000044 * T2
3         (24) 

w = 285.762379 + 0.7387251 * T2 + 0.00046551 
* T2

2 + 0.000006939 * T2
3         (25) 

Ω = 49.852347 - 0.2941821 * T2 -0.00064344 * 
T2

2 - 0.000008159 * T2
3         (26) 

where ܶ = ௝ଷିଶସଵହ଴ଶ଴
ଷ଺ହଶହ

, ଶܶ = ௝ଷିଶସହଵହସହ.ହ
ଷ଺ହଶହ

, 
݆3 = ௝ଶା௧௣

ଶସ∗ଷ଺଴଴
, and j2 is Julian date. 

5. Practical Section and Discussion of 
Results 
5-1. For a proposed satellite orbit around Mars, 

we analyzed orbits over 2000 periods with 
initial orbital elements set to Ω = 20°, ω = 
40°, and i = 88°. Using eccentricity values e = 
0.01, 0.02, 0.05, 0.08, 0.1 and altitudes above 
Mars’s surface hp = 50, 100, and 150 km, we 
generated graphical data through MATLAB. 
Our analysis of these graphs identified that 
the most stable orbital configuration—
characterized by minimal variations in orbital 
elements—occurred at a low altitude of 50 
km from the Mars surface and with an 
eccentricity magnitude of 0.05, as shown in 
Fig. 2. 

Note that not all the obtained graphs were 
included because it is not possible to include all 
of them in this research. 
5-2. Further analysis was conducted using 

inclinations i = 89° and i = 90°  while 
maintaining Ω = 20° and ω = 40° for 2000 
periods. Eccentricities remained set to e = 
0.01, 0.02, 0.05, 0.08, 0.1, and satellite 
altitudes above Mars were hp = 50, 100, and 
150 km. By observing and comparing 
graphical outputs for each configuration, it 
was evident that the optimal stability was 
achieved with I = 90°, an altitude of 50 km, 
and an eccentricity of 0.05, as illustrated in 
Figs. 3-10. 



Calculation the Low Orbits and More Stable for a Satellite around Mars 

 415

 
FIG. 2. The orbital elements of the satellite orbit around Mars at (e=0.05, hp=50km, i=88) for 2000 periods i=88 

deg. 

 
FIG. 3. The orbital elements of the satellite orbit around Mars at (e = 0.01, hp = 50 km, i = 90) for 2000 periods. 
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FIG. 4. The orbital elements of the satellite orbit around Mars at (e = 0.02, hp = 50 km, i = 90) for 2000 periods. 

 
FIG. 5. The orbital elements of the satellite orbit around Mars at (e = 0.05, hp = 50 km, i = 90) for 2000 periods. 
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FIG. 6. The orbital elements of the satellite orbit around Mars at (e = 0.08, hp = 50 km, i = 90) for 2000 periods. 

 
FIG. 7. The orbital elements of the satellite orbit around Mars at (e = 0.1, hp = 50 km, i = 90) for 2000 periods. 
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FIG. 8. The orbital elements of the satellite orbit around Mars at (e = 0.01, hp = 100 km, i = 90) for 2000 

periods. 

 
FIG. 9. The orbital elements of the satellite orbit around Mars at (e = 0.02, hp = 100 km, i = 90) for 2000 

periods. 



Calculation the Low Orbits and More Stable for a Satellite around Mars 

 419

 
FIG. 10. The orbital elements of the satellite orbit around Mars at (e = 0.05, hp = 100 km, i = 90) for 2000 

periods. 

 
FIG. 11 The orbital elements of the satellite orbit around Mars at (e = 0.1, hp = 100 km, i = 90) for 2000 periods. 
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FIG. 12. The orbital elements of the satellite orbit around Mars at (e = 0.01, hp = 150 km) for 2000 periods. 

 
FIG. 13. The orbital elements of the satellite orbit around Mars at (e = 0.02, hp = 150 km, i = 90) for 2000 

periods. 
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FIG. 14. The orbital elements of the satellite orbit around Mars at (e = 0.05, hp = 150 km, i = 90) for 2000 

periods. 

 
FIG. 15. The orbital elements of the satellite orbit around Mars at (e = 0.1, hp = 150 km, i = 90) for 2000 

periods. 
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