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Abstract: The Hamiltonian of an exciton in a thin layer of WS2-transition metal 
dichalcogenide (TMD) was solved by the 1/N expansion method, and the corresponding 
exciton bound-state energies were obtained. The Hamiltonian describes an electron-hole 
particle system interacting through an attractive Rytova-Keldysh potential ( ோܸ௄) in a sheet 
of WS2, which is presented in an external uniform magnetic field applied perpendicular to 
the material sheet plane. We used the computed eigenenergies to calculate the partition 
function, which depends on the temperature and magnetic field. We calculated the 
magnetic and thermal quantities of WS2 TMD material sheet for various values of magnetic 
field strength and temperature range. The comparisons show that the calculated exciton 
energy spectra against experimental and theoretical corresponding results are in very good 
agreement. We have displayed the dependence of magnetization, susceptibility, entropy, 
and heat capacity as a function of magnetic field and temperature. The paramagnetic 
behavior of materials over a wide range of magnetic fields was considered. In addition, the 
density of states (DOS) of TMD-WS2 material was calculated, and the resulting DOS plot 
shows an oscillator peak behavior for various ranges of the magnetic field strengths. 

Keywords: TMD material, Exciton, 1/N expansion, Magnetic susceptibility, Heat capacