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Abstract: The Dirac comb problem in quantum mechanics is revisited by estimating its 
energy band structure, including the band gap, bandwidth, and the effective mass at band 
edges. The case of an attractive strong Dirac comb potential is considered. Our findings 
show the existence of a single bound energy band state, which is flat with a small width 
and a large effective mass at both of its edges; positive at its lower edge and negative at its 
upper edge. 
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1. Introduction 
In quantum mechanics, only a handful of 

problems can be solved analytically. One of 
these problems is the Kronig-Penney potential, 
introduced in the early 1930s to model the short-
range nature of the atomic potentials and the 
periodic lattice structure [1]. A year later, Kronig 
and Penney simplified the original model and 
introduced the Dirac comb potential, which 
consists of one-dimensional evenly spaced delta-
function peaks. This model is suitable for 
obtaining many general properties of realistic 
quantum systems. It is a solvable model 
frequently used to describe systems with very 
short-range interactions which are located 
around evenly spaced given points [2, 3].  

The impressive progress in experimental 
physics in the early 1980s, coupled with the 
advances in semiconductor technology and 
nanophysical systems twenty years later, made 
possible the fabrication of heterostructures, 
quantum wells, and new synthetic materials. 
This renewed the interest of scientists and 
engineers in this elementary type of simple 
model [4, 5]. It has contributed immensely to 
explaining the electronic band structure in a 
crystalline solid such as band gap formation [4, 

5]. This has led to a huge advancement in solid-
state and condensed-matter physics. Many 
macroscopic properties of materials are closely 
related to their microscopic band structures. 
They are of extreme practical importance 
because they play a major role in understanding 
the transport phenomena theory of insulation and 
conduction in solids [6-11].  

Because material properties are strongly 
influenced by energy band patterns, many 
physical properties of solids are determined from 
the location of band edges, band gaps, and their 
widths [6-11]. The goal of this work is to 
estimate the energy band structure (band gap, 
bandwidth, and effective mass) of an electron 
under the influence of a strong attractive Dirac 
comb potential. Similar attempts have been made 
for bound and unbound band structures under the 
influence of a weak attractive Dirac comb 
potential [12, 13]. 

2. Band Gap and Band Width 
Calculation 

One of the few problems in quantum 
mechanics that can be solved analytically is the 
Dirac comb [14-17]. This work considers only 
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the attractive case of this model, where the 
associated potential is expressed as:  
(ݔ)ܸ = ࣅ− ∑ x)ߜ − n܉)ஶ

           (1) 

with strength λ and lattice spacing a. 

Only the bound states are considered and 
therefore the electron energy is negative and 
expressed as: 

= ࡱ  − ħమ۹మ

ଶ୫
            (2) 

K is related to the Bloch wave number k 
through the following transcendental equation 
[14-17]: 

ࡼ− ୱ୧୬୦(۹ୟ)
۹ୟ

+ cosh(۹a) = cos(ܓa)          (3) 

where ࡼ = ఒ
ħమ  is a dimensionless parameter 

representing the scattering power of the Dirac 
comb potential. 

Equation (3) determines the permitted 
energies E through the values of the parameter 
K. This transcendental equation cannot be solved 
analytically; it can only be solved numerically or 
graphically. 

These permitted energies are determined 
because the right-hand side of Eq. (3) is 
bounded: 

−1 ≤ cos(ܓa) ≤ 1           (4) 

Analyzing Eq. (3) numerically (see Table 1) 
and graphically (Figs. 1-5), we note the 
following facts: 
 A single bound energy band is formed, 

regardless of the value of the scattering power 
P.  

 The band is partial and not complete when 0 
< P < 2. It does not span the entire half-
interval of the first Brillouin zone from 0 to 
 -but rather the interval from 0 to arccos (1 ,ߨ
P). 

 The band is complete and spans the whole 
half-interval of the first Brillouin zone from 0 
to ߨ when P ≥ 2. 

 The band width increases very fast when 0 < 
P < 2. 

 The band width reaches its maximum value 
when P = 2. 

 The band width decreases at a slower rate 
than the initial increase when P > 2. 

 The band width almost vanishes and cannot 
be detected when P ≥ 15. 

