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Abstract: This work presents an exact analytical solution for the Schrödinger equation 
with the Woods-Saxon potential. To achieve this, the factorization method is utilized with 
the Pekeris approximation applied to the centrifugal potential for arbitrary ݈ states. The 
resulting solution provides both the wave functions of the potential expressed in the 
hypergeometric function and the energy eigenvalues. Additionally, the study calculates the 
thermodynamic properties of the Woods-Saxon potential in its classical limit, including the 
vibrational partition function, mean vibrational energy, vibrational specific heat, vibrational 
mean free energy, and vibrational entropy. 
Keywords: Woods-Saxon Potential, Schrodinger equation, Thermodynamic properties, 

Factorization method.  
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Introduction 

The Schrödinger equation is a crucial tool for 
investigating quantum mechanical systems and 
making predictions. Since it encodes all the 
necessary information about these systems, 
particularly in physics and chemistry, its solution 
has attracted considerable interest [1, 2, 3, 4]. 
However, exact solutions are only feasible for a 
small number of potentials, prompting the 
development of approximation methods for 
tackling complex cases, such as those involving 
arbitrary angular momentum quantum numbers 
݈. Several such methods have been proposed, 
including the factorization method [5, 6], the 
asymptotic iteration method [7, 8, 9], the super-
symmetric quantum mechanics approach [10, 
11], the Nikiforov-Uvarov method, and the 
factorization method [12]. The factorization 

method involves transforming a second-order 
homogeneous linear differential equation into a 
hypergeometric equation using appropriate 
transformations. In this study, we employ the 
factorization method to determine the 
nonrelativistic energy states of the standard 
Woods-Saxon potential [13]. 

The Woods-Saxon potential is a widely used 
short-range potential in nuclear, particle, and 
atomic physics that has contributed significantly 
to the field’s development over the past several 
decades. This potential has been instrumental in 
the understanding of numerous experimental 
observations, including proton scattering and 
neutron interactions with heavy nuclei. 
Additionally, it is a popular model for systems of 
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confined particles within a potential well 
enclosed by a potential barrier, such as protons 
and neutrons in atomic nuclei, electrons in 
metals, and nuclear fusion and fission. 
Researchers have shown considerable interest in 
solving the Schrödinger equation for the Woods-
Saxon potential, with numerous studies 
conducted to determine the associated wave 
function and energy states [7, 9, 13, 14, 15, 16, 
17, 18, 19, 20,21]. Studying thermodynamic 
functions has also garnered much attention in the 
last few decades, with researchers utilizing 
various methods to evaluate the thermodynamic 
properties of physical systems under different 
potentials [22, 23, 24]. 

This paper focuses on the study of the 
Schrödinger equation with the Woods-Saxon 
potential, specifically for an arbitrary angular 
momentum quantum number ݈, using the 
factorization method. The aim is to obtain 
energy levels and wave functions and 
subsequently apply the canonical partition 
function in the classical limit to analyze the 
thermodynamic properties of nonrelativistic 
particles. The paper is organized into several 
sections. Section I provides an introduction to 
the topic. Section II presents the energy states 
and wave function of the Woods-Saxon 
potential. Section III covers the thermodynamic 
properties of the potential, including free energy, 
specific heat, mean energy, and entropy. The 
discussion and conclusion of the paper are 
presented in Sections IV and V, respectively. 

Energy States and Wave Function of 
Woods-Saxon Potential 

The standard Woods-Saxon potential [1] is 
defined as: 

(ݎ)ܸ = − ௏బ

ଵାexp(ೝషೃబ
ೌ )

, ܽ ≪ ܴ଴ .           (1)  

Here, ଴ܸ represents the potential well depth,  ܽ is 
the surface thickness of the nucleus, and ܴ଴ is 
the nuclear radius. 

