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Abstract: The ݕܦ଺଺

ଵହ଺  isotopes in the O (6) region were investigated. The positive ground-
state band of ݕܦ଺଺

ଵହ଺  nuclei was calculated using the interacting boson model  (IBM-1) and 
the interacting vector boson model (IVBM). The negative parity band energies of the above 
isotope were calculated using (IVBM) only. We plotted the ratios (୉(୍ାଶ)

ா(ଶభ
శ)

, ୉(୍ାଶ)
୉(୍)

, (ூାଶ))ݎ
ூ

)) 
and the E-GOS curve as a function of the spin (I) to investigate the properties of the yrast 
band. Accordingly, the best-fit values of the parameters were used to construct the 
Hamiltonian, and the electromagnetic transition probability B(E2) of this nucleus was 
determined. Theoretical energy levels of dysprosium-156 isotope with a neutron number N 
= 90 and spin parity up to 30ଵ

ା were obtained using the MATLAB-20 simulation program. 
A comparison of these calculated energy levels with the corresponding experimentally 
measured ones shows a good agreement. The results also  draw our attention to the fact that 
the nucleus of interest deforms and exhibits gamma-instability  properties. 
Keywords: Dysprosium Isotopes, Even-even nuclei, Interacting Boson Model-1, 

Interacting Vector Boson Model, Negative parity, Yrast band. 
Abbreviations and Acronyms, IBM: Interacting Boson Model, IVBM: Interacting Vector 

Boson Model, U(5): Spherical limit, SU(3): Axially deformed shape limit O(6): ߛ-
unstable limit, SP(12; R): the non-compact symplectic group. 

 
 

Introduction 
Nuclear physics has generated a large amount 

of theoretical and experimental data related 
to  the atomic nucleus. This wealth of 
information arises from numerous studies that 
attempt to penetrate the atomic nucleus, breaking 
it down into its  various components. A critical 
task for nuclear physics researchers is to adopt 
one or more nuclear  models, which serves as the 
first step in understanding observed and 
measured data, making connections, and  drawing 
conclusions.  

Despite the great success of many proposed 
nuclear models in combining data 
and   "explaining nuclear properties", scientists 
have not yet reached a consensus on a definitive 
model, a unified comprehensive theory that can 

explain everything about nuclear composition 
and  interactions  [1].  

The interacting boson model (IBM) is one of 
the outstanding approaches for   describing the 
nuclear   structure of  medium-heavy nuclei with   
collective properties.  Additionally, IBM was 
found to provide a phenomenological description 
of spectral  data for a wide range of atomic nuclei 
exhibiting collective features, including those 
typically  interpreted as anharmonic oscillators 
or  deformed rotors [2]. IBM introduced a 
simple  connection between IBM's parametric 
and geometric descriptions [3]. The states  in 
IBM  consist of s and d bosons with intrinsic 
momentums of 0 and 2, respectively   [4].  The 
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first and simplest version "of  the  interacting 
boson model" (IBM-1), described in Refs. [2, 5, 
6], is based on some of the "concepts and 
fundamentals"  used in earlier nuclear models. It 
characterizes nuclear properties using a fixed 
number of boson  systems, with no distinction 
between   proton bosons and neutron bosons   [7, 
8].  

The interacting vector boson model (IVBM) 
[9-11] has proven to be suitable  for an accurate 
description of the low-lying ground band of 
well-deformed  even-even nuclei. It   has been 
used to describe the negative parity band of 
the  atomic nucleus as well, by considering the 
proton and the neutron bosons separately. The 
IVBM is fundamentally based on the algebra of 
the non-compact symplectic group   SP(12; R), 
which serves as the dynamical symmetry group 
of the model. This algebra is based  on the 
creation and   annihilation operators for two types 
of vector bosons, called p  and n bosons. These 
bosons differ in their  pseudospin by ±1/2, within 
the  three-dimensional oscillator potential. In the 
rotational limit of   the IVBM, the  reduction from 
the SP (12; R) to the So (3) angular momentum 
group is carried   out by the compact unitary 
subgroup U(6) [12, 13]. The  symplectic 
extension of the   IVBM allows us to treat bands 
with positive and negative  parity to be 
considered as yrast bands,   meaning that the 
states with a given L minimize the energy value 
with respect to the number of bosons N  to form 
the base state of  the model [14]. For most 
deformed nuclei, the description of axisymmetric 
and reflection symmetric  spheres is sufficient to 
reproduce the spectrum of the band [15]. 

The energy ratio ܴସ/ଶ of the first 4ଵ
ାand 2ଵ

ା 
excited states in an even-even nucleus, ܴସ/ଶ =
ா(ସభ

శ)
ா(ଶభ

శ)
 , is often used as a good indicator that takes 

into account different collective motions of the 
nuclei and critical point symmetries, especially 
in the deep structure close to the core. It is 
known that, based on some ideal assumptions, 
the energy ratio is expected to be 10/3 for a well-
deformed axisymmetric rotor, 2.5 for the gamma 
instability limit, and 2.0 for a spherical vibrator, 
corresponding to the dynamical symmetries 
SU(3), O(6), and U(5), respectively. These 
symmetries degenerate from the group U(6), 
which governs the most general two-body 
Hamiltonian within the boson space among 
bosons [16-20].  

Furthermore, the E-GOS curve (E-gama over 
spin) is a good tool for classifying nuclei. The E-
GOS curve can actually follow the expected 
trend [17, 21].   

Various nuclear observations have indicated 
multiple types of deformations  after measuring 
certain multipole moments. Numerous signs 
of  nuclear shape phase transitions were also 
observed [22]. For some isotopes, there  is a 
shape transition from vibration to axial rotation 
or gamma-labile rotation associated with  neutron 
number changes [23]. A type of collective 
movement can involve 
different  characteristics.  For example, along the 
yrast line transitions between rotations can 
occur,  with a different relationship  between 
angular momentum and rotational frequency, 
which is  called a band crossing (with back-
bending)   [24, 25]. To correctly describe 
phenomena like the moment of inertia and back-
bending frequency, it is important to consider 
not just pairs of monopoles but also pairs of 
double-stretched quadrupoles, despite their 
minimal impact on energy [20, 26]. 

In this research, the dysprosium-(156) isotope 
with atomic number Z = 66 was studied 
theoretically using the IBM-1 and the IVBM 
modules. While the IBM-1 model and IVBM 
modules were used to calculate the energy of the 
positive ground state band of the ݕܦ଺଺

ଵହ଺  nucleus, 
the negative parity band energies of ݕܦ଺଺

ଵହ଺  were 
calculated using the IVBM model only [17]. 

Theoretical Description 
1) IBM-1 Model: 

 In the interacting boson model-1, the low-
energy collective property   of even nuclei can be 
generated as the state of N bosons. Namely, 
there is no difference in the degrees of  freedom 
of the proton and neutron bosons. The N bosons 
are integrated by introducing six boson 
degrees  of freedom and occupy two levels: one 
with angular momentum L = 0,  called the s 
bosons, and the other a  quadrupole boson with 
angular momentum    L = 2,  called the d boson 
[27, 28]. Furthermore, the   model assumes that 
the structure of the low-lying  band is determined 
by the excitations between  valence particles 
outside the closed  main shell    [29].  

The underlying structure of the model's six-
dimensional unitary group  U(6) leads   to a 
simple Hamiltonian capable of describing the 
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three dynamical symmetries  U(5), SU(3), and   
O(6) [30, 31]. The most general IBM 
Hamiltonian can be expressed as [32, 33]: 

ܪ = ∑ ௜ߝ + ∑ ௜ܸ௝
ே
௜ழ௝

ே
௜ୀଵ                    (1) 

where ߝ௜ is the fundamental boson energy and 
௜ܸ௝ is the potential interaction between bosons ݅ 

and ݆ [34]. 

