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Abstract: In this study, the solution of the deformed Klein-Gordon and deformed 
Schrödinger equations (DKGE and DSE for short) for the modified Eckart potential plus a 
new modified deformed Hylleraas potential (MEPNMDHP, for short) with the improved 
approximation to deal with the centrifugal term is investigated using Bopp’s shift and 
standard perturbation theory methods in the symmetries of relativistic noncommutative 
quantum mechanics RNCQM and nonrelativistic noncommutative quantum mechanics 
NRNCQM. To the best of our knowledge, this problem is examined in literature in usual 
RQM and NRQM. The new potential suggested describes some selected diatomic 
molecules such as the homogeneous diatomic molecules (N2 and H2) and heterogeneous 
diatomic molecules (HCl, HBr, SO, NO, and HI). The new values that we get appeared 
sensitive to the quantum numbers (݆, ,ݏ ݉) in addition to the usual states’ numbers (݊, ݈), 
the potential depths of the potential ( ଴ܸ, ଵܸ, ଶܸ), the range of the potential ߙ and 
noncommutativity parameters (߆, ,ߪ ߯). We have highlighted three physical phenomena 
that automatically generate a result of the topological properties of non-commutativity. The 
first physical phenomenon is the perturbative spin-orbit coupling, the second is the 
magnetic induction, and the third is the rotational proper phenomenon. In both relativistic 
and nonrelativistic problems, we show that the corrections on the spectrum energy are 
smaller than the main energy in the ordinary cases of quantum field theory and quantum 
mechanics. In the new symmetries of NCQM, it is not possible to get the exact analytical 
solutions for ݈ = 0 and ݈ ≠ 0, so the approximate solutions are available. We have 
observed that the DKGE under the MEPNMDHP has a physical behavior similar to the 
Duffin-Kemmer equation that can describe the dynamic state of a particle with spin-1 in the 
symmetries of RNCQM. Four special cases; i.e., l wave is investigated in the context of 
DKGE and Schrödinger theories. The new relativistic and nonrelativistic energy for some 
potentials, such as only modified Eckart potential and only new modified Hylleraas 
potential, have also been obtained by varying some potential parameters. 

Keywords: Klein-Gordon equation, Schrödinger equation, Eckart potentials, Modified 
Hylleraas potential, Diatomic molecules, Noncommutative geometry, Star products, 
Bopp's shift method. 

PACs: 03.65. Ge; 03.65. Pm; 03.65.−w, 32.30 – r, 02.30. Gp. 
 

 
  



Article  Abdelmadjid Maireche 

 32

1. Introduction 
The nonrelativistic Schrödinger equation and 

relativistic Klein-Gordon equation (NRSE and 
RKGE, for short), which are described as 
particles at low and high energies, have attracted 
the interest of many researchers for many 
decades with various potentials because of their 
many applications in physical and chemical 
fields. The exact solutions of the two equations 
were achieved for the sake of a small number of 
potentials, some of which are mentioned by way 
of the example’s-harmonic oscillator and the 
hydrogen atom and in the case of approval of s-
wave (݈ = 0). Due to the great importance of 
exponential potential, it has received great 
interest from researchers in using various 
fundamental equations at all energy levels. The 
corresponding analytical solutions were not 
exact, but rather approximate in the case ݈ ≠ 0 
when the centrifugal term is present. Among the 
most widely used approximations for a short-
range potential is the Pekeris-type approximation 
introduced by Pekeris [1]. Also, Greene and 
Aldrich (1976) proposed another approximation 
[2]. 

In this paper, we propose the Eckart potential 
and modified Hylleraas potential as a new 
model, but in a large symmetry known by 
noncommutative quantum mechanics, which 
includes the usual quantum mechanics in 
nonrelativistic and relativistic regimes as 
particles' case when the noncommutativity 
parameters would vanish. It should be noted that 
in the literature, this type of potential has been 
treated in the case of NRSE and RKGE. 

The Eckart potential is considered among the 
most important potentials necessary to study 
molecules that are used very widely in physical 
chemistry and physics alike [3-5]. It was first 
studied by C. Eckart [6] in 1930. Due to the 
importance of wide applications of this potential, 
as previously indicated, a considerable number 
of researchers have devoted knowledge of it in 
both the nonrelativistic Schrödinger equation [7-
13] and relativistic Dirac equation [14-16] and 
KGE [17-18] within the two s and l waves. In 
2012, I.O. Akpan et al. processed the KGE under 
the influence of the modified Eckart potential 
and obtained the relative energy values and the 
corresponding wave function by using a newly 
improved approximation scheme [19]. Very 
recently, A. N. Ikot et al., by using the 
Nikiforov–Uvarov Functional analysis method, 

obtained a new approach for exponential-type 
potentials including the Eckart potential in the 
context of the Schrödinger equation [20]. 

On the other hand, the Hylleraas potential can 
be used to study diatomic molecules [21-24]. In 
2012, Ikot et al. [25] obtained exact solutions of 
the Klein–Gordon equation with Hylleraas 
potential. The modified Hylleraas potential was 
studied in the context of the Klein–Gordon 
equation and Dirac equation in Refs. [26-28]. 
Currently, the idea of combining more than two 
potentials has attracted the interest and study of 
researchers. This combination expands the 
application scope to include new fields. As a 
successful model for this combination, 
Hassanabadi et al. and Akpan et al. studied both 
the Eckart and the Hylleraas potentials, in the 
case of relativistic Klein-Gordon equation and 
nonrelativistic Schrodinger equation. This 
combination can be applied to different branches 
of physics, including molecular and atomic 
physics [29-30]. Here, we combine these 
interactions and explore the corresponding 
deformed Klein-Gordon and Schrödinger 
equations in the symmetries of RNCQM and 
NRNCQM. 

Noncommutative geometry is an old idea that 
has been extensively discussed in the literature. 
It has appeared since the beginning of quantum 
mechanics. There has been a growing interest in 
this subject since the discovery of string theory 
and the modified uncertainty principle. 
Moreover, noncommutativity is suggested as a 
consequence of the production of a quantum 
effect of gravity. It would provide a natural 
background for finding a suitable solution for a 
possible regularization of quantum field theories 
[31-43]. Thus, the topographical properties of 
the noncommutativity space-space and phase-
phase have a clear effect on the various physical 
properties of quantum systems and this has been 
a very interesting subject in many fields of 
physics. The idea of noncommutativity is very 
old; far too many papers have been written on 
the subject to mention and we have noticed that 
their number has increased dramatically very 
recently. Some of the more recent and interesting 
are listed in Refs. [44-61]. 

We have seen so far that most of the studies 
concerning equal scalar and vector Eckart 
potentials and modified Hylleraas potential were 
within the framework of ordinary quantum 
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mechanics. The above works motivated us to 
investigate the approximate solutions of the 3-
dimensional deformed Klein-Gordon equation 
and Schrödinger equation for MEPNMDHP 
offered in references [29-30] in RQM and 
NRQM. The potential focus of study and interest 
can be applied to some selected diatomic 
molecules, such as the homogeneous diatomic 
molecules (N2 and H2) and heterogeneous 
diatomic molecules (HCl, HBr, SO, NO, and HI) 
in RNCQM and NRNCQM symmetries [21-28].  

We hope to discover more investigations in 
the sub-atomic scales and from achieving more 
scientific knowledge of elementary particles in 
the field of nano-scale. The relativistic and 
nonrelativistic energy levels under the 
MEPNMDHP have not been obtained yet in the 
RNCQM and NRNCQM symmetries. Here, we 
hope to find new applications and profound 
physical interpretations using a new version 
model of this potential modeled in the new 
symmetries of NCQM as follows: 

௘ܸ௣(ݎ) = − ௏బ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ − ௏భ௘షమഀೝ

ଵି௘షమഀೝ + ௏మ௘షమഀ

(ଵି௘షమഀೝ)మ  

→ ௘ܸ௣(ݎ௡௖) ≡ ௘ܸ௣(ݎ) − డ௏೐೛(௥)
డ௥

ۺ
→

.દ
→

ଶ௥
+  (1)   ,(ଶ߆)ܱ

and  
ܵ௘௣(ݎ) = − ௌబ

௕
௔ି௘షమഀೝ

ଵି௘షమഀೝ − ௌభ௘షమഀೝ

ଵି௘షమഀೝ + ௌమ௘షమഀ

(ଵି௘షమഀೝ)మ  

→ ܵ௘௣(ݎ௡௖) ≡ ܵ௘௣(ݎ) − డௌ೐೛(௥)
డ௥

ۺ
→

.દ
→

ଶ௥
+   (2)  .(ଶ߆)ܱ

where ( ଴ܸ, ଵܸ, ଶܸ) and (ܵ଴, ଵܵ, ܵଶ) are the depths 
of the potential well,1/ߙ is related to the range 
of the potential, ݎ௡௖  and ݎ is the distance between 
the two particles in NCQM and QM symmetries. 
The coupling ۺ

→
. દ
→

 equals ܮ௫߆ଵଶ + ଶଷ߆௬ܮ +
௫ܮ) ଵଷ with߆௭ܮ ௬ܮ ,  and ܮ௭) representing the 
usual components of the angular momentum 
operator ܮ

→
, while the new noncommutativity 

parameter ߆ఓఔ  equals ߠఓఔ/2. The new algebraic 
structure of covariant noncommutative canonical 
commutation relations NCNCCRs in the three 
representations of Schrödinger, Heisenberg, and 
interactions pictures in the new symmetries of 
NCQM, is as follows (It should be noted that, in 
our calculation, we have used the natural 
units ܿ = ℏ = 1) [48-58]: 

ቂݔఓ
(ௌ,ு,ூ), ఔ݌

(ௌ,ு,ூ)ቃ = ݅ℏߜఓఔ ⇒ ቂݔොఓ
(ௌ,ு,ூ) ,∗ ఔ̂݌

(ௌ,ு,ூ)ቃ =
݅ℏ௘௙௙ߜఓఔ                     (3) 

and 

ቂݔఓ
(ௌ,ு,ூ), ఔݔ

(ௌ,ு,ூ)ቃ = 0 ⇒ ቂݔොఓ
(ௌ,ு,ூ) ,∗ ොఔݔ

(ௌ,ு,ூ)ቃ =
ఓఔߠ݅              (4) 

with ݔොఓ
(ௌ,ு,ூ) ≡ ቀݔොఓ

ௌ ොఓݔ ݎ݋ 
ு(ݐ) ݔ ݎ݋ොఓ

ூ   ቁ and(ݐ)
  IHSp ,,ˆ  ቀ̂݌ఓ

ௌ ఓ̂݌ ݎ݋ 
ு(ݐ) ̂݌ ݎ݋ఓ

ூ  ቁ.  It is important(ݐ)
to note that Eq. (4) is a covariant equation (the 
same behavior of ݔఓ) under Lorentz 
transformation, which includes boosts and/or 
rotations of the observer’s inertial frame. We are 
generalizing the NCNCCRs to include 
Heisenberg and interaction pictures. Here, 
ℏ௘௙௙ ≈ ℏ is the effective Planck constant, 
ఓఔߠ =  is the non-commutative ߠ) ߠఓఔߝ
parameter and ߝఓఔ  is just an antisymmetric 
number, for example, ߝଵଶ = = ଶଵߝ−  ଵଵߝ ,1
= ଶଶߝ = 0), which is an infinitesimal parameter 
if compared to the energy values and elements of 
antisymmetric 3 × 3 real matrices, and ߜఓఔ is the 
identity matrix. The symbol (∗) denotes the 
Weyl Moyal star product, which is generalized 
between two ordinary functions ݂(ݔ)݃(ݔ) to the 
new deformed form መ݂(ݔො) ො݃(ݔො) which is 
expressed with the Weyl Moyal star product 
(ݔ)݂ ∗  in the symmetries of NCQM as (ݔ)݃
follows [59-67]:  