The radial part of the Schrodinger equation is: 
ௗమట(௥)

ௗ௥మ + ଶ௠
ℏమ ௡௟ܧ] − (ݎ)ܸ − ௟(௟ାଵ)ℏమ

ଶ௠௥మ (ݎ)߰[ = 0 (2) 

By substituting the Woods-Saxon potential, 
the Schrodinger equation becomes: 
ௗమట(௥)

ௗ௥మ + ଶ௠
ℏమ ௡௟ܧ] + ௏బ

ଵାexp(ೝషೃబ
ೌ )

− ௟(௟ାଵ)ℏమ

ଶ௠௥మ (ݎ)߰[ =

0              (3) 

The equation cannot be analytically solved 
for ݈ ≠ 0, leading to the use of the Pekeris 
approximation to address this limitation. This 
approach enables the expression of the 
centrifugal term as: 
௟(௟ାଵ)ℏ
ଶ௠௥మ = ଴ܵ]ߙ + ௌభ

ଵା௘௫௣(ೝషೃబ
ೌ )

+ ௌభ

(ଵା௘௫௣(ೝషೃబ
ೌ ))మ

],  

(4) 
where 
௟(௟ାଵ)ℏ
ଶ௠ோబ

మ =  (5)             ߙ

By using Taylor expansion around ݎ = ܴ଴, 
the values of ܵ଴, ଵܵ, and ܵଶ are found to be: 

ܵ଴ = 1 − ସ௔
ோబ

+ ଵଶ௔మ

ோబ
మ

ଵܵ = ଼௔
ோబ

− ସ଼௔మ

ோబ
మ

ܵଶ = ସ଼௔మ

ோబ
మ ⎭

⎪
⎬

⎪
⎫

            (6) 

The solution presented in this study focuses 
on the point where the Woods-Saxon potential 
weakens and higher-order terms are not 
considered. The Woods-Saxon potential has a 
short range, which means that the expansion 
presented above is applicable only to low-energy 
states. With this in mind, Eq. (3) can be written 
as: 

(ݖ)″߰ + [ଵିଶ௭]
[௭(ଵି௭)]

(ݖ)′߰ + ఢమାఞమ௭ିఊమ௭మ

௭(௭ିଵ)మ (ݖ)߰ = 0  
(7) 

Here, we insert the Pekeris approximation 
into the equation and we change the variables 
ݎ →  by applying the mapping function ݖ

ݖ = (1 + ݁
ೝషೃబ

ೌ )ିଵ. The parameters ߳,߯, and ߛ 
are defined as: 

߳ଶ = ଶ௠௔మ

ℏమ ௡௟ܧ] − [଴ܵߙ

߯ଶ = ଶ௠௔మ

ℏమ [ ଴ܸ − ߙ ଵܵ]

ଶߛ = ଶ௠௔మఈௌమ
ℏమ ⎭

⎪
⎬

⎪
⎫

           (8) 

By using the boundary conditions of the wave 
functions ߰(ݖ), we obtain: 
(ݖ)߰ → 0  when  ݖ → 1
(ݖ)߰ → 0  when  ݖ → 0ൠ          (9) 

Thus, we can write the wave function as: 

(ݖ)߰ = ఓ(1ݖ −  (10)         (ݖ)థ݂(ݖ

By substituting Eq. (10) into Eq. (7), we 
obtain the following equation: 
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1)ݖ − (ݖ)″݂(ݖ + [1 + ߤ2 − ߤ2) + 2߶ +
(ݖ)′݂[ݖ(2 − ߤ)] + ߶)ଶ + ߤ) + ߶) −
(ݖ)݂[ଶߛ + [ିఢమାఓమ

௭(ଵି௭)
+ థమିఓమାఞమିఊమ

ଵି௭
(ݖ)݂[ = 0  

(11) 
Equation (10) becomes a Gauss 

hypergeometric equation if and only the 
following equations vanish: 

−߳ଶ + ଶߤ = 0 and ߶ଶ − ଶߤ + ߯ଶ − ଶߛ = 0  (12) 

Equation (11) becomes: 

1)ݖ − (ݖ)″݂(ݖ + [1 + ߤ2 − ߤ2) + 2߶ +

(ݖ)′݂[ݖ(2 − ߤ)] + ߶ + ଵ
ଶ

+ ටଵ
ସ

+ ߤ))(ଶߛ +

߶ + ଵ
ଶ

− ටଵ
ସ

+ (ݖ)݂[(ଶߛ = 0         (13) 

Equation (13) is compared with the 
hypergeometric differential equation which has 
the following form: 

1)ݖ − (ݖ)″݂(ݖ + [ܿ − (ܽ + ܾ + (ݖ)′݂[ݖ(1 −
(ݖ)݂ܾܽ = 0           (14) 

We find that: 

ܽ = ߤ + ߶ + ଵ
ଶ

+ ටଵ
ସ

+ ଶߛ

ܾ = ߤ + ߶ + ଵ
ଶ

− ටଵ
ସ

+ ଶߛ

ܿ = 1 + ߤ2 ⎭
⎪
⎬

⎪
⎫

         (15) 

With the help of the Gauss hypergeometric 
function, a solution to Eq. (14) is given by: 

(ݖ)݂ = 2 ,ܽ)ଵܨ ܾ; ܿ; (ݖ = ௰(௖)
௰(௔)௰(௕)

        (16) 

By substituting Eqs. (15) and (16) into Eq. 
(10), the wave function becomes: 

(ݖ)߰ = ఓ(1ݖ − ଶ(ݖ
థܨଵ(ܽ, ܾ; ܿ;  (17)        (ݖ

The hypergeometric function appearing in 
Eq. (16) can be reduced into a polynomial of 
degree ݊ when either ܽ or ܾ equals a negative 
integer −݊. Under this condition, the wave 
function can asymptotically vanish. 

ߤ + ߶ + ଵ
ଶ

+ ටଵ
ସ

+ ଶߛ = −݊

ߤ + ߶ + ଵ
ଶ

− ටଵ
ସ

+ ଶߛ = −݊⎭
⎬

⎫
         (18) 

By using Eqs. (12) and (18), one can find the 
non-relativistic energy spectrum as: 

௡௟ܧ = ିℏమ

ଶ௠௔మ [(ఠି௡)
ଶ

− (ఊమିఞమ)
ଶ(ఠି௡)

]ଶ +  ଴        (19)ܵߙ

where 

߱ = ((ටଵ
ସ

+ ଶߛ − ଵ
ଶ
)          (20) 

Using Eqs. (8) and (9), one can get: 

߳ = ଵ
ଶ

[(߱ − ݊) + ఊమିఞ
(ఠି௡)

]         (21) 

Since for the bound states (߳ > 0), one can 
get that (߱ − ݊) > 0 and ߱ ≠ ݊. Here, the index 
݊ is a non-negative integer and describes the 
quantization of the bound states and the energy 
spectrum. This result shows a perfect agreement 
with previous results  

 
FIG. 1. Energy states (eV) versus radial quantum number (݊) for different values of ݈. 
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Thermodynamic Properties 
For studying the thermodynamic properties of 

the Woods-Saxon potential, we first obtain the 
vibrational partition function which is defined 
as: 

ܼ௩௜௕(ߚ) = ∑ ݁ିఉா೙೗ఒ
௡ୀ଴          (22) 

where ߚ = 1/݇௕ܶ, ݇௕ is the Boltzmann constant, 
and ߣ is the upper-bound vibrational quantum 
number. At high temperature ܶ (classical limit) 
the sum can be converted to an integral. By 
substituting the energy state, one can find: 

ܼ௩௜௕(ߚ) = ∫ ݁ିఉா೙೗ఒ
଴ ݀݊ =

ଵ
ଶ ඥܾߚ ൭2√ߨ ൬erfi ൬ඥ௕ఉ

ఒ
൰ + 1൰ −

ଶఒ௘
್ഁ
ഊమ

ඥ௕ఉ
൱ ݁ఉ൫௖ା௉(ఠି௡)మ൯         (23) 

where: 

erfi(ݔ) = erf(x)
௜

= ଶ
గ ∫ ݁௧మ௫

଴  (24)         ݐ݀

 
FIG. 2. Vibrational partition function ܼ versus ଵ

ఉ
. 