The Hamiltonian, in its multipole form, is 
written as [35]: 

෡ܪ = ߝ ො݊ௗ + ఖߙ ෠ܲ ෠ܲ + ෠ܮ෠ܮଵߙ + ଶߙ ෠ܳ ෠ܳ + ଷߙ ෠ܶଷ ෠ܶଷ +
ସߙ ෠ܶସ ෠ܶସ                    (2) 

where ݊ௗ = (݀ற. ݀) is the total number of d 
boson operators, P = 1/2[(d.d) – (s.s)] is the 
pairing operator, ܮ = √10[݀ற × ݀]௟ is the 
angular momentum operator, and ܳ is the 
quadrupole operator, defined as:  

ܳ = [݀ற × ݏ × றݏ × ݀](ଶ) + ߯[݀ற × ݀](ଶ). 

Here, (߯) is the quadrupole structure 
parameter, with values of 0 and ±√7/2.  

In Eq. (2), Tr represents the octupole (r = 3) 
and hexadecapole (r = 4) operators, while 
ߝ = ௗߝ  ,௦ is the intrinsic boson energy [33ߝ −
35]. The parameters ߙఖ, ,ଵߙ ,ଶߙ ,ଷߙ   ସߙ ݀݊ܽ
represent the pairing strength, angular 
momentum, quadrupole, octupole, and 
hexadecapole interactions between bosons, 
respectively. The Hamiltonian can be rewritten 
in terms of the Casimir operator of the U(6) 
group, in which case the Hamiltonian H can be 
said to have dynamical symmetries; these 
symmetries are called the SU(5) vibrational 
symmetry, SU(3) rotational symmetry, and O(6) 
  .unstable symmetry [36]-ߛ

The eigenvalues of O(6) dynamic symmetry 
can be written as [2]:  

ܧ = ܰ)ଷܭ − ܰ)(ߪ + ߪ + 4) + ߬)ସ߬ܭ + 3) +
ܮ)ܮହܭ + 1)             (3) 

where ܭଷ =ߙఖ/4, ܭସ= ߙଷ/2, ܭହ=ߙଵ −  .ଷ/10ߙ
ܰ = గܰ + ఔܰ with N representing the absolute 
number of bosons, గܰ the number of valence 
protons relative to the nearest closed shell, and 

ఔܰ the corresponding number of valence 
neutrons. The variable σ = N, N−2, ..., 0 or 1, but 
for the low energy-momentum band we can set σ 
= N.  

     O(6) is marked with quantum numbers τ = σ, 
σ−1, ..., 0; L = 2λ, 2λ −2, ..., λ +1, where λ is a 

non-positive integer defined as λ = τ−3υ_, υ_= 0, 
1, and υ_ is the number of triplet bosons. σ is 
O(6) non-reducible representations, while τ is the 
O(5) [37, 38]. The preceding equation starts out 
as follows; 

ܧ = ߬)ସ߬ܭ + 3) + ܮ)ܮହܭ + 1)           (4) 

2) E-GOS: 

E-GOS (E-gama over spin) is one of the most 
important methods for determining the properties 
of the nuclei at different energy states, and it can 
be done by plotting the relationship between the 
gamma energy ൫ܧఊ൯ divided by the spin (ܫ) as a 
function of the spin (ܫ). This relationship for the 
three limits (vibrational, rotational and ߛ-
unstable) is given as follows [39]: 

ܷ(5): ܴ = ħఠ
ூ

ூ→ஶ
ሱ⎯ሮ  0             (5) 

ܷܵ(3): ܴ = ቀħమ

ଶ௃
ቁ ቀ4 − ଶ

ூ
ቁ

ூ→ஶ
ሱ⎯ሮ 4 ቀħమ

ଶ௃
ቁ          (6) 

ܱ(6): ܴ =  ୉൫ଶభ
శ൯

ସ
ቀ1 + ଶ

ூ
ቁ 

ூ→ஶ
ሱ⎯ሮ ୉(ଶభ

శ) 
ସ

          (7) 

3) Back-bending: 

To determine if the isotope has got back-
bending property and to identify the location of 
the back-bending if it was found, we should 
examine the relationship between the moment of 
inertia (2J/ħ2) and gamma energy (ܧఊ).  This 
relationship can be written as [8, 39]:  

ℏଶ/ܬ2  =  ସூିଶ
 ாം

             (8) 

While the relation between the ħω and ܧఊ is 
given by [40]: 