TABLE 1. The energies at both ends of the band and its width  

P (ܽܭ) (ܽܭ)గ ܧ(
ħଶ

2maଶ) ܧగ(
ħଶ

2maଶ) ܹ(
ħଶ

2maଶ) 

0 0 x 0  0 
0.5 1.04363 x -1.08916 0 1.08916 
1.0 1.54340 x -2.38208 0 2.38208 
1.5 1.98036 x -3.92183 0 3.92183 
2.0 2.39936 0 -5.75693 0 5.75693 
2.5 2.81770 1.77603 -7.93943 -3.15428 4.78515 
3.0 3.24364 2.57568 -10.52100 -6.63413 3.88687 
3.5 3.68095 3.23488 -13.54939 -10.46445 3.08494 
4.0 4.13068 3.83007 -17.06252 -14.66944 2.39308 
4.5 4.59212 4.38973 -21.08757 -19.26973 1.81784 
5.0 5.06363 4.92812 -25.64035 -24.28637 1.35398 

10.0 10.0090 9.99909 -100.18008 -99.98009 0.19999 
15.0 15.0000 15.0000 -225.0000 -225.0000 0 

* Numerical values in Table 1 are provided by dCode equation solver tool. 
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FIG. 1. The function " − ࡼ ୱ୧୬୦(۹ୟ)

۹ୟ
+ cosh(۹a)"  versus ۹a for (a) 0 < P < 2, (b) P =2, (c) P > 2. 

 
FIG. 2. Dispersion relation versus ܓa for (a) 0 < P < 2, (b) P =2, (c) P > 2.  

   
FIG. 3. The band width as a function of the scattering power P.  

The case of the strong Dirac comb potential is 
considered in this work and therefore the 
scattering power P >>1. 

Analyzing Fig. 4 below, we notice that the 
left-hand side of Eq. (3) intersects the axis Ka at 
a value very close to P. It also intersects the 
horizontal lines representing the points ܓa = 0 
and ܓa = π at: 

۹a = ࡼ + δ            (5) 

and 

۹a = ࡼ − δ            (6) 

respectively, where 0 ≤ δ0 << 1 and 0 ≤ δπ << 1. 

Inserting Eq. (5) into Eq. (3) when ܓa = 0, 
we get: 
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ࡼ− ୱ୧୬୦(ାஔబ)
(ାஔబ)

+ cosh(P + δ) = 1         (7) 

Solving for δ0 to the first-order 
approximation, yields [18, 19]: 
δ0 ≈ 2Pe-P            (8) 

Therefore, 
۹a ≈ 1)ࡼ  + 2eି(9)            (ࡼ 

The lowest energy of the band is at: 

ࡱ  =  − ħమ۹బ
మ

ଶ୫
≈ − ħమࡼమ(ଵାସୣషࡼ)

ଶ୫ୟమ         (10) 

Similarly, for ܓa = π, the same approach 
yields: 

δπ ≈ 2Pe–P          (11) 

and 
۹a ≈ 1)ࡼ  − 2eି(12)         (ࡼ 

The highest energy of the band is at: 

ࡱ  =  − ħమ۹ಘ
మ

ଶ୫
≈ − ħమࡼమ(ଵିସୣషࡼ)

ଶ୫ୟమ         (13) 

Therefore, the width of the band is: 

ࢃ = ࡱ − ࡱ  =  ସħమࡼమୣషࡼ

୫ୟమ         (14) 

 
FIG. 4. The function " − ࡼ ୱ୧୬୦(۹ୟ)

۹ୟ
+ cosh(۹a)"  versus ۹a for large values of P. 

Fig. 5 below shows the dispersion relation. It 
consists of a single bound energy band lying 
very far below the zero line. It is almost flat, 

with its width decreasing with increasing values 
of the scattering power P.  

 
FIG. 5. The dispersion relation versus ܓa for large values of P. 
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Let us now find an analytical approximation 
for the dispersion relation E(k). For that, we 
make use of the observation made from the 
graph in Fig. 4. The left-hand side of Eq. (3), 
between the two horizontal lines representing the 
points ܓa = 0 and ܓa = π, can be approximated 
by a straight line passing through points 
(۹a, −1), (P,0), and (۹a, 1). Hence, this side 
of Eq. (3) can be expressed as: 

L. H. S = ଵ
ஔబ

(۹a −   (15)         (ࡼ

and this leads to: 
۹a = δ cos(ࢇ) +  (16)         ࡼ

Therefore, the energy E(k) can be expressed 
as a function of the Bloch wave number k as: 

(ࢇ)ࡱ = − ħమ

ଶ୫ୟమ [2eିࡼ cos(ࢇ) + 1]ଶ       (17) 

The width of the band can also be expressed 
as: 

ࢃ = (࣊)ࡱ − ()ࡱ =  ସħమࡼమୣషࡼ

୫ୟమ          (18) 

The above dispersion relation E(ka) will be 
used in the next section to confirm and verify the 
final findings regarding the effective mass 
estimations. It is worth noting that Eqs. (17) and 
(18) are compatible with the results obtained in 
Eqs. (10) and (13) when the scattering power P 
>>1.  

With increasing scattering power P, the 
dependence of the above dispersion relation 
E(ka) on the Bloch wave number k weakens and 
becomes practically undetectable beyond P = 15, 
where the energy band collapses to a single 
energy level ࡱ = − ħమ

ଶ୫ୟమ. This energy is similar 
to that of a particle under the influence of a 
single delta function potential. Consequently, 
this form of energy confinement leads to a 
spatial localization phenomenon near the delta 
spike. 

3. Effective Mass Calculation 
The effective mass is an important tool in the 

theory of solids. It is used to describe the 
features of band structure in semiconductors and 
insulators, where most experimental features 
arise from electron and hole occupation near the 
endpoints of valence and conduction bands [20-
23]. In this section, we evaluate the effective 
mass at both edges of the single bound energy 
band found in the previous section. 

 The lowest edge of the band: ka = 0. 

This edge corresponds to:  
۹a = ۹a − ∈  (19)         (aܓ)

with ∈(ka) << 1 and ∈(0) = 0  

The corresponding energy is expressed as: 

ࡱ = − ħమ۹మ

ଶ୫
= − ħమ

ଶ୫ୟమ [۹a−∈]ଶ       (20)  

Combining Eqs. (19) and (3) yields: 

ࡼ− ୱ୧୬୦(۹బୟି∈)
(۹బୟି∈)

+ cosh(۹a−∈) − 1 = δ(ܓa)  
(21) 

where 

δ(ܓa) = −1 + cos(ܓa)         (22) 

Expanding the above expression for δ(ܓa) in 
Eq. (21) as a Taylor power series in ∈≪ 1 
yields:  

δ(ܓa) =
 [(۹బୟ )ୡ୭ୱ୦(۹బୟ)ିୱ୧୬୦(۹బୟ)]ିࡼ(۹బୟ)మ ୱ୧୬୦(۹బୟ)

(۹బୟ)మ ∈
+O(∈ଶ)          (23) 

Using the Taylor reversion process for Eq. 
(23) yields [18, 19]:  

∈=
 (۹బୟ)మ

[(۹బୟ) ୡ୭ୱ୦(۹బୟ)ିୱ୧୬୦(۹బୟ)]ି(۹బୟ)మ ୱ୧୬୦(۹బୟ) δ +
O(δଶ)           (24) 

By using Eqs. (20), (22), and (24), the 
effective mass expression at the lowest edge of 
the band becomes: 

[ୢమா
ୢ୩మ] = ħమ

୫∗ =

− ħమ

୫
(۹బୟ)య

[(۹బୟ )ୡ୭ୱ୦(۹బୟ)ିୱ୧୬୦(۹బୟ)]ିࡼ(۹బୟ)మ ୱ୧୬୦(۹బୟ)
           (25) 

Hence, at the bottom of the band, the ratio 
(m*/m) of the effective mass to the mass of the 
electron is expressed as: 

[୫∗

୫
] =

− [(۹బୟ) ୡ୭ୱ୦(۹బୟ)ିୱ୧୬୦(۹బୟ)]ିࡼ(۹బୟ)మ ୱ୧୬୦(۹బୟ)
(۹బୟ)య   

(26) 

Using Eq. (9) and the fact that P >> 1, the 
effective mass ratio can be simplified to: 

[୫∗

୫
] ≈ ࡼୣ

ࡼ          (27) 

The dispersion relation (17) is now used to 
verify and confirm the result of Eq. (27): 
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[ୢమா
ୢ୩మ] = ħమ

୫∗ = 2 ħమ

୫
1)ࡼeିࡼ + eି(28)       (ࡼ 

Therefore, the effective mass ratio (m*/m) is 
estimated as: 

[୫∗

୫
] ≈ ࡼୣ

ࡼ (1 − eିࡼ) ≈ ࡼୣ

ࡼ        (29) 

which is exactly what was found in Eq. (27). 

In conclusion, the effective mass at the lowest 
edge of the band is positive and large in value. 

 The highest edge of the band: ka = π. 