Having determined the vibrational partition 
function, we can easily obtain the 
thermodynamic properties for the Woods-Saxon 
as follows: 

1. The Vibrational Mean Energy ܷ: 

(ߚ)ܷ = − డ
డఉ

lnܼ௩௜௕(ߚ)          (25)  

After substituting Eq. (22) into Eq. (25), the 
vibrational mean energy will have the form: 

 (26) 
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  FIG. 3. Mean vibrational energy ܷ(ܿ݉ିଵ) versus ଵ

ఉ
 .ߣ for different values of (ܭ)

2. Mean Free Energy ܨ: 

ܨ = − ଵ
ఉ

lnܼ௩௜௕(ߚ) = −
logቌభ

మඥ௕ఉቌଶ√గ൬erfi൬ඥ್ഁ
ഊ ൰ାଵ൰ିమഊ೐

್ഁ
ഊమ

ඥ್ഁ
ቍ௘ഁ൫೎శು(ഘష೙)మ൯ቍ

ఉ
                        (27) 

   
  FIG. 4. Mean vibrational free energy ܨ(ܿ݉ିଵ) versus ଵ

ఉ
 .ߣ for different values of (ܭ)

3. Vibrational Specific Heat ܥ: 
ܥ = ଶߚ௕ܭ− డ

డఉ
ܷ  
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(28) 

 
  FIG. 5. Vibrational specific heat capacity ܥ(ܿ݉ିଵିܭଵ) versus ଵ

ఉ
 .ߣ for different values of (ܭ)

4. The Vibrational Entropy ܵ: 

 
(29) 
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  FIG. 6. Vibrational entropy ܵ(ܿ݉ିଵିܭଵ) versus ଵ

ఉ
 .ߣ for different values of (ܭ)

The study focused on the Woods-Saxon 
potential, with energy states calculated first, 
followed by the determination of the vibrational 
partition function at high temperatures. From 
this, various thermodynamic properties were 
derived using specific values for parameters 
including ℏ = 6.582119 × 10 16 ܸ݁. ௕݇ ,ݏ =
8.6177 × 10ିହ ௘௏

௄
, ݉ = ଴ܸ ,ݑ51ܽ݉ =

ܴ ,ݒ݁ܯ2300 = 1.285݂݉, 1ܿ݉ = 1.2398 ×
10ିସܸ݁, and ܽ = 0.65݂݉. Figure 1 displays the 
relationship between energy states and 
temperature for different ݈ values. This figure 
illustrates that the energy spectrum approaches 
zero as ݊ values increase. The second figure, 
labeled as Fig. 2, demonstrates that the 
vibrational partition function of the Woods-
Saxon potential drps considerably after ଵ

ఉ
= 1 ×

10଼ for all values of ߣ. This partition function 
serves as a foundation for evaluating a range of 
thermodynamic properties. Another figure, 
Fig. 3, displays the alteration of the vibrational 
free energy of the Woods-Saxon potential. 
Additionally, the internal energy of the potential 
is linear across all ߣ values until ଵ

ఉ
= 4 × 10଻, 

which matches the vibrational specific heat 
capacity in Fig. 5. In Fig. 4, the vibrational mean 

free energy decreases with temperature until it 
reaches a minimum value. Figure 5 shows that 
the vibrational specific heat capacity rises as 
temperature increases until it reaches a peak and 
then has a concave ascent until it reaches 
saturation. Finally, Fig. 6 displays the vibrational 
entropy for the Woods-Saxon potential. At low 
temperatures, the entropy is small, but it 
approaches infinity at very high temperatures. 

Conclusion 
Using the factorization method, the 

Schrödinger equation for the standard Woods-
Saxon potential was solved, yielding eigenvalues 
and corresponding eigenfunctions in terms of 
hypergeometric functions. The results were 
found to agree perfectly with previous studies. In 
addition, the thermodynamic properties of the 
system were analyzed, including vibrational 
mean energy, vibrational free energy, vibrational 
specific heat capacity, and vibrational entropy. 
These properties were determined using the 
high-temperature vibrational partition function 
and were obtained within the classical limit. The 
behaviors of all the thermodynamic functions are 
presented through various plots. 
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