(ෝ࢞)ෝࢍ(ෝ࢞)෠ࢌ ≡ ࢌ) ∗ (࢞)(ࢍ ≅
(࢞)ࢍࢌ − ࣇࣆࣂ࢏

૛
ࣆࣔ

ࣇࣔࢌ࢞
ቚࢍ࢞

ࣇ࢞ୀࣆ࢞
+   ૛൯        (5)ࣂ൫ࡻ

The indices ࣆ, ࣇ ≡ ૚, ૛, ૜ and ࡻ൫ࣂ૛൯ stand 
for the second, and higher-order terms of the NC 
parameter. The second term in the above 
equation gives the effects of space-space 
noncommutativity properties. Furthermore, it is 
possible to unify the operators ෡ࣖࣆ

(࢚)ࡴ =
൫࢞ෝ࢖ ࢘࢕ ࣆෝࣆ൯(࢚) and ෡ࣖࣆ

ࡵ (࢚) = ൫࢞ෝࣆ
ࡵ ࣆෝ࢖ ࢘࢕ 

ࡵ ൯(࢚) in 
Heisenberg and interaction pictures using the 
following projection relations, respectively: 

ఓߴ
ு(ݐ) = ෡௥ܪ൫݅݌ݔ݁

௘ℎ௣ܶ൯ ఓߴ
ௌ ෡௥ܪ݅−൫݌ݔ݁

௘ℎ௣ܶ൯ 

⇒ (ݐ)መఓுߴ =
෡௡௖ି௥ܪ൫݅݌ݔ݁

௘ℎ௣ ܶ൯ ∗ መఓௌߴ ∗ ෡௡௖ି௥ܪ݅−൫݌ݔ݁
௘ℎ௣ ܶ൯ (6) 

and 

ఓߴ
ூ (ݐ) = ෡௢௥ܪ൫݅݌ݔ݁

௘ℎ௣ܶ൯ ఓߴ
ௌ ෡௢௥ܪ݅−൫݌ݔ݁

௘ℎ௣ܶ൯ ⇒
መఓூߴ (ݐ) = ෡௡௖ି௢௥ܪ൫݅݌ݔ݁

௘ℎ௣ ܶ൯ ∗ መఓௌߴ ∗
෡௡௖ି௢௥ܪ݅−൫݌ݔ݁

௘ℎ௣ ܶ൯            (7) 
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where ߴመఓு ≡  ఓ is the operator in thê݌ ݎ݋ ොఓݔ
Schrödinger picture, ܶ = ݐ − ఓߴ ଴, whileݐ

ௌ ≡
ఓݔ ఓߴ ,ఓ݌ ݎ݋ 

ு(ݐ) ≡ ൫ݔఓ݌ ݎ݋ఓ൯(ݐ) and ߴఓ
ூ (ݐ) ≡

൫ݔఓ
ூ ఓ݌ ݎ݋ 

ூ ൯(ݐ) are the corresponding unified 
operators in the ordinary QM symmetries. 

Moreover, the dynamics of new systems ௗణ෡ഋ
ಹ(௧)
dt

 
can be described from the following motion 
equations in the deformed Heisenberg picture as 
follows: 
ௗణഋ

ಹ(௧)
dt

= ൣ ఓߴ
ு(ݐ), ෡௥ܪ

௘ℎ௣൧ + డణഋ
ಹ(௧)
డ௧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

RQMିsymmetry

          (8) 

⇒ ௗణ෡ഋ
ಹ(௧)
dt

= ൣ ∗,(ݐ)መఓுߴ ෡௡௖ି௥ܪ
௘ℎ௣ ൧ + డణ෡ഋ

ಹ(௧)
డ௧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

RNCQMିsymmetry

 .         (9) 

Here, (ܪ෡௢௥
௘௛௣and ܪ෡௥

௘௛௣) are the free and total 
Hamiltonian operators for MEPNMDHP, while 
෡௡௖ି௢௥ܪ)

௘௛௣  and ܪ෢௡௖ି௥
௘ℎ௣ ) are the corresponding 

Hamiltonians in the symmetries of NCQM. The 
purpose of this paper is to investigate the l-state 
solution of the deformed Klien-Gordon and 
Schrödinger equations within Bopp's shift and 
standard perturbation theory methods to generate 
an accurate new energy spectrum in RNCQM 
and NRNCQM symmetries. On the other hand, 
the choice of equal scalar and vector Eckart 
potential plus newly modified Hylleraas 
potential system is due to the fact that it exhibits 
an almost exact behavior similar to the Morse 
[68] and Deng- Fan-Eckart [69] potentials and so 
it is considered an excellent choice for the study 
of atomic interaction for diatomic molecules 
with the homogeneous diatomic molecules (N2 
and H2) and the heterogeneous diatomic 
molecules (HCl, HBr, SO, NO, and HI). Our 
current work is structured in seven sections. The 
first one includes the scope and purpose of our 
investigation, while the remaining parts of the 
paper are structured as follows. A review of the 
Klein-Gordon and Schrödinger equations with 
equal scalar and vector Eckart potentials plus 
modified Hylleraas potential is presented in Sect. 
2. Sect. 3 is devoted to studying the deformed 
Klein-Gordon equation by applying the ordinary 
Bopp's shift method and improved 
approximation of the centrifugal term to obtain 
the effective potential of the MEPNMDHP 
model in RNCQM symmetries. Besides, via 
perturbation theory, we find the expectation 
values of some radial terms to calculate the 
energy shift produced by the effect of the 
perturbed effective potential of MEPNMDHP. 

Sect. 4 is devoted to presenting the global energy 
shift and the global energy spectra produced by 
MEPNMDHP in the RNCQM symmetries. In 
Sect. 5, we examine some particular relativistic 
important cases in the context of the deformed 
Klein-Gordon theory plus newly modified 
Hylleraas potential. In Sect. 6, we apply our 
study to determine the energy spectra of some 
selected diatomic molecules, such as the 
homogeneous diatomic molecules (N2 and H2) 
and heterogeneous diatomic molecules (HCl, 
HBr, SO, NO, and HI) under the MEPNMDHP 
in the NRNCQM. In Sect. 7, our conclusive 
remarks are given.  

2. Revised Form of Klein-Gordon and 
Schrödinger Equations under 
MEPNMDHP in RQM and NRQM 

Before we start constructing the new 
solutions of the DKGE and DSE under 
MEPNMDHP, we give a summary of 
corresponding usual solutions in ordinary 
relativistic quantum mechanics RQM and 
nonrelativistic quantum mechanics NRQM. 
Given ESVEMHPs in the symmetries of RQM 
and NRQM by the following versions [29, 30]: 

௘ܸ௛௣(ݎ) = − ௏బ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ − ௏భ௘షమഀೝ

ଵି௘షమഀೝ + ௏మ௘షమഀ

(ଵି௘షమഀೝ)మ   
(10) 

and 

ܵ௘௛௣(ݎ) = − ௌబ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ − ௌభ௘షమഀೝ

ଵି௘షమഀೝ + ௌమ௘షమഀ

(ଵି௘షమഀೝ)మ   
(11) 

the 3-dimensional KGE with a scalar potential 
ܵ௘௛௣(ݎ) and a vector potential ௘ܸ௛௣(ݎ) and SE 
for the diatomic molecule with reduced mass ܯ 
and wave function ݎ)ߖ, ,ߠ ߶) is given as: 

൜ߘሬ⃗ ଶ + ቀܧ௡௟ − ௘ܸ௛௣(ݎ)ቁ
ଶ

−

൫ܯ + ܵ௘௛௣(ݎ)൯ଶൠ ,ݎ)ߖ ,ߠ ߶), = 0,        (12) 
and 

ቀ− ఇሬሬ⃗ మ

ଶெ
+ ௘ܸℎ௣(ݎ)ቁ ,ݎ)ߖ ,ߠ ߶) = ௡௟ܧ

௡௥ݎ)ߖ, ,ߠ ߶).  
(13) 

The vector potential ௘ܸ௛௣(ݎ) due to the four-
vector linear momentum operator 
ఓ൫ܣ ௘ܸ௛௣(ݎ), ܣ⃗ = 0൯ and the space-time scalar 
potentialܵ௘௛௣(ݎ), whereas the interaction of 
scalar and vector bosons is considered by usual 
substitutions (ܯ → ܯ + ܵ௘௛௣ and ݌ఓ → ఓ݌ −
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ሬ⃗ߘ ,௡௟ is the relativistic energy eigenvaluesܧ ,(ఓܣ  
is the ordinary 3-dimensional Nabla operator, 
while (݊ = 0,1,2. .. and ݈) represent the principal 
and orbital quantum numbers, respectively. 
Since ESVEMHPs have spherical symmetry, the 
solutions of the time-independent Klein-Gordon 
equation and Schrödinger equation of the known 
formݎ)ߖ, ,ߠ ߶) = ట೙೗(௥)

௥ ௟ܻ
௠(ߗ) to separate the 

radial ߰௡௟(ݎ) and ௟ܻ
௠(ߗ)is the angular 

component of the wave function; thus Eqs. (12) 
and (13) become:  

ቀ ௗమ

ௗ௥మ − ൫ܯଶ − ௡௟ܧ
ଶ ൯ − 2 ቀܧ௡௟ ௘ܸℎ௣(ݎ) +

ቁ(ݎ)௘ℎ௣ܵܯ + ௘ܸℎ௣
ଶ (ݎ) − ܵ௘ℎ௣

ଶ (ݎ) −
௟(௟ାଵ)

௥మ ቁ ߰௡௟(ݎ) = 0,          (14) 

ௗమట೙೗(௥)
ௗ௥మ + ߤ2 ቂܧ௡௟

௡௥ − ௘ܸℎ௣(ݎ) − ௟(௟ାଵ)
ଶெ௥మ ቃ ߰௡௟(ݎ) =

0.            (15) 

The shorthand notation is: 

௘ܸ௙௙ି௥
௘௛௣ (ݎ) ≡ 2 ቀܧ௡௟ ௘ܸ௛௣(ݎ) + ቁ(ݎ)௘௛௣ܵܯ −

௘ܸ௛௣
ଶ (ݎ) + ܵ௘௛௣

ଶ (ݎ) + ௟(௟ାଵ)
௥మ  and ܧ௘௙௙

௘ℎ௣ ≡ ଶܯ −
௡௟ܧ

ଶ                          (16) 

௘ܸ௙௙ି௡௥
௘ℎ௣ (ݎ) = ௘ܸℎ௣(ݎ) + ௟(௟ାଵ)

ଶெ௥మ  .        (17) 

We obtain the following second-order 
Schrödinger-like equation in RQM and NRQM 
symmetries, respectively: 

ቆ ௗమ

ௗ௥మ − ቀܧ௘௙௙
௘ℎ௣ + ௘ܸ௙௙ି௥

௘ℎ௣ ቁቇ(ݎ) ߰௡௟(ݎ) = 0,    (18) 

and 
ௗమట೙೗(௥)

ௗ௥మ + ܯ2 ቀܧ௡௟
௡௥ − ௘ܸ௙௙ି௡௥

௘ℎ௣ ቁ(ݎ) ߰௡௟(ݎ) = 0.  
(19) 

When the vector potential is equal to the 
scalar potential ௘ܸℎ௣(ݎ) = ܵ௘ℎ௣(ݎ), the effective 
potential leads to the following simple form: 

௘ܸ௙௙ି௥
௘ℎ௣ (ݎ) ≡ ௡௟ܧ)2 + (ܯ ቀ− ௏బ

௕
௔ି௘షమഀೝ

ଵି௘షమഀೝ −
௏భ௘షమഀೝ

ଵି௘షమഀೝ + ௏మ௘షమഀ

(ଵି௘షమഀೝ)మቁ + ௟(௟ାଵ)
௥మ         (20) 

௘ܸ௙௙ି௡௥
௘ℎ௣ (ݎ) ≡ − ௏బ

௕
௔ି௘షమഀೝ

ଵି௘షమഀೝ − ௏భ௘షమഀೝ

ଵି௘షమഀೝ +
୚మୣషమα

(ଵିୣషమα౨)మ + ௟(௟ାଵ)
୰మ   .         (21) 

Hassanabadi et al. and Ikot et al. [29, 30] 
derived analytical expressions for the wave 
function as a function of the hypergeometric 

polynomials ܨଶ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +
2ඥ−ߣ௡௟ ,  ൯ and the corresponding energy valuesݖ
for ESVEMHPs using both the Nikiforov-
Uvarov method and the approximation scheme 
proposed by Greene and Aldrich, in RQM and 
NRQM symmetries as: 

,ݎ)ߖ ,ߠ ߶) = ே೙೗
௥

(1 − ඥିఒ೙೗ݖఠ೙೗(ݖ ଶܨ ଵ൫−݊, ݊ +
2߱௡௟ + 2ඥ−ߣ௡௟; 1 + 2ඥ−ߣ௡௟ , ൯ݖ ௟ܻ

௠(ߗ) (22) 

and  

௡௟ܧ
ଶ − ଶܯ = ቄ− ቂ ଵ

ଶక೙೗
ቀߦ௡௟

ଶ − ௏బ(ିଶா೙೗ିଶெ)
௕

+
௏భ(ିଶா೙೗ିଶெ)

௕
ቁቃ

ଶ
− ௏బ(ିଶா೙೗ିଶெ)

௕
+  ଶቅ     (23)ܯ

௡௟ܧ
௡௥ = − ଶఈమ

ெ

⎣
⎢
⎢
⎡ (ଵି௔)ቀಾೇబ

ഀమ್ ቁା

ఏିఝି൫௡మାଶ(ଶ௡ାଵ)ధ൯ାఒ௟(௟ାଵ)
ଶ(௡ାధ)

⎦
⎥
⎥
⎤

ଶ

+ ௔௏బ
௕

  

(24) 
with 

߱௡௟ = ଵ
ଶ

+ ඥ−ߪ௡௟ − ௡௟ߣ − ௡௟ߩ + 1/4 and 

௡௟ߣ = ௏బ(ିଶா೙೗ିଶெ)௔
ସఈమ௕

+ ா೙೗
మ

ସఈమ − ெమ

ସఈమ,        (25) 

௡௟ߪ = ି௏బ(ିଶா೙೗ିଶெ)
ସఈమ௕

− ௏భ(ିଶா೙೗ିଶெ)
ସఈమ −

௏మ(ଶ௟ାଶ)(ଶ௟ାଵ)
ସ

− ௏భ(ିଶா೙೗ିଶெ)
ସఈమ − ா೙೗

మ

ଶఈమ + ெమ

ଶఈమ,  

(26) 

௡௟ߩ = ௏బ(ିଶா೙೗ିଶெ)
ସఈమ௕

+ ௏భ(ିଶா೙೗ିଶெ)
ସఈమ + ா೙೗

మ

ସఈమ − ெమ

ସఈమ,  

(27) 
and 

௡௟ߦ = ߙ− − ඨߙଶ + ൬ 2 ଶܸ(ܧ௡௟ + (ܯ
+(2݈ + 2)(2݈ + ଶ൰ߙ(1 −

 (28)           .ߙ2݊

Also, ߠ = ଵ
ସఈమ ܯ2] ଶܸ + ݈(݈ + 1)], ߮ =

ଵ
ସఈమ ܯ2] ଶܸ + ݈)݈ߣ + 1)], ߸ = ଵ

ଶ
ൣ1 + ඥ1 + 4߮൧, 

ݖ = ݁ିଶఈ௥ , while ߱ and ߣ are adjustable 
dimensionless parameters and ௡ܰ௟ is the 
normalization constant. 

It should be noted that the field of application 
of the nonrelativistic Schrödinger equation is 
within the limits of the low energy values 
confined to the field 1.0 MeV for modified 
deformed Hylleraas potentials and in the interval 
[0,01 − 0,5] MeV for the Eckart potentials. The 
validity of the Klein-Gordon equation is of 
course above these areas at high energies. 
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3. The Solution of DRKGE under 
MEPNMDHP in RNCQM Symmetries 
3.1 Review of Bopp's Shift Method 

At the beginning of this sub-section, we shall 
give and define a formula of the MEPNMDHP in 
the symmetries of RNCQM. This goal is 
achieved by reformulation of the Klein-Gordon 
equation by applying the notion of the Weyl 
Moyal star product which has been seen 
previously in Eqs. (3-7). Thus, the differential 
equation satisfied by the radial wave function 
 in Eq. (25) in RNCQM symmetries (࢘)࢒࢔࣒
becomes as follows [60-79]:  

ቀ ௗమ

ௗ௥మ − ൫ܯଶ − ௡௟ܧ
ଶ ൯ − ௡௟ܧ)2 + (ܯ ௘ܸℎ௣(ݎ) −

௟(௟ାଵ)
௥మ ቁ ∗ ߰௡௟(ݎ) = 0  .        (29) 

It is extensively established in the literature 
and a basic text that star products can be 
simplified by Bopp's shift method. The physicist 
Fritz Bopp was the first to consider pseudo-
differential operators obtained from a symbol by 
the quantization rules ݔ → ݔ − ௜

ଶ
డ

డ௣
 and ݌ → ݌ +

௜
ଶ

డ
డ௫

 instead of the ordinary correspondence 

ݔ → ݌ andݔ → ௜
ଶ

డ
డ௫

 [77-79]. In physics literature, 
this is known by Bopp’s shifts. This quantization 
procedure is called Bopp quantization. It is 
known to specialists that Bopp's shift method has 
been effectively applied and has succeeded in 
simplifying the basic equations: the DKGE [51, 
70-76], the deformed Dirac equation [80-82], the 
deformed Schrödinger equation [82-88] and the 
Duffin-Kemmer–Petiau equation [73] with the 
notion of star product to the KGE, the Dirac 
equation, and the SE with the notion of ordinary 
product. Thus, Bopp's shift method is based on 
reducing second-order linear differential 
equations of the DKGE, the deformed Dirac 
equation, and the deformed Schrödinger 
equation with star product to second-order linear 
differential equations of KGE, Dirac equation, 
and SE without star product with simultaneous 
translation in the space-space. The CNCCRs 
with star product in Eqs. (5) and (6) become new 
CNCCRs without the notion of star product as 
follows (see e.g. [56-66]): 

ቂݔොఓ
(ௌ,ு,ூ) ,∗ ఔ̂݌

(ௌ,ு,ூ)ቃ ≡ ݅ℏ௘௙௙ߜఓఔ ⇒

ቂݔොఓ
(ௌ,ு,ூ), ఔ̂݌

(ௌ,ு,ூ)ቃ = ݅ℏ௘௙௙ߜఓఔ,        (30) 

and 

ቂݔොఓ
(ௌ,ு,ூ) ,∗ ොఔݔ

(ௌ,ு,ூ)ቃ ≡ ఓఔߠ݅ ⇒ ቂݔොఓ
(ௌ,ு,ூ), ොఔݔ

(ௌ,ு,ூ)ቃ =
ఓఔߠ݅ .                        (31) 

The generalized positions and momentum 
coordinates ቀݔොఓ

(ௌ,ு,ூ), ఓ̂݌
(ௌ,ு,ூ)ቁ, in the symmetries 

of RNCQM, are defined in terms of the 
corresponding coordinatesቀݔఓ

(ௌ,ு,ூ), ఓ݌
(ௌ,ு,ூ)ቁ, in 

the symmetries of RQM, through the application 
of the following translation relationship [59-64]: 

ቀݔఓ
(ௌ,ு,ூ), ఓ݌

(ௌ,ு,ூ)ቁ ⇒ ቀݔොఓ
(ௌ,ு,ூ) = ఓݔ

(ௌ,ு,ூ) −
ఏഋഌ

ଶ
ఔ݌

(ௌ,ு,ூ), ఓ̂݌
(ௌ,ு,ூ) = ఓ݌

(ௌ,ு,ூ)ቁ        (32)  

This allows us to find the operator ݎ௡௖
ଶ  

equal (ݎଶ − ܮ
→

. (߆
→

 in NCQM symmetries [70-74].  

3.2 New Effective Potential for MEPNMDHP 
in RNCQM Symmetries 

According to Bopp's shift method, Eq. (29) 
with star product becomes similar to the 
following formula like the SE (without the 
notion of star product): 

ቀ ௗమ

ௗ௥మ − ൫ܯଶ − ௡௟ܧ
ଶ ൯ − ௡௟ܧ)2 + (ܯ ௘ܸℎ௣(ݎ௡௖) −

௟(௟ାଵ)
௥೙೎

మ ቁ ߰௡௟(ݎ) = 0 .         (33) 

The new operators ௘ܸ௛௣(ݎ௡௖) and ௟(௟ାଵ)
௥೙೎

మ , in 
RNCQM symmetries, are expressed as follows: 

௘ܸℎ௣(ݎ௡௖) = − ௏బ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ − ଵܸ
௘షమഀೝ

ଵି௘షమഀ +

ଶܸ
௘షమഀ

(ଵି௘షమഀ)మ − డ௏೐ℎ೛(௥)
డ௥

ۺ
→

.દ
→

ଶ௥
+  (34)         ,(ଶ߆)ܱ

and 
௟(௟ାଵ)

௥೙೎
మ = ௟(௟ାଵ)

௥మ + ௟(௟ାଵ)
௥ర ۺ

→
. દ
→

+  (35)        .(ଶ߆)ܱ

allowing us to obtain: 

௡௟ܧ)2 + (ܯ ௘ܸℎ௣(ݎ௡௖) = ௡௟ܧ)2 + (ܯ ௘ܸℎ௣(ݎ) −

 − ா೙೗ାெ
௥

డ௏೐ℎ೛(௥)
డ௥

ۺ
→

. દ
→

+  (36)       . (ଶ߆)ܱ

Moreover, to illustrate the above equation in 
a simple mathematical way and attractive form, 
it is useful to enter the following symbol 

௡ܸ௖ି௘௙௙
௘ℎ௣ , thus the radial Eq. (33) becomes: 

ቆ ௗమ

ௗ௥మ − ቀܧ௘௙௙
௘ℎ௣ + ௡ܸ௖ି௘௙௙

௘ℎ௣ ቁቇ(ݎ) ߰௡௟(ݎ) = 0,  (37) 

with: 

௡ܸ௖ି௘௙௙
௘ℎ௣ (ݎ) = ௘ܸ௙௙

௘ℎ௣(ݎ) + ௣ܸ௘௥௧
௘ℎ௣  (38)       . (ݎ)
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Also, ௣ܸ௘௥௧
௘ℎ௣  is given by the following (ݎ)

relation: 

௣ܸ௘௥௧
௘ℎ௣ (ݎ) = ቀ௟(௟ାଵ)

௥ర − ா೙೗ାெ
௥

డ௏೐ℎ೛(௥)
డ௥

ቁ ۺ
→

. દ
→

      (39)  

It should be noted that when ݈ = 0, Eq. (18) 
with ESVEMHPs can be exactly solved, but for 
the case ݈ ≠ 0, Zhang approximatively solved 
the equation using Eq. (18) using the Greene-
Aldrich approximation scheme for RQM 
symmetries. In the new form of the radial like-
Schrödinger equation written in Eq. (37), we 
have terms including ଵ

௥
  and ଵ

௥ర, which makes this 
equation impossible to solve analytically for 
݈ = 0 and ݈ ≠ 0, where it can only be solved 
approximately. From this point of view, we can 
consider the improved approximation of the 
centrifugal term proposed by M. Badawi et al. 
[90]. This method proved its power and 
efficiency when compared with Greene and 
Aldrich approximation [2]. The approximation 
types suggested by Greene and Aldrich and 
Dong et al. for a short-range potential are 
excellent approximations to the centrifugal term 
and allow us to get a second-order solvable 
differential equation, unlike the following 
approximation used in previous works [29, 30, 
51, 56-59, 70-73]: 
ଵ

௥మ ≈ ସఈమ ௘௫௣(ିଶఈ௥)
(ଵି௘௫௣(ିଶఈ௥))మ  =  ସఈమ௭

(ଵି௭)మ .        (40) 

The above approximation is good for small 
values of the range of the potential ߙ which 
correspond to the short-range potential, but it is 
inapplicable for large values of ݎ. This allows us 
to obtain: 
ଵ
௥

≈ ଶఈ ௘௫௣(ିఈ௥)
ଵି௘௫௣(ିଶఈ௥)  =  ଶఈ௭భ/మ

ଵି௭
 .        (41) 

Through the data shown in [30 (Figs. 4, 5, 
and 6)], it is clear that the good convergence 
between the two curves shows the effective 
potential specified by Eq. (21) and the effective 
potential deduced from applying the 
approximation specified by Eq. (41). 

After straightforward calculations, we obtain 
డ௏೐ℎ೛(௥)

డ௥
 as follows:  

డ௏೐೓೛(௥)
డ௥

= ଵߚ
௘௫௣(ିଶఈ௥)

ଵି௘௫௣(ିଶఈ௥) + ଶߚ
௘௫௣(ିଶఈ௥)

(ଵି௘௫௣(ିଶఈ௥))మ +

ଷߚ
௘௫௣(ିସఈ௥)

(ଵି௘௫௣(ିଶఈ௥))మ − ߙ4 ଶܸ
௘௫௣(ିସఈ௥)

(ଵି௘௫௣(ିଶఈ௥))య   (42) 

with ߚଵ = )ߙ2 ଵܸ − ଴ܸ/ܾ), ߚଶ = ܽ)ߙ2 ଴ܸ/ܾ −
ଶܸ) and ߚଷ = )ߙ2− ଵܸ + ଴ܸ/ܾ). Now, we replace 

݁ିଶఈ௥  with the new variable ݖ, leading to the 
following formula: 
డ௏೐೓೛(௥)

డ௥
= ఉభ௭

(ଵି௭) + ఉమ௭
(ଵି௭)మ + ఉయ௭మ

(ଵି௭)మ − ସఈ௏మ௭మ

(ଵି௭)య  . (43) 

We apply the approximation of Greene and 
Aldrich to the expression (ா೙೗ାெ)

௥
డ௏೐ℎ೛(௥)

డ௥
, which 

leads to the following formula: 
ா೙೗ାெ

௥
డ௏೐೓೛(௥)

డ௥
= ௡௟ܧ)ߙ2 + ఉభ௭య/మ)(ܯ

(ଵି௭)మ + ఉమ௭య/మ

(ଵି௭)య +
ఉయ௭ఱ/మ

(ଵି௭)య − ସఈ௏మ௭ఱ/మ

(ଵି௭)ర ) .         (44) 

By making the substitution of Eq. (44) into 
Eq. (39), we find the perturbed effective 
potential generated from noncommutativity 
properties of space-space ௣ܸ௘௥௧

௘ℎ௣  in the (ݎ)
symmetries of RNCQM as follows: 

௣ܸ௘௥௧
௘௛௣(ݎ) = ߙ2 ቄ଼ఈయ௟(௟ାଵ)௭మ

(ଵି௭)ర − ௡௟ܧ) +

ఉభ௭య/మ)(ܯ

(ଵି௭)మ + ఉమ௭య/మ

(ଵି௭)య + ఉయ௭ఱ/మ

(ଵି௭)య − ସఈ௏మ௭ఱ/మ

(ଵି௭)ర )ቅ ۺ
→

. દ
→

.  
(45)  

Moreover, we have applied the 
approximation of Greene and Aldrich to the term 
௟(௟ାଵ)

௥ర . The equal scalar and vector Eckart 
potentials plus modified Hylleraas potential are 
extended by including new terms proportional to 
the radial terms ௭మ

(ଵି௭)ర, ௭య/మ

(ଵି௭)మ, ௭య/మ

(ଵି௭)య, ௭ఱ/మ

(ଵି௭)య  and 
௭ఱ/మ

(ଵି௭)ర
, which become the MEPNMDHP in 

RNCQM symmetries. The generated new 
effective potential ௣ܸ௘௥௧

௘௛௣(ݎ) is also proportional 

to the infinitesimal vector દ
→

. This allows us to 
consider the new additive part ௣ܸ௘௥௧

௘௛௣(ݎ)of the 
effective potential as a perturbation potential 
compared with the main potential (parent 
potential operator) ௘ܸ௙௙

௘௛௣(ݎ) in the symmetries of 
RNCQM; that is, the inequality 

௣ܸ௘௥௧
௘௛௣(ݎ)<< ௘ܸ௙௙

௘௛௣(ݎ)has become achieved. These 
are all physical justifications for applying the 
time-independent perturbation theory which 
becomes satisfied. This allows us to give a 
complete prescription for determining the energy 
level of the generalized ݊௧ℎ excited states. 
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3.3 The Expectation Values under 
MEPNMDHP in RNCQM Symmetries   

In this sub-section, we want to apply the 
perturbative theory. In the case of RNCQM, we 
find the expectation values of the radial 
terms ௭మ

(ଵି௭)ర, ௭య/మ

(ଵି௭)మ, ௭య/మ

 (ଵି௭)య, ௭ఱ/మ

(ଵି௭)యand ௭ఱ/మ

(ଵି௭)ర 
taking into account the wave function which we 
have seen previously in Eq. (22). Thus, after 
straightforward calculations, we obtain the 
following results: 

ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

= ௡ܰ௟
ଶ ∫ ଶඥିఒ೙೗ାଶ(1ݖ −ାஶ

଴

ଶఠ೙೗ିସൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (46)          ,ݎ݀

ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

= ௡ܰ௟
ଶ ∫ ଶඥିఒ೙೗ାయݖ

మ(1 −ାஶ
଴

ଶఠ೙೗ିଶൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (47)          ,ݎ݀

ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

= ௡ܰ௟
ଶ ∫ ଶඥିఒ೙೗ାయݖ

మ(1 −ାஶ
଴

ଶఠ೙೗ିଷൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (48)          ,ݎ݀

ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

= ௡ܰ௟
ଶ ∫ ଶඥିఒ೙೗ାఱݖ

మ(1 −ାஶ
଴

ଶఠ೙೗ିଷൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (49)          ,ݎ݀

and 

ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

= ௡ܰ௟
ଶ ∫ ଶඥିఒ೙೗ାହ/ଶ(1ݖ −ାஶ

଴

ൣ ଶఠ೙೗ିସ(ݖ ଶܨ ଵ൫−݊, ݊ +  2߱௡௟ +

2ඥ−ߣ௡௟; 1 + 2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (50)        .ݎ݀

We have used useful abbreviations 
ൻ݊, ݈, ݉หߗ෠ห݊, ݈, ݉ൿ ≡ ൻߗ෠ൿ(௡,௟,௠)to avoid the extra 
burden of writing equations. Furthermore, we 
have applied the property of the spherical 
harmonics, which has the form 
∫ ௟ܻ

௠(ߠ, ߶) ௟ܻ′
௠′(ߠ, ߶) (ߠ)݊݅ݏ = ߶݀ߠ݀  .′௠௠ߜ′௟௟ߜ

We have ݖ =  which allows us to ,(ݎߙ2−)݌ݔ݁
obtain ݀ݎ = − ଵ

ଶఈ
ௗ௭
௭

. From the asymptotic 
behavior of ݖ = ݎ when (ݎߙ2−)݌ݔ݁ → 0 
ݖ) → +1) and r ݖ) → 0), this allows 
reformulating Eqs. (46, i = 1-5) as follows: 

ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

= ே೙೗
మ

ଶఈ ∫ ଶඥିఒ೙೗ାଵ(1ݖ −ାଵ
଴

ଶఠ೙೗ିସൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (51)          ,ݖ݀

ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

= ே೙೗
మ

ଶఈ ∫ ଶඥିఒ೙೗ାଵ/ଶ(1ݖ −ାଵ
଴

ଶఠ೙೗ିଶൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (52)          ,ݖ݀

ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

= ே೙೗
మ

ଶఈ ∫ ଶඥିఒ೙೗ାଵ/ଶ(1ݖ −ାଵ
଴

ଶఠ೙೗ିଷൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (53)          ,ݖ݀

ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

= ே೙೗
మ

ଶఈ ∫ ଶඥିఒ೙೗ାଷ/ଶ(1ݖ −ାଵ
଴

ଶఠ೙೗ିଷൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (54)          ,ݖ݀

and 

ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

= ே೙೗
మ

ଶఈ ∫ ଶඥିఒ೙೗ାଷ/ଶ(1ݖ −ାଵ
଴

ଶఠ೙೗ିସൣ(ݖ ଶܨ ଵ൫−݊, ݊ + 2߱௡௟ + 2ඥ−ߣ௡௟; 1 +

2ඥ−ߣ௡௟ , ൯൧ݖ
ଶ

 (55)          .ݖ݀

By using the same method as that proposed 
by Dong et al. [11] and applied by Zhang [18], 
we calculate the integrals in Eqs. (51), (52), (53), 
(54), and (55). With the help of the special 
integral formula,  

∫ కିଵ(1ݖ − ఙିଵ(ݖ ଶܨ ଵ(ܿଵ, ܿଶ; ܿଷ, ାଵݖ݀(ݖ
଴ =

 ௰(ఙ)௰(క)
௰(ఙାక) ଷܨ ଶ(ܿଵ, ܿଶ, ;ߪ ܿଷ, ߪ + ;ߦ 1) .       (56) 

Here, ܨଷ ଶ(ܿଵ, ܿଶ; ,ߪ ܿଷ, ߪ + ;ߦ 1) is obtained 
from the generalized hypergeometric function 

௣ܨ ௤൫ߙଵ, . . . , ,௣ߙ ,ଵߚ . . . . , ௤ߚ , ݌ ൯ forݖ = 3 and 
ݍ = 2, while (ݔ)߁ = ∫ ௫ିଵ݁ି௭ାஶݖ

଴  denotes ݖ݀
the usual Gamma function. We obtain from Eqs. 
(51), (52), (53), (54), and (55): 
ർ ௭మ

(ଵି௭)మ඀
(௡௟௠)

= ௡௟ߚ
ଵ   

∑
௤ୀ଴

௡
 

(ିଵ)೜(௡ା௸೙೗ିଶ)೜

൫௤ାଶඥିఒ೙೗ାଶ൯(௡ି௤)!௤!௰(௤ା௸೙೗ିଵ) 

ଷܨ ଶ ቆ−݊, ݍ + 2ඥ−ߣ௡௟ + 2, ݊ + ௡௟߉ − ߣ2,2 + 1;
ݍ + ௡௟߉ − 1; 1

ቇ (57), 

ൽ ௭
య
మ

(ଵି௭)మඁ
(௡௟௠)

= ௡௟ߚ
ଶ   
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∑
௤ୀ଴

௡ (ିଵ)೜(௡ା௸೙೗ାଵ/ଶ)೜

൫௤ାଶඥିఒ೙೗ାଷ/ଶ൯(௡ି௤)!௤!௰(௤ା௸೙೗ାଵ/ଶ)  ܨଷ ଶ൫−݊, ݍ +

2ඥ−ߣ௡௟ + 3/2, ݊ + ௡௟߉ − 1/2,2ඥ−ߣ௡௟ + 3/2 +
1; ݍ + ௡௟߉ + 1/2; 1൯           (58), 

ൽ ௭
య
మ

(ଵି௭)యඁ
(௡௟௠)

= ௡௟ߚ
ଷ   

∑
௤ୀ଴

௡
 

(ିଵ)೜ቀ௡ା௸೙೗ିయ
మቁ

೜

ቀ௤ାଶඥିఒ೙೗ାయ
మቁ(௡ି௤)!௤!௰ቀ௤ା௸೙೗ିభ

మቁ
   

ଷܨ ଶ ൬−݊, ݍ + 2ඥ−ߣ௡௟ + ଷ
ଶ

, ݊ + ௡௟߉ − ଷ
ଶ,ଶඥିఒ೙೗

+
ହ
ଶ

; ݍ + ௡௟߉ − 1/2; 1൰          (59), 

ൽ ௭
ఱ
మ

(ଵି௭)రඁ
(௡௟௠)

= ௡௟ߚ
ସ   

∑
௤ୀ଴

௡
 

(ିଵ)೜ቀ௡ା௸೙೗ିభ
మቁ

೜

ቀ௤ାଶඥିఒ೙೗ାఱ
మቁ(௡ି௤)!௤!௰ቀ௤ା௸೙೗ାభ

మቁ
   

ଷܨ ଶ ൭
−݊, ݍ + 2ඥ−ߣ௡௟ + ହ

ଶ
, ݊ + ௡௟߉ − ଵ

,ଶඥିఒ೙೗
+ ଻

ଶ
;

ݍ + ௡௟߉ + 1/2; 1
൱  

(60), 

ൽ ௭
ఱ
మ

(ଵି௭)రඁ
(௡௟௠)

= ௡௟ߚ
ହ   

∑
௤ୀ଴

௡
 

(ିଵ)೜ቀ௡ା௸೙೗ିయ
మቁ

೜

ቀ௤ାଶඥିఒ೙೗ାఱ
మቁ(௡ି௤)!௤!௰ቀ௤ା௸೙೗ିభ

మቁ
   

ଷܨ ଶ ൭
−݊, ݍ + 2ඥ−ߣ௡௟ + ହ

ଶ
, ݊ + ௡௟߉ − ଷ

ଶ,ଶඥିఒ೙೗
+ ଻

ଶ
;

ݍ + ௡௟߉ − 1/2; 1
൱    

(61) 

with 

(݊ + ௡௟߉ − 2)௤ = ௰(௡ା௸೙೗ିଶା௤)
௰(௡ା௸೙೗ିଶ)  (݊ + ௡௟߉ +

1/2)௤ = ௰(௡ା௸೙೗ାଵ/ଶା௤)
௰(௡ା௸೙೗ାଵ/ଶ)  (݊ + ௡௟߉ − 3/2)௤ =

௰(௡ା௸೙೗ିଷ/ଶା௤)
௰(௡ା௸೙೗ିଷ/ଶ)  

and  

௡௟߉ = 2ඥ−ߣ௡௟ + 2߱௡௟ 

௡௟ߚ
ଵ = ே೙೗

మ

ଶఈ
݊! ௡௟ߣ−൫2ඥ߁ + 3൯2߱)߁௡௟ − 3) 

௡௟ߚ
ଶ = ே೙೗

మ

ଶఈ
݊! ௡௟ߣ−൫2ඥ߁ + 5/2൯2߱)߁௡௟ − 1) 

௡௟ߚ
ଷ = ே೙೗

మ

ଶఈ
݊! ௡௟ߣ−൫2ඥ߁ + 5/2൯2߱)߁௡௟ − 2) 

௡௟ߚ
ସ = ௡ܰ௟

ଶ

ߙ2
݊! ௡௟ߣ−൫2ඥ߁ + 7/2൯2߱)߁௡௟ − 2) 

௡௟ߚ
ହ = ே೙೗

మ

ଶఈ
݊! ௡௟ߣ−൫2ඥ߁ + 7/2൯2߱)߁௡௟ − 3)  

3.4 The Energy Shift for the MEPNMDHP in 
RNCQM Symmetries 

The global energy shift for the MEPNMDHP 
in RNCQM symmetries is composed of three 
principal parts. The first one is produced from 
the effect of the generated spin-orbit effective 
potential. This effective potential is obtained by 
replacing the coupling of the angular momentum 
operator ۺ

→
દ
→

 with the new equivalent coupling 
દۺ.

→
܁
→

 (with દ = ൫દ૚૛
૛ + દ૛૜

૛ + દ૚૜
૛ ൯૚/૛

). This 
degree of freedom came considering that the 
infinitesimal NC-vector દ 

→
is arbitrary values. 

We have chosen it to be a parallel of the spin of 
the diatomic molecules under the MEPNMDHP. 
Furthermore, we replace દۺ.

→
܁
→

 with the 
corresponding physical form(દ/૛)ࡳ૛, with 
૛ࡳ = ۸

→
૛ − ۺ

→
૛ − ܁

→
૛. Moreover, in quantum 

mechanics, the operators (۶෡ ܚି܋ܖ
ܘܐ܍ ,۸૛,ۺ૛, ܁૛  and 

 form a complete set of conserved physics (ܢ۸
quantities; the eigenvalues of the operator ࡳ૛ are 
equal to the values ࢐)࣎, ,࢒ (࢙ ≡ ࢐)࢐) + ૚) − ࢒)࢒ +
૚) − ࢙)࢙ + ૚))/૛, with ܒ ∈ ܔ|] − ,|ܛ ܔ| +  .[|ܛ
Consequently, the energy shift 
࢖ࢎࢋࡱࢤ

࢕࢙ ,࢔) ,ࢨ ,ࢇ ,࢈ ,૙ࢂ ,૚ࢂ ,૛ࢂ ,࢐ ,࢒  due to the (࢙
perturbed effective potential produced 
࢚࢘ࢋ࢖ࢂ

࢖ࢎࢋ  excited states, in RNCQM ࢎ࢚࢔ for the (࢘)
symmetries is as follows: 

௘௛௣ܧ߂
௦௢ (݊, ,߆ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈, (ݏ =
(݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + /߆)((1
(௡,௟,௠)⟨ߕ⟩(2

ோாு௉   .         (62) 

The global expectation value 
(௡,௟,௠)⟨ߕ⟩

ோாு௉ (ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ) is determined from 
the following expression: 

(௡,௟,௠)⟨ߕ⟩
ோாு௉ (ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ) = ߙ2 ቊ8ߙଷ݈(݈ +

1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

௡௟ܧ) + ଵߚ)(ܯ ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

+

ଶߚ ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

+ ଷߚ ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

−

ߙ4 ଶܸ ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

)ቋ .        (63) 

The second part of the relativistic energy shift 
is obtained from the magnetic effect of 
perturbative effective potential under the 
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MEPNMDHP model. This effective potential is 
achieved when we replace both (ۺ

→
. દ
→

 and ߆ଵଶ) 
with (ߪ ܮ෠௭  and ߪℵ), respectively; here, (ℵand 
 symbolize the intensity of the magnetic field (ߪ
induced by the effect of deformation of space-
space geometry and a new infinitesimal 
noncommutativity parameter, so that the 
physical unit of the original noncommutativity 
parameter ߆ଵଶ (length)2 is the same unit of ߪℵ.  

We also need to apply ⟨݊, ݈, ,′݊|෠௭ܮ|݉ ݈′, ݉′⟩ =
௠௠′ (withߜ′௟௟ߜ′௡௡ߜ′݉  ', mm [−(݈, ݈′), +(݈, ݈′)]). 
All of this data allows for the discovery of the 
new energy shift ܧ߂௘௛௣

௠ (݊, ,ߪ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݈, ݉) 
for the ݊௧௛ excited states due to the perturbed 
Zeeman effect created by the influence of the 
MEPNMDHP in RNCQM symmetries, as 
follows:  

௘௛௬௣ܧ߂
௠ (݊, ,ߪ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݈, ݉) =

ℵߙ2 ቐ8ߙଷ݈(݈ + 1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

௡௟ܧ) + ଵߚ)(ܯ ൽ ௭
య
మ

(ଵି௭)మඁ
(௡,௟,௠)

+

ଶߚ ൽ ௭
య
మ

(ଵି௭)యඁ
(௡,௟,௠)

+ ଷߚ ൽ ௭
ఱ
మ

(ଵି௭)యඁ
(௡,௟,௠)

−

ߙ4 ଶܸ ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

)ቑ  (64)        . ݉ߪ

Having completed the first and second 
induced perturbed spin-orbit interaction and self-
magnetic phenomenon, now, for our purposes, 
we are interested in finding a new third 
automatically important symmetry for the 
MEPNMDHP  model at zero temperature in 
RNCQM symmetries. This physical 
phenomenon is induced automatically from the 
influence of a perturbed effective 
potential ௣ܸ௘௥௧

௘௛௣(ݎ), which we have seen in Eq. 
(45). We discover these important physical 
phenomena when our studied system consists of 
ܰ non-interacting particles considered as a Fermi 
gas; it is formed from all the particles in their 
gaseous state (N2, H2, HCl, HBr, SO, NO, and 
HI) undergoing rotation with angular velocity ષ

→
. 

We make the following transformation to ensure 
that previous calculations are not repeated: 

દ
→

→ ߯ષ
→

 .          (65)  

Here, ߯ is just an infinitesimal real 
proportional constant. We can express the 
effective potential ௣ܸ௘௥௧ି௥௢௧

௘௛௣  which induced ,(ݖ)
the rotational movements of the diatomic 
molecules as follows: 

௣ܸ௘௥௧ି௥௢௧
௘௛௣ (ݖ) = ߙ2 ቄ଼ఈయ௟(௟ାଵ)௭మ

(ଵି௭)ర − ௡௟ܧ) +

ఉభ௭య/మ)(ܯ

(ଵି௭)మ + ఉమ௭య/మ

(ଵି௭)య + ఉయ௭ఱ/మ

(ଵି௭)య − ସఈ௏మ௭ఱ/మ

(ଵି௭)ర )ቅ ષ
→

ۺ
→

 . 
(66) 

To simplify the calculations without 
compromising physical content, we choose the 
rotational velocity ષ

→
=  ௭. Then, we transform݁ߗ

the spin-orbit coupling to the new physical 
phenomena as follows: 

.ષ(ݖ)݂߯
→

ۺ
→

→   (67)         ࢠࡸߗ(ݖ)݂߯

with 

(ݖ)݂ = ߙ2 ቄ଼ఈయ௟(௟ାଵ)௭మ

(ଵି௭)ర − ௡௟ܧ) + ఉభ௭య/మ)(ܯ

(ଵି௭)మ +
ఉమ௭య/మ

(ଵି௭)య + ఉయ௭ఱ/మ

(ଵି௭)య − ସఈ௏మ௭ఱ/మ

(ଵି௭)ర )ቅ .        (68) 

All this data allows for the discovery of the 
new energy shift ܧ߂௘௛௣

௙ (݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ߯, ݈, ݉) 
for ݊௧௛ excited states due to the perturbed Fermi 
gas effect generated automatically by the 
influence of the MEPNMDHP model in 
RNCQM symmetries as follows:  

௘௛௣ܧ߂
௙ (݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ , ߯, ݈, ݉) = ߙ2 ቊ8ߙଷ݈(݈ +

1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

௡௟ܧ) + ଵߚ) (ܯ ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

ଶߚ+  ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

+

ଷߚ ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

− ߙ4 ଶܸ ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

)ቋ  . ݉ߗ߯

(69)  

It is worth mentioning that the authors in 
Refs. [91, 92] studied rotating isotropic and 
anisotropic harmonically confined ultra-cold 
Fermi gas in a two- and three-dimensional space 
at zero temperature, but the rotational term was 
added to the Hamiltonian operator, in contrast to 
our case, where this rotation term ݂߯(ݖ)ષ