ħ߱ =   ாം

ඥூ(ூାଵ)ିඥ(ூିଶ)(ூିଵ)
           (9) 

4) B(E2) Values: 

A successful nuclear model must be able to 
accurately describe the energy spectrum of the 
nucleus and its electromagnetic properties. This 
property provides a good test of the nuclear 
structure and the wave function of the nuclear 
model [37, 41]. The reduction probability of the 
electric quadrupole transition B(E2) depends on 
the available experimental data on the half-lives 
of quantum transitions between energy levels. 
This probability is given by the relationship: 

(2ܧ)ܤ = ଴.଴ହ଺ହ଻

భ்
మ

ം(௣௦)ாം
ఱ(ெ௘௏)

(݁ଶܾଶ)         (10) 
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In the case of just one transition out of the 
level, the relationship is: 

భܶ
మ

ఊ = ܶభ
మ
(exp)(1 +∝௧௢௧)         (11) 

where ∝௧௢௧ is the internal transformation 
coefficient [42].  

5) IVBM Model: 

The scientists extended the IVBM by 
incorporating its symplectic dynamical 
symmetry Sp(12, R), which makes it possible to 
vary the number of bosons representing 
blockages in the Hamiltonian model. This 
symplectic extension of the interacting vector 
boson model enables a more comprehensive 
classification of states than the single version 
and provides more opportunities to consider 
other collective bands [43].  

Nuclear states are considered as a system of 
an even number of p-bosons with isospin T = 1/2 
in the interacting vector boson model. This 
model is somewhat similar to the interacting 
boson model. For example, both models have 
solvable dynamic symmetries SU(3). By 
assigning angular momentum L and isospin T 
(LT = 01, 21, 10) for each boson pair in the ideal 
space of S, D bosons (T = 1) and P bosons (T = 
0), we can find the relationship between the two 
models. We use the results that we can get by 
applying the dynamical symmetry algebra of 
IVBM, which is the non-compact symplectic 
algebra Sp(12, R), for the boson mapping[43-
45]. 

The permissible values of energy states of the 
two bands, GSB and NPB, are given in the 
IVBM model by [43, 46]: 

ௌ஻ீ(ܫ)ܧ = ܫ)ܫߚ + 1) +  (12)         ܫߛ

and 

ே௉஻(ܫ)ܧ = ܫ)ܫߚ + 1) + ߛ) + ܫ(ߟ +  (13)        ߞ

Here, the parameter ߚ represents the intensity 
of the effect of the rotational properties, while ߛ  
represents the intensity of the effect of the 
vibrational properties on the nucleus. The 
parameters ߟ and ߞ are crucial for determining 
the values of the energy states in the NPB beam. 
The values of these parameters can be 
determined by matching the experimental values 
of the energy states with Eqs. (1) and (2).  

The GSB and NPB bands, with their distinct 
states ܫగ = 0ା, 2ା , 4ା, … గܫ ݀݊ܽ   =
1ା , 3ା, 5ା, … , respectively, overlap to form a 
single band called the octupole band ܫగ =
0ା , 1ି, 2ା, 3ି, 4ା, 5ି, …. This overlap is a good 
example of the staggering of energies between 
these two bands, caused by the fact that an 
energy level of I exchanges its location with an 
energy level of I+1 [47]. The relationship of the 
staggering of patterns between the two bands is 
given as: 

Δܧଵ,ఊ(ܫ) = ଵ
ଵ଺

ቀ6ܧଵ,ఊ(ܫ) − ܫ)ଵ,ఊܧ4 − 1) −

ܫ)ଵ,ఊܧ4 + 1) + ܫ)ଵ,ఊܧ − 2) + ܫ)ଵ,ఊܧ + 2)ቁ   
(14) 

and 

(ܫ)ଵ,ఊܧ = ܫ)ܧ + 1) −  (15)         (ܫ)ܧ

The ratio between any two consecutive states 
in the beam is important for determining state 
properties for the even-even nucleus and is given 
by: 

ݎ ቀ(୍ାଶ)
୍

ቁ = ൬ܴ ቀூାଶ
ூ

ቁ
௘௫௣

− (ூାଶ)
ூ

൰ × ூ(ூାଵ)
ଶ(ூାଶ)

     (16) 

Here, ܴ ቀூାଶ
ூ

ቁ
௘௫௣

represents the ratio between 

experimental states I+2 and I. If the ratio 
ݎ ቀ(ூାଶ)

ூ
ቁ falls between  0.1 and 0.35, the nuclei 

have vibrational properties; if it is between 0.4 
and 0.6, the nuclei have ߛ −  ݈ܾ݁ܽݐݏ݊ݑ
properties; and if it is between 0.6 and 1.0, the 
nuclei have rotational properties. 

Results and Discussion 
The investigation of the nuclear structure and 

its deformation of the dysprosium isotope (156) 
was conducted using the IBM-1 and IVBM 
models. Dysprosium isotope (156) has an atomic 
number Z = 66, so it has eight proton bosons 
(middle shell) and four neutron bosons, so the 
total number of bosons for this isotope is 12. Eq. 
(4) is used to calculate the values of the 
parameters K4 and K5 twice, once for the 
baseband and once for the s-band, and Table 1 
shows these values along with the number of 
isotopic bosons. 
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TABLE 1. Number of bosons and IBM-1 parameters of g and s bands in KeV. 

isotope గܰ ఔܰ Total # of Bosons g-band s-band 
 ହܭ ସܭ ହܭ ସܭ

଺଺ݕܦ
ଵହ଺  8 4 12 24.023 6.9464 91.787 -17.12 

 

By simulating the IBM-1 eigenvalue Eq. (4) 
using the MATLAB-20 program, we obtained 
the energy levels of the positive Yrast band. 
Furthermore, we also calculated the energy 
levels of the negative parity bands using Eqs. 

(12) and (13) obtained from the IVBM. Table 3 
shows that the results are very close to the 
experimental data, and the IBM-1 model gives 
more accurate results than the positive parity 
band of the IVBM model, as shown in Fig. 1.  

TABLE 2. IVBM parameters of GSB and NPB in KeV. 
Isotop ߞ ߟ ߛ ߚ 

଺଺ݕܦ
ଵହ଺  9.7 39.9 -38.8 1272.7 

TABLE 3. Positive and negative energy levels for ݕܦ଺଺
ଵହ଺ . 

Spin (ܫగ) ܧ௘௫௣ (KeV) ܧ௖௟௖ (KeV) Error (%) 
0ା 0 0 0 
1ି 1293.2 1293.2 0 
2ା 137.77 137.8 0 
3ି 1368.4 1392.3 -1.75 
4ା 404.19 379.2 6.19 
5ି 1526.3 1569.0 -2.80 
6ା 770.44 724.2 6.01 
7ି 1810 1823.3 -0.74 
8ା 1215.61 1172.8 3.52 
9ି 2186.6 2155.2 1.43 

10ା 1725.02 1725 0.0 
11ି 2636.6 2564.8 2.72 
12ା 2285.88 2285.9 0.0 
13ି 3154.2 3051.9 3.24 
14ା 2887.82 2830 2.00 
15ି 3719.6 3616.6 2.77 
16ା 3523.3 3420.8 2.90 
17ି 4331.1 4258.9 1.67 
18ା 4178.1 4058.2 2.87 
19ି 4978.8 4978.8 0.0 
20ା 4859 4742.2 2.40 
21ି - - - 
22ା 5573 5472.8 1.80 
23ି - - - 
24ା 6328.7 6250 1.24 
25ି - - - 
26ା 7130.3 7073.9 0.79 
27ି - - - 
28ା 7978.5 7944.4 0.43 
29ି - - - 
30ା 8875.9 8861.5 0.16 
31ି - - - 
32ା 9825.2 9825.2 0.0 
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FIG. 1. Theoretical and practical energy levels as a function of angular momentum. 