This edge corresponds to:  
۹a = ۹a + ∈  (30)         (aܓ)

with ∈(ka) << 1 and ∈(π) = 0  

The corresponding energy is expressed as: 

ࡱ = − ħమ۹మ

ଶ୫
= − ħమ

ଶ୫ୟమ [۹a+∈]ଶ       (31) 

Combining Eqs. (28) and (3) yields: 

ࡼ− ୱ୧୬୦(۹ಘୟା∈)
(۹ಘୟା∈)

+ cosh(۹a+∈) + 1 =    (aܓ)∆
(32) 

where: 

(aܓ)∆ = 1 + cos(ܓa)         (33) 

Expanding the above expression ∆(ܓa) in Eq. 
(32) as a Taylor power series in ∈≪ 1 yields:  

(aܓ)∆ =
− [(۹ಘୟ) ୡ୭ୱ୦(۹ಘୟ)ିୱ୧୬୦(۹ಘୟ)]ିࡼ(۹ಘୟ)మ ୱ୧୬୦(۹ಘୟ)

(۹ಘୟ)మ ∈
+O(∈ଶ)           (34) 

Using the Taylor reversion process for Eq. 
(34) yields [18, 19]: 

∈=
 − (۹ಘୟ)మ

[(۹ಘୟ )ୡ୭ୱ୦(۹ಘୟ)ିୱ୧୬୦(۹ಘୟ)]ିࡼ(۹ಘୟ)మ ୱ୧୬୦(۹ಘୟ) ∆ +
O(∆ଶ)          (35) 

By using Eqs. (31), (33), and (35), the 
effective mass expression at the highest edge of 
the band becomes: 

[ୢమ
ୢ୩మ] = ħమ

୫∗ =
ħమ

୫
(۹ಘୟ)య

[(۹ಘୟ) ୡ୭ୱ୦(۹ಘୟ)ିୱ୧୬୦(۹ಘୟ)]ିࡼ(۹ಘୟ)మ ୱ୧୬୦(۹ಘୟ)  
(36) 

Hence, at the top of the band, the ratio 
(m*/m) of the effective mass to the mass of the 
electron is expressed as: 

[୫∗

୫
] =
[(۹ಘୟ) ୡ୭ୱ୦(۹ಘୟ)ିୱ୧୬୦(۹ಘୟ)]ିࡼ((۹ಘୟ)మ ୱ୧୬୦(۹ಘୟ)

(۹ಘୟ)య   
(37) 

Using Eq. (12) and the fact that P >> 1, the 
effective mass ratio simplifies to: 

[୫∗

୫
] ≈ − ࡼୣ

ࡼ          (38) 

Let us now use the dispersion relation (17) to 
verify and confirm the result of Eq. (38): 

[ୢమா
ୢ୩మ] = ħమ

୫∗ = −2 ħమ

୫
1)ࡼeିࡼ − eି(39)       (ࡼ 

Therefore, the effective mass ratio (m*/m) is 
estimated as: 

[୫∗

୫
] ≈ − ࡼୣ

ࡼ ൫1 + eିࡼ൯ ≈ − ࡼୣ

ࡼ       (40) 

which is exactly what we have found in Eq. (38) 

In conclusion, the effective mass at the 
highest edge of the band is negative and large in 
value.  

4. Discussion and Conclusion 
Under the influence of an attractive Dirac 

comb potential, an electron exhibits a single-
bound band structure. 

With increasing values of the scattering 
power P, the bandwidth initially increases 
rapidly for 0 < ࡼ < 2 and then decreases at a 
slower rate when ࡼ > 2. The band is at its 
maximum width at P = 2.  

When the scattering power P is very large, 
the band is found to be lying below the zero line 
of the reference energy. The band becomes 
nearly flat, with a weak dependence on the Bloch 
wave number. As a result, it collapses into an 
energy level of a particle under the influence of a 
single delta function potential, with its energy 
confinement and spatial localization 
phenomenon. 

The dispersion relation is estimated and used 
to verify and confirm the findings regarding the 
effective mass at both ends of this single band. 
The effective mass is found to be very large, 
positive at the band’s lowest edge, and negative 
at its highest edge. 

Future investigations will aim to answer the 
following important questions: Can we expect 
similar results in the original case of the Kronig-
Penney potential? If so, what conditions on the 
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size and depth of the well must be met for the 
single band to exhibit a similar pattern as in the 

Dirac comb potential? 
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