→
. ۺ
→

 
automatically appears due to the large 
symmetries resulting from the deformation of 
space-space. 
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4. Relativistic Results and Discussion 
of MEPNMDHP in RNCQM 
Symmetries 

In this section of the paper, we summarize 
our obtained results 
௘௛௣ܧ߂)

௦௢ (݊, ,߆ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈,  ,(ݏ
௘௛௣ܧ߂

௠ (݊, ,ߪ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݈, ݉), 
௘௛௣ܧ߂

௙ (݊, ߯, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݈, ݉)) for the ݊௧௛ 
excited state due to the spin-orbital complying 
modified Zeeman effect and the perturbed Fermi 
gas potential induced by ௘ܸ௙௙

௘௛௣(ݎ) based on the 
superposition principle. This allows us to deduce 
the additive energy shift 
௘௛௣ܧ߂

௧௢௧ ,߆) ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉) under 
the influence of modified equally mixed Eckart 
potentials plus the new modified Hylleraas 
potential in RNCQM symmetries as follows: 

௘௛௣ܧ߂
௧௢௧ ,߆) ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉) =
(௡,௟,௠)⟨ߕ⟩ 

ோாு௉ (ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ +
ℵ݉ߪ +  (70)         . {݉ߗ߯

The above results present the global energy 
shift, which is generated by the effect of 
noncommutativity properties of space-space; it 
depended explicitly on the noncommutativity 
parameters (߆, ,ߪ ߯), the parameters of equal 
scalar and vector Eckart potentials plus new 
modified Hylleraas potential (ߙ, ଴ܸ, ଵܸ, ଶܸ), in 
addition to the atomic quantum numbers 
(݊, ݆, ݈, ,ݏ ݉). We observed that the obtained 
global effective energy 
௘௛௣ܧ߂

௧௢௧ ,߆) ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉) under 
MEPNMDHP has a carry unit of energy because 
it is combined from the carrier of energy 
ଶܯ) − ௡௟ܧ

ଶ ). As a direct consequence, the energy 
௥ି௡௖ܧ

௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ , ݊, ݆, ݈, ,ݏ ݉) produced 
with the MEPNMDHP model, in the symmetries 
of RNCQM, corresponds to the generalized ݊௧௛ 
excited state, the sum of the roots quart 
௘௛௣ܧ߂ൣ

௧௢௧ ,߆) ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉)൧ଵ/ଶ
 of 

the shift energy and ܧ௡௟ due to the effect of 
MEPNMDHP in RQM, which is determined 
from Eq. (32) as follows: 

௥ି௡௖ܧ
௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) =

௡௟ܧ − ܯ +
(௡,௟,௠)⟨ߕ⟩ൣ

ோாு௉ (ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ +

ℵ݉ߪ + ൧ଵ/ଶ{݉ߗ߯
 .         (71)  

The above equation describes the relativistic 
energy of some selected diatomic molecules, 
such as the homogeneous diatomic molecules 
(N2 and H2) and the heterogeneous diatomic 
molecules (HCl, HBr, SO, NO, and HI) under 
the  MEPNMDHP model in RNCQM 
symmetries.  

5. Relativistic Particular Cases under 
MEPNMDHP 

After examining the bound state solutions of 
any l-state deformed Klein-Gordon equation 
with MEPNMDHP, our task is now to discuss 
some particular cases. By adjusting potential 
parameters for each case, some familiar 
potentials, which are useful for other physical 
systems, can be obtained. 

1. Setting, ଵܸand ଶܸ to zero, the potential in Eq. 
(10) turns to the modified Hylleraas potential 
[20] in RQM symmetries, as follows: 

௘ܸ௛௣(ݎ) → ௛ܸ௣(ݎ) ≡ − ௏బ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ .       (72) 

The perturbed effective potential ௣ܸ௘௥௧
௘௛௣(ݎ) in 

Eq. (45) turns to the perturbed effective potential 
௣ܸ௘௥௧
௛௣  in the symmetries of RNCQM as (ݎ)

follows:  

௣ܸ௘௥௧
௘௛௣(ݎ) → ௣ܸ௘௥௧

௛௣ (ݎ) = ߙ2 ቄ଼ఈయ௟(௟ାଵ)௭మ

(ଵି௭)ర +
ଶఈ௏బ(ா೙೗ାெ)

௕
( ௭య/మ

(ଵି௭)మ − ௭య/మ

(ଵି௭)య + ௭ఱ/మ

(ଵି௭)య)ቅ .ۺ
→

દ
→

 . 
(73)  

In this case, the additive energy shift 
௛௣ܧ߂

௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) under the 
influence of modified equally mixed new 
modified Hylleraas potential in RNCQM 
symmetries is determined from the following 
formula: 

௛௣ܧ߂
௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) =
(௡,௟,௠)⟨ߕ⟩ 

ோு௉ (ܽ, ܾ, ଴ܸ){߬(݆, ݈, ߆(ݏ + ݉ߪ߀ +
 (74)          . {݉ߗ߯

Thus, the corresponding global expectation 
value ⟨ߕ⟩(௡,௟,௠)

ோு௉ (ܽ, ܾ, ଴ܸ) is determined from the 
following expression: 
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(௡,௟,௠)⟨ߕ⟩
ோு௉ (ܽ, ܾ, ଴ܸ) =   ߙ2

൛8(1+)3݈ߙ ർ 2ݖ

4඀(ݖ−1)
(݊,݈,݉)

+ ൯ܯ+݈݊ܧ0൫ܸߙ2
ܾ   

(ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

− ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

+

ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

)ቋ         (75). 

  The new relativistic energy in Eq. (71) 
reduces to the new energy 
௥ି௡௖ܧ

௛௣ ,߆) ,ߪ ߯, ܽ, ܾ, ଴ܸ , ݊, ݆, ݈, ,ݏ ݉) under modified 
equal scalar and vector new modified Hylleraas 
potential in RNCQM, as follows: 

௥ି௡௖ܧ
௛௣ ,߆) ,ߪ ߯, ܽ, ܾ, ଴ܸ, ݊, ݆, ݈, ,ݏ ݉) = ௡௟ܧ

௛ +
(௡,௟,௠)⟨ߕ⟩ൣ

ோு௉ (ܽ, ܾ, ଴ܸ){߬(݆, ݈, ߆(ݏ + ℵ݉ߪ +

൧ଵ/ଶ{݉ߗ߯
.           (76) 

Making the corresponding parameter 
replacements in Eq. (23), we obtain the energy 
equation for the modified Hylleraas potential in 
the Klein-Gordon theory with equally mixed 
potentials in RQM symmetries as: 

௡௟ܧ
௛ଶ − ଶܯ =

൜− ൤ ଵ
ଶక೙೗

೓೛ ൬ߦ௡௟
௛௣ଶ −

௏బ൫ିଶா೙೗
೓ ିଶெ൯

௕
൰൨

ଶ
− ௏బ൫ିଶா೙೗

೓ ିଶெ൯
௕

+  ଶൠ     (77)ܯ

with  

௡௟ߦ
௛௣ = ߙ− − ඥ1ߙ + (2݈ + 2)(2݈ + 1) −  .ߙ2݊

2. Setting ଴ܸ = 0, the potential in Eq. (10) turns 
to the equal scalar and vector Eckart 
potentials [4] in RQM symmetries, as 
follows: 

௘ܸ௛௣(ݎ) = ௘ܸ௣(ݎ) ≡ − ଵܸ
௘షమഀೝ

ଵି௘షమഀ + ଶܸ
௘షమഀ

(ଵି௘షమഀ)మ . 
(78)  

The perturbed effective potential ௣ܸ௘௥௧
௘௛௣(ݎ) in 

Eq. (45) turns to the perturbed effective potential 
௣ܸ௘௥௧
௘௣  in the symmetries of RNCQM as (ݎ)

follows:  

௣ܸ௘௥௧
௘௣ (ݎ) = ଶߙ2 ቄସఈమ௟(௟ାଵ)௭మ

(ଵି௭)ర − ௡௟ܧ) +

)(ܯ ଵܸ
௭య/మ

(ଵି௭)మ − ଶܸ
௭య/మ

(ଵି௭)య − ଵܸ
௭ఱ/మ

(ଵି௭)య −

2 ଶܸ
௭ఱ/మ

(ଵି௭)ర)ቅ ۺ
→

. દ
→

 .         (79)  

In this case, the additive energy shift 
௘௣ܧ߂

௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) under the 

influence of modified equally mixed Eckart 
potentials in RNCQM symmetries is given by: 

௘௣ܧ߂
௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) =
(௡,௟,௠)⟨ߕ⟩ 

ோா௉ (ܽ, ܾ, ଴ܸ){߬(݆, ݈, ߆(ݏ + ݉ߪ߀ +
 (80)          . {݉ߗ߯

Thus, the corresponding global expectation 
value ⟨ߕ⟩(௡,௟,௠)

ோெ௉  is determined from the following 
expression: 

(௡,௟,௠)⟨ߕ⟩
ோா௉ (ܽ, ܾ, ଴ܸ) = ଶߙ2  ቊ4ߙଶ݈(݈ +

1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

௡௟ܧ) + )(ܯ ଵܸ ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

−

ଶܸ ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

− ଵܸ ർ ௭ఱ/మ

(ଵି௭)య඀ −

2 ଶܸ ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

)ቋ .         (81) 

The new relativistic energy in Eq. (71) 
reduces to the new energy 
௥ି௡௖ܧ

௘௣ ,߆) ,ߪ ߯, ,ߙ ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) under modified 
equal scalar and vector Eckart potentials in 
RNCQM, as follows: 

௥ି௡௖ܧ
௘௣ ,߆) ,ߪ ߯, ,ߙ ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) = ௡௟ܧ +

(௡,௟,௠)⟨ߕ⟩ൣ
ோா௉ ,ߙ) ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ + ݉ߪ߀ +

൧ଵ/ଶ{݉ߗ߯
 .          (82)  

Making the corresponding parameter 
replacements in Eq. (23), we obtain the energy 
equation for the Eckart potential in the Klein-
Gordon theory with equally mixed potentials in 
RQM symmetries as: 

௡௟ܧ
௘௣ଶ − ଶܯ =

ቄ− ቂ ଵ
ଶక೙೗

൬ߦ௡௟
ଶ ௏భ൫ିଶா೙೗

೐೛ିଶெ൯
௕

൰൨
ଶ

 ଶ} .       (83)ܯ+

6. Nonrelativistic Study of Modified 
Eckart Potential Plus New Modified 
Hylleraas Potential 

In this section, we derive the nonrelativistic 
spectrum, which is produced by the effect of the 
MEPNMDHP model on the diatomic molecules, 
such as the homogeneous diatomic molecules 
(N2 and H2) and the heterogeneous diatomic 
molecules (HCl, HBr, SO, NO, and HI), by 
applying the notion of the Weyl Moyal star 
product which has been seen previously in Eqs. 
(3-7) to the differential equation satisfied by the 
radial wave function (࢘)࢒࢔࣒ in Eq. (26), where 
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the radial wave function (࢘)࢒࢔࣒ in NRNCQM 
symmetries becomes as follows:  
ௗమట೙೗(௥)

ௗ௥మ + ܯ2 ቀܧ௡௟
௡௥ − ௘ܸ௙௙ି௡௥

௘௛௣ ቁ(ݎ) ∗ ߰௡௟(ݎ) = 0.  
(84) 

According to the Bopp shift method, Eq. (84) 
becomes similar to the following like-
Schrödinger equation (without the notion of star 
product): 

ቆ ௗమ

ௗ௥మ + ܯ2 ቀܧ௡௟
௡௥ − ௘ܸ௛௣(ݎ௡௖) − ௟(௟ାଵ)

௥೙೎
మ ቁቇ ߰௡௟(ݎ) = 0.  