By examining the 2ଵ
ା energy level value for 

the ݕܦ଺଺
ଵହ଺  isotope, we found that it to be 

approximately 137.8 KeV. This led us to expect 
rotational symmetry of the isotope, but when we 
performed other tests, we found dissimilarity! To 
determine the symmetry of the Dy(156) isotope, 
we calculated the energy ratios (ா(୍ାଶ)

ா൫ଶభ
శ൯ . The result 

aligned with the ߛ-unstable symmetry, as the 

typical ratios for ߛ-unstable O(6) were closest to 
the calculated values [1, 5]. Table 4 compares 
the calculated ratios using the IBM-1 with 
experimental ratios. Table 5 provides the typical 
values of the ratios to compare them with the 
calculated values and determine the type of 
symmetry that appeared to be O(6), see Fig. 2.  

TABLE 4. Comparison of practical and theoretical energy ratios. 

Isotope 4)ܧଵ
ା)/2)ܧଵ

ା) 6)ܧଵ
ା)/2)ܧଵ

ା) 8)ܧଵ
ା)/2)ܧଵ

ା) 10)ܧଵ
ା)/2)ܧଵ

ା) 
EXP IBM-1 EXP I B M - 1 EXP I B M - 1 EXP I B M - 1 

଺଺ݕܦ
ଵହ଺ 2.93 2 . 7 5 5.59 5 . 2 6 8.82 8 . 5 1 13.5 1 2 . 5 2 

TABLE 5. Typical values for energy ratios. 
Symmetry 2)ܧଵ

ା) 4)ܧଵ
ା)/2)ܧଵ

ା) ܴ଺
ଶ

 ଼ܴ
ଶ
 ܴଵ଴

ଶ
 

U(5) 500 2 ≤ ܴସ
ଶ

≤ 2.4 3 4 5 

O(6) 300 2.4 ≤ ܴସ
ଶ

≤ 2.7 4.5 7 10 

SU(3) 100 3 ≤ ܴସ
ଶ

≤ 3.3 7 12 18.33 

 
FIG. 2. Ratios with respect to the first energy level (2ଵ

ା) 
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In addition, the ratios ୉(୍ାଶ)
୉(୍)

 were calculated 
and compared with the typical values (Table 6 
and Fig. 3), where the results showed that the 
Dy-156 isotope is closer to following the O(6) 

limit. Moreover, we have determined the 
symmetry using the E-GOS method and we have 
made sure that the isotope has ߛ-unstable 
symmetry (Fig. 4).  

TABLE 6. Comparison between typical and calculated values for energy ratios. 
symmetry ܴସ/ଶ = 4ଵ)ܧ

ା)/2)ܧଵ
ା) ܴ଺

ସ
 ଼ܴ

଺
 ܴଵ଴

଼
 ܴଵଶ

ଵ଴
 

U(5) 2 1.5 1.33 1.25 1.2 
O(6) 2.5 1.8 1.56 1.43 1.35 

SU(3) 3.33 2.1 1.71 1.53 1.42 

଺଺ݕܦ
ଵହ଺  EXP 2.93 1.90 1.58 1.42 1.33 

CLC 2.75 1.91 1.62 1.47 1.33 

 
FIG. 3. Ratios with respect to variable states. 

 
FIG. 4. E-GOS for ݕܦ଺଺

ଵହ଺ . 
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To determine the presence and location of 
back-bending in this isotope, the moment of 
inertia was calculated using Eq. (8), along with 
the transition energy ܧఊ between consecutive 
energy levels. The rotational frequency ħ߱ for 
each even spin was also calculated using Eq. (9). 
Fig. 5 shows the relationship between the 
moment of inertia and the rotational frequency 
for the isotope under study. Unbending rather 
than back-bending was observed due to the 
strong interaction between the ground-state band 
and the spin-aligned S-band [48, 49]. However, 
there was a difference in the isotope behavior at 

angular momentum in the range of 10-20 
compared to the ranges of 0-10 and 20-30.  

The energy of each level was plotted as a 
function of the angular momentum J(J+1) in Fig. 
6, to check what we had found in the previous 
figure. In order to know more about the nature of 
the back-bending, we plotted ܧఊ as a function of 
J in Fig. 7. This plot shows that there is a 
continuous increase without a decrease in the 
transmission energy with an increase in 
momentum, and this confirms the observations 
from the last two figures. 

 
FIG. 5. Back-bending phenomena. 

 
FIG. 6. Experimental and IBM-1 calculated energy levels as a function of spin. 
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FIG. 7. Transition energy (ܧఊ) changes with momentum (J). 

Gama transitions and their probabilities 
between different energy levels are important 
parameters in the study of the nuclear properties 
of any isotope. We calculated this function, 
B(E2), for different transitions between multiple 
levels of the isotope under study and compared it 
with the experimental results. This calculation 
was based on available laboratory values for the 

gamma energies of different transitions, the half-
life of the gamma transition, and the available 
values for the isotope internal transformation 
coefficient. Using Eq. (10), we determined the 
electric transition probabilities of the 
quadrupole, B(E2). Table 7 shows that the 
results are in good agreement with the 
experimental values.  

TABLE 7. Electromagnetic transitions using the half-life of the ଺଺ݕܦ
ଵହ଺  isotope. 

గ ܶଵܫ
ଶ(௘௫௣)

௧௢௧∝ (ܸ݁ܭ)ఊܧ (ݏ݌)
ା  B(E2) W.u error exp clc 

2ା → 0ା 823 137.77 0.849 150 150.07 0.049 
4ା → 2ା 31.6 266.42 0.0933 244.8 244.43 0.151 
6ା → 4ା 6.3 366.25 0.0356 264 263.63 0.140 
8ା → 6ା 2.26 445.17 0.0206 281 281.07 0.026 

10ା → 8ା 1.06 509.41 0.01444 310 307.29 0.875 
12ା → 10ା 0.62 560.86 0.01131 330 325.74 1.292 
14ା → 12ା 0.56 601.94 0.0095 250 253.72 1.488 
16ା → 14ା 0.32 635.48 0.00833 340 338.96 0.305 
18ା → 16ା 0.24 654.8 0.00776 390 389.32 0.175 
20ା → 18ା 0.24 680.9 0.0708 320 320.42 0.132 
22ା → 20ା 0.21 714 0.00634 290 289.04 0.331 
24ା → 22ା 0.155 755.7 0.00557 300 295.07 1.644 

 

Fig. 8 shows the relationship between the 
ratio ݎ ቀ(ூାଶ)

ூ
ቁ and the spin I. This figure 

provides numerical values for this ratio. It is 
clear that the ratio was between 0.4 r 0.6 for 
the spin higher than 6, so we can say that the Dy 
(156) isotope has ߛ-unstable properties with the 
O(6) limit. However, for the lower spins of 2, 4, 
and 6 these ratios reached up to 0.7, so the nuclei 
could have rotating properties. Despite this, most 

of the given spin ranges were found within the 
O(6) limit. Table 8 shows the typical ratio value 
(r) for each limit. 

TABLE 8. Typical values for ratios. 

Symmetry ݎ ቆ
ܫ) + 2)

ܫ
ቇ 

U (5) 0.1 ≤ ݎ ≤ 0.35 
O (6) 0.4 ≤ ݎ ≤ 0.6 

SU (3) 0.6 ≤ ݎ ≤ 1 
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Fig. 9 shows the staggering between the 
energy states of the GSB and NPB bands in the 
Dy (156) isotope. This staggering is evidence of 

the interference of the energy states between the 
two bands. 

 
FIG. 8. The ratio between any two consecutive states in the beam. 

 
FIG. 9. Staggering patterns between GSB and NPB. 

Conclusion 
In this work, we carried out a systematic 

investigation of the even-even ݕܦ ଺଺
ଵହ଺ isotope 

within the IBM-1 and IVBM frameworks. We 
calculated the yrast and negative band energy 
levels. The ratio values (E(I+2)/E2

+), 
(E(I+2)/E(I)), and ݎ ቀ(ூାଶ)

ூ
ቁ indicate that this 

isotope is due to the ߛ - unstable symmetry. 
Additionally, the calculated moment of inertia 

and ħω values show good agreement with 
experimental data. In this isotope, the back-
bending phenomenon does not appear clearly at J 
=10, but there is a slight change in the track of 
the curve of the relationship between photon 
energy and moment of inertia in the interval 
10 ≥ ܬ ≥ 20. 
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