(85) 

From Eqs. (3) and (10), we can write this 
potential in the nonrelativistic noncommutative 
three-dimensional real space NRNCQM 
symmetries as follows: 

௘ܸ௛௣(ݎ௡௖) = − ௏బ
௕

௔ି௘షమഀೝ

ଵି௘షమഀೝ − ଵܸ
௘షమഀೝ

ଵି௘షమഀ +

ଶܸ
௘షమഀ

(ଵି௘షమഀ)మ + + ௘ܸ௛௣ି௡௥
௣௘௥௧  (86)         (ݎ)

where ௘ܸ௛௣ି௡௥
௣௘௥௧ >>(ݎ) ௘ܸ௛௣(ݎ) and ௘ܸ௛௣ି௡௥

௣௘௥௧  (ݎ)
represent the global perturbative potential of the 
MEPNMDHP model in nonrelativistic 
noncommutative three-dimensional real space 
NRNCQM symmetries: 

௘ܸ௛௣ି௡௥
௣௘௥௧ (ݎ) = ௟(௟ାଵ)

௥ర ۺ
→

. દ
→

− డ௏೐೓೛(௥)
డ௥

.ۺ
→

દ
→

ଶ௥
+   .(ଶ߆)ܱ

(87)  
The first term in Eq. (87) due to the 

centrifuge term ௟(௟ାଵ)
௥೙೎

మ  in NRNCQM (Eq. (35)) 

equals the usual centrifuge term ௟(௟ାଵ)
௥మ  plus the 

perturbative centrifuge term ௟(௟ାଵ)
௥ర .ۺ

→
દ
→

, while the 
second term in Eq. (87) is produced by the effect 
of MEPNMDHP. We have seen in Eq. (43) that 
the expression డ௏೐೓೛(௥)

డ௥
 allows us to get 

௘ܸ௛௣ି௡௥
௣௘௥௧  :as follows (ݎ)

௘ܸ௛௣ି௡௥
௣௘௥௧ (ݎ) = ௟(௟ାଵ)

௥ర ۺ
→

. દ
→

− ቀ ఉభ௭
(ଵି௭) + ఉమ௭

(ଵି௭)మ +

ఉయ௭మ

(ଵି௭)మ − ସఈ௏మ௭మ

(ଵି௭)యቁ .ۺ
→

દ
→

ଶ௥
+  (88)       . (ଶ߆)ܱ

Now, we apply the approximation type 
suggested by Greene and Aldrich to the 
perturbed potential ௘ܸ௛௣ି௡௥

௣௘௥௧  :we obtain ;(ݎ)

 

௘ܸ௛௣ି௡௥
௣௘௥௧ (ݎ) = ቄଵ଺ఈర௟(௟ାଵ)௭మ

(ଵି௭)మ − ߙ ቀఉభ௭య/మ

(ଵି௭)మ +
ఉమ௭య/మ

(ଵି௭)య + ఉయ௭ఱ/మ

(ଵି௭)య − ସఈ௏మ௭ఱ/మ

(ଵି௭)ర ቁቅ ۺ
→

. દ
→

+   .(ଶ߆)ܱ
(89) 

Thus, we need the expectation values 
of ௭మ

(ଵି௭)ర, ௭య/మ

(ଵି௭)మ, ௭ఱ/మ

(ଵି௭)య, ௭ఱ/మ

(ଵି௭)య 
 and ௭ఱ/మ

 (ଵି௭)ర to find 
the nonrelativistic energy corrections produced 
with the perturbative potential ௘ܸ௛௣

௣௘௥௧(ݎ). We 
have seen that the expectation values of the first, 
third, and fourth terms are calculated in Eqs. (57. 
i = 1, 2, 3, 4, 5), allowing us to get the global 
nonrelativistic expectation value 
⟨ܺ⟩(௡,௟,௠)

ேோாு௉(ߙ, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ) as determined by 
the following expression: 

⟨ܺ⟩(௡,௟,௠)
ேோாு௉ = ݈)ସ݈ߙ16 + 1) ർ ௭మ

(ଵି௭)మ඀
(௡,௟,௠)

−

ߙ ቌߚଵ ൽ ௭
య
మ

(ଵି௭)మඁ
(௡,௟,௠)

+ ଶߚ ൽ ௭
య
మ

(ଵି௭)యඁ
(௡,௟,௠)

+

ଷߚ ൽ ௭
ఱ
మ

(ଵି௭)యඁ
(௡,௟,௠)

− ߙ4 ଶܸ ൽ ௭
ఱ
మ

(ଵି௭)రඁ
(௡,௟,௠)

ቍ . 

(90) 

By following the same method used in the 
relativistic study, we obtain the energy 
corrections ܧ߂௘௛௣

ேோ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, 
݊, ݆, ݈, ,ݏ ݉) for the generalized ݊௧௛ excited state 
due to the spin-orbit complying modified 
Zeeman effect and nonrelativistic perturbed 
Fermin gas potential induced by ௘ܸ௛௣ି௡௥

௣௘௥௧  (ݎ)
under the influence of modified equally mixed 
Eckart potential plus new modified Hylleraas 
potential in NRNCQM symmetries as follows:  

௘௛௣ܧ߂
ேோ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) =
 ⟨ܺ⟩(௡,௟,௠)

ேோாு௉(ߙ, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ +
ℵ݉ߪ +  (91)         . {݉ߗ߯

According to the standard perturbation 
theory, the new generalized nonrelativistic 
energy  ܧ௡௥ି௡௖

௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ , ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) 
for the ݊௧௛ excited state produced with the effect 
of the MEPNMDHP model is the sum of the 
nonrelativistic energy ܧ௡௟

௡௥  (see Eq. (32)) due to 
the effect of equal scalar and vector Eckart 
potential plus modified Hylleraas potential in 
NRQM [29] and the above corrections in Eq. 
(91): 
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௡௥ି௡௖ܧ
௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) =

− ଶఈమ

ெ

⎣
⎢
⎢
⎡(ଵି௔)ቀಾೇబ

ഀమ್ ቁାቀ೗(೗శభ)
రഀమ ቁ

ି൫௡మାଶ(ଶ௡ାଵ)ధ൯
ଶ(௡ାధ)

⎦
⎥
⎥
⎤

ଶ

+ ௔௏బ
௕

 

+ ⟨ܺ⟩(௡,௟,௠)
ேோாு௉(ߙ, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ +

݉ߪܤ +   (92)          .{݉ߗ߯

After examining the bound state solutions of 
any l-state deformed Schrödinger equation with 
MEPNMDHP, our task is now to discuss some 
particular cases below. By adjusting the potential 
parameters for each case, some familiar 
potentials, which are useful for other physical 
systems, can be obtained. 

1. Setting, ଵܸand ଶܸ to zero, the potential in Eq. 
(10) turns to the standard modified Hylleraas 
potential that we have seen in Eq. (72) in 
NRQM symmetries. The perturbed effective 
potential ௘ܸ௛௣ି௡௥

௣௘௥௧  in Eq. (89) turns to the (ݎ)
perturbed effective potential ௣ܸ௘௥௧

௛௣  in the (ݎ)
symmetries of RNCQM as follows: 

௛ܸ௣ି௡௥
௣௘௥௧ (ݎ) = ቄଵ଺ఈర௟(௟ାଵ)௭మ

(ଵି௭)మ − ߙ ቀ− ଶఈ௏బ
௕

௭య/మ

(ଵି௭)మ +
ଶఈ௔௏బ

௕
௭య/మ

(ଵି௭)య − ଶఈ௏బ
௕

௭ఱ/మ

(ଵି௭)యቁቅ ۺ
→

. દ
→

+   .(ଶ߆)ܱ
(93) 

In this case, the additive energy shift 
௛௣ܧ߂

௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) under the 
influence of modified equally mixed new 
modified Hylleraas potentials in RNCQM 
symmetries is determined from the following 
formula: 

௛௣ܧ߂
௧௢௧(߆, ,ߪ ߯, ݊, ܽ, ܾ, ଴ܸ, ݆, ݈, ,ݏ ݉) =
(௡,௟,௠)⟨ߕ⟩ 

ோு௉ (ܽ, ܾ, ଴ܸ){߬(݆, ݈, ߆(ݏ + ℵ݉ߪ +
 (94)           .{݉ߗ߯

Thus, the corresponding global expectation 
value ⟨ߕ⟩(௡,௟,௠)

ோு௉ (ܽ, ܾ, ଴ܸ) is determined from the 
following expression: 

(௡,௟,௠)⟨ߕ⟩
ோு௉ (ܽ, ܾ, ଴ܸ) =

ቊ16ߙସ݈(݈ + 1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

ߙ ቆ− ଶఈ௏బ
௕

ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

+

ଶఈ௔௏బ
௕

ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

− ଶఈ௏బ
௕

ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

ቇቋ.  

(95) 

The new nonrelativistic energy in Eq. (92) 
reduces to the new energy 
௡௥ି௡௖ܧ

௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ݊, ݆, ݈, ,ݏ ݉) under modified 
equal scalar and vector new modified Hylleraas 
potential in RNCQM, as follows: 

௡௥ି௡௖ܧ
௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ݊, ݆, ݈, ,ݏ ݉) = − ଶఈమ

ெ
  

ቂ(ଵି௔)൫ெ௏బ/ఈమ௕൯ା௟(௟ାଵ)ି൫௡మାଶ(ଶ௡ାଵ)ధ൯
ଶ(௡ାధ) ቃ

ଶ
+

௔௏బ
௕

 ⟨ܺ⟩(௡,௟,௠)
ேோ௉ {߬(݆, ݈, ߆(ݏ + ℵ݉ߪ +  . {݉ߗ߯

(96)  

2. Setting ଴ܸ = 0, the potential in Eq. (10) turns 
to the equal scalar and vector Eckart potential 
(Eq. (78)) in NRQM symmetries. The 
perturbed effective potential ௘ܸ௛௣ି௡௥

௣௘௥௧  in (ݎ)
Eq. (89) turns to the perturbed effective 
potential ௘ܸ௣ି௡௥

௣௘௥௧  in the symmetries of (ݎ)
RNCQM as follows:  

௘ܸ௣ି௡௥
௣௘௥௧ (ݎ) = ଶߙ2 ቄ଼ఈమ௟(௟ାଵ)௭మ

(ଵି௭)మ − ቀ ଵܸ
௭య/మ

(ଵି௭)మ −

ଶܸ
௭య/మ

(ଵି௭)య − ଵܸ
௭ఱ/మ

(ଵି௭)య − ଶ௏మ௭ఱ/మ

(ଵି௭)ర ቁቅ ۺ
→

. દ
→

+
 (97)           . (ଶ߆)ܱ

In this case, the additive energy shift 
௘௣ܧ߂

௧௢௧(߆, ,ߪ ߯, ݊, ,ߙ ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉) under the 
influence of modified equally mixed Eckart 
potential in NRNCQM symmetries is given by: 

ா௉ܧ߂
௧௢௧(߆, ,ߪ ߯, ݊, ,ߙ ଵܸ, ଶܸ, ݆, ݈, ,ݏ ݉) =
(௡,௟,௠)⟨ߕ⟩ 

ோா௉ ,ߙ) ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ + ℵ݉ߪ +
 (98)           .{݉ߗ߯

Thus, the corresponding global expectation 
value ⟨ߕ⟩(௡,௟,௠)

ோெ௉ ,ߙ) ଵܸ, ଶܸ) is determined from the 
following expression: 
(௡,௟,௠)⟨ߕ⟩

ோா௉ ,ߙ) ଵܸ, ଶܸ) =

ଶߙ2 ቊ8ߙଶ݈(݈ + 1) ർ ௭మ

(ଵି௭)ర඀
(௡,௟,௠)

−

( ଵܸ ർ ௭య/మ

(ଵି௭)మ඀
(௡,௟,௠)

− ଶܸ ർ ௭య/మ

(ଵି௭)య඀
(௡,௟,௠)

−

ଵܸ ർ ௭ఱ/మ

(ଵି௭)య඀
(௡,௟,௠)

− 2 ଶܸ ർ ௭ఱ/మ

(ଵି௭)ర඀
(௡,௟,௠)

)ቋ .       (99) 

The new nonrelativistic energy in Eq. (92) 
reduces to the new energy 
௡௥ି௡௖ܧ

௘௣ ,߆) ,ߪ ߯, ,ߙ ଵܸ , ଶܸ, ݊, ݆, ݈, ,ݏ ݉) under modified 
equal scalar and vector Eckart potential in 
RNCQM, as follows: 

௡௥ି௡௖ܧ
௘௣ ,߆) ,ߪ ߯, ,ߙ ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) = ௡௟ܧ

௡௥ି௘௣ −
ܯ + (௡,௟,௠)⟨ߕ⟩ൣ

ோா௉ ,ߙ) ଵܸ, ଶܸ){߬(݆, ݈, ߆(ݏ +

ℵ݉ߪ + ൧ଵ/ଶ{݉ߗ߯
 .       (100)  
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Making the corresponding parameter 
replacements in Eq. (24), we obtain the 
nonrelativistic energy for the Eckart potential in 
the Schrödinger theory in NHRQM symmetries 
as: 

௡௟ܧ
௡௥ି௘௣ = − ଶఈమ

ெ
ቂఏିఝି൫௡మାଶ(ଶ௡ାଵ)ధ൯ାఒ௟(௟ାଵ)

ଶ(௡ାధ) ቃ
ଶ
.  

(101) 
We have seen in sub-section (3.4) that the 

eigenvalues of the operator ࡳଶ are equal to the 
values ߬(݆, ݈, (ݏ ≡ (݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ +
1))/2; thus, for the case of spin-1/2, the values 
of ݆ being ݈ ± 1/2, allows us to get ߬(݆, ݈,  as (ݏ
follows: 

߬ ቀ݆ = ݆ = ݈ ± ଵ
ଶ

, ݈, ݏ = ଵ
ଶ
ቁ =

 ቐ
௟
ଶ

for ݆ = ݈ + 1/2 up − polarity

− ௟ାଵ
ଶ

for ݆ = ݈ − 1/2 down − polarity
  

(102) 

The nonrelativistic energy in Eq. (97) can be 
generalized to the case of spin-1/2 with modified 
Eckart potential plus new modified Hylleraas 
potential, in the symmetries of NRNCQM, 
corresponding to the generalized ݊௧௛ excited 
state: 

௡௥ି௡௖ܧ
௘௛௣ ,߆) ,ߪ ߯, ,ߙ ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) =  − ଶఈమ

ெ
ቂ(ଵି௔)൫ெ௏బ/ఈమ௕൯ାఏିఝି൫௡మାଶ(ଶ௡ାଵ)ధ൯ାఒ௟(௟ାଵ)

ଶ(௡ାధ) ቃ
ଶ

+

௔௏బ
௕

+ ቐ
⟨ܺ⟩(௡,௟,௠)

ேோாு௉ ቄ ௟
ଶ

߆ + ℵ݉ߪ + ቅ݉ߗ߯ for ݆ = ݈ + 1/2 up − polarity

⟨ܺ⟩(௡,௟,௠)
ேோாு௉ ቄ− ௟ାଵ

ଶ
߆ + ℵ݉ߪ + ቅ݉ߗ߯ for ݆ = ݈ − 1/2 down − polarity

              (103) 

This result clearly shows the correlation of 
the new energy with the value of the spin-1/2, as 
is the case in the Dirac equation. This means that 
the deformed Schrodinger equation under the 
influence of this potential amounts to the state of 
the Dirac equation. It can be concluded that the 
deformed Schrödinger equation in NRNCQM 
symmetries is equivalent to the normal Dirac 
equation in relativistic quantum mechanics. 

Now, considering composite systems, such as 
molecules made of ܰ = 2 particles of masses 
݉௡(݊ = 1,2) in the frame of noncommutative 
algebra, it is worth taking into account features 
of descriptions of the systems in the NRNCQM 
case. It was obtained that those composite 
systems with different masses are described with 
different noncommutative parameters [44, 47, 
48, 93]: 

ቂݔොఓ
(ௌ,ு,ூ) ,∗ ොఔݔ

(ௌ,ு,ூ)ቃ = ఓఔߠ݅
௖  .      (104) 

The new noncommutativity parameter ߠఓఔ
௖  is 

determined from the following relation: 

ఓఔߠ
௖ = ∑

ଶ

௡ୀଵ
௡ߤ

ଶ ఓఔߠ
(௡)        (105) 

with ߤ௡ = ௠೙
∑ ௠೙

೙

, the indices (݊ = 1,2) label the 

particle and ߠఓఔ
(௡) is the new parameter of non-

commutativity, corresponding to the particle of 
mass ݉௡. Note that in the case of a system of 
two particles with the same mass ݉ଵ = ݉ଶ, such 

as the homogeneous diatomic molecules (N2 and 
H2) under the modified Eckart potential plus the 
new modified Hylleraas potential, the 
parameterߠఓఔ

(௡) =  ఓఔ. Thus, the threeߠ
parametersߪ ,߆ and ߯ which appear in Eq. (92) 
are changed to the new form ߆௖, ߪ௖ and ߯௖ as 
follows: 

ϒ௖ଶ = ൬∑
ଶ

௡ୀଵ
௡ߤ

ଶϒଵଶ
(௡)൰

ଶ

+ ൬∑
ଶ

௡ୀଵ
௡ߤ

ଶϒଶଷ
(௡)൰

ଶ

+

൬∑
ଶ

௡ୀଵ
௡ߤ

ଶϒଵଷ
(௡)൰

ଶ

        (106) 

where ϒ௖ଶ can take (Θ௖ଶ, ߪ௖ଶ or ߯௖ଶ) and 
ϒ௜௝

(௡) = ௜௝߆)
(௡), ߯௜௝

(௡), ߪ௜௝
(௡)). As mentioned above, 

in the case of a system of two particles with the 
same mass ݉ଵ = ݉ଶ, we have ߆ఓఔ

(௡) = ఓఔ߆ , 
ఓఔߪ

(௡) = ఓఔ and ߯ఓఔߪ
(௡) = ߯ఓఔ. This allows us to 

generalize the nonrelativistic global energy 
௡௥ି௡௖ܧ

௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) 
under the modified equal scalar and vector 
Eckart potential plus new modified Hylleraas 
potential, considering that composite systems 
with different masses are described with 
different noncommutative parameters for the 
heterogeneous diatomic molecules (HCl, HBr, 
SO, NO, and HI) as: 
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௡௥ି௡௖ܧ
௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ, ݊, ݆, ݈, ,ݏ ݉) =

 − ଶఈమ

ெ

⎣
⎢
⎢
⎡ (ଵି௔)ቀಾೇబ

ഀమ್ ቁାఏିఝି

൫௡మାଶ(ଶ௡ାଵ)ధ൯ାఒ௟(௟ାଵ)
ଶ(௡ାధ)

⎦
⎥
⎥
⎤

ଶ

+ ௔௏బ
௕

+

⟨ܺ⟩(௡,௟,௠)
ேோாு௉(ߙ, ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ){߬(݆, ݈, ௖߆(ݏ +

ℵߪ௖݉ + ߯௖(107)       . {݉ߗ 

The KGE, as the most well-known relativistic 
wave equation, describes spin-zero particles, but 
its extension in RNCQM symmetries deformed 
Klein-Gordon equation under modified equal 
scalar and vector Eckart potential plus new 
modified Hylleraas potential has a physical 
behavior similar to that of the Duffin–Kemmer 
equation. For meson with spin-1, it can describe 
a dynamic state of a particle with spin one in the 
symmetries of relativistic noncommutative 
quantum mechanics. This is one of the most 
important new results of this research. It is worth 
mentioning that the two simultaneous limits 
,߆) ,ߪ ߯) → (0,0,0) and (߆௖ , ௖ߪ , ߯௖) → (0,0,0), 
we received the results of Refs. [29, 30].  

7. Summary and Conclusion 
In the present work, we have found the 

approximate bound state solutions of deformed 
Klein-Gordon and Schrödinger equations using 
the tool of Bopp’s shift and standard perturbation 
theory methods in modified equal scalar and 
vector Eckart potential plus new modified 
Hylleraas potential in both RNCQM and 
NRNCQM regimes, which correspond to high- 
and low- energy physics for the diatomic 
molecules (N2, H2, HCl, HBr, SO, NO, and HI). 
We have employed the improved approximation 
scheme to deal with the centrifugal term to 
obtain the new relativistic bound state solutions 
௥ି௡௖ܧ

௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ , ଵܸ , ଶܸ, ݊, ݆, ݈, ,ݏ ݉) corresponding 
to the generalized ݊௧௛ excited state that appears 
as a sum of the total shift energy 
௘௛௣ܧ߂

௧௢௧ ,߆) ,ߪ ߯, ݊, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ , ଶܸ, ݆, ݈, ,ݏ ݉) and the 
relativistic energy ܧ௡௟ of the equal vector scalar 
Eckart potential plus modified Hylleraas 
potential. Furthermore, we have obtained the 
new nonrelativistic global energy 
௡௥ି௡௖ܧ

௘௛௣ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ଴ܸ, ଵܸ, ଶܸ , ݊, ݆, ݈, ,ݏ ݉) in 
NRNCQM symmetries as a sum of the 
nonrelativistic energy ܧ௡௟

௡௥and the perturbative 
corrections ݁ܧ߂ℎ݌

ܴܰ ,߆) ,ߪ ߯, ,ߙ ܽ, ܾ, ܸ0, ܸ1, ܸ2, ݊, ݆, ݈, ,ݏ ݉).  

Moreover, we state that the new relativistic 
energy eigenvalues, the new relativistic bound 
state solutions and the new nonrelativistic global 
energy are quite sensitive to potential parameters 
for the quantum states (ߙ, ଴ܸ, ଵܸ, ଶܸ) and the 
discreet atomic quantum numbers (݆, ݈, ,ݏ ݉) in 
addition to noncommutativity parameters (ߪ ,߆ 
and ߯). This behavior is similar to the perturbed 
modified Zeeman effect and the modified 
perturbed spin-orbit coupling in which an 
external magnetic field is applied to the system 
and the spin-orbit couplings are generated by the 
effect of the perturbed effective potential 

௣ܸ௘௥௧
௘௛௣(ݎ) in the symmetries of RNCQM and 

NRNCQM. Furthermore, we can conclude that 
the deformed Klein-Gordon equation under the 
modified equal scalar and vector Eckart potential 
becomes similar to the Duffin–Kemmer equation 
for a meson with spin-1, which can describe the 
dynamic state of a particle with spin one in the 
symmetries of RNCQM. For the only modified 
Eckart potential and only new modified 
Hylleraas potential, their new energy equations 
in the deformed Klien-Gordon and Schrödinger 
theories as special cases are obtained from the 
generalized studied potential MEPNMDHP. 
Furthermore, we have applied our results to 
composite systems, such as molecules made of 
ܰ = 2 particles of masses ݉௡(݊ = 1,2), such as 
N2; H2; HCl, HBr, SO, NO, and HI. It is worth 
mentioning that, for all cases, when making the 
two simultaneous limits (߆, ,ߪ ߯) → (0,0,0) 
and (߆௖ , ௖ߪ , ߯௖) → (0,0,0), the ordinary physical 
quantities are recovered. Finally, given the 
effectiveness of the methods that we followed in 
achieving our goal in this research, we advise 
researchers to apply the same methods to delve 
more deeply in relativistic and nonrelativistic 
regimes for other potentials.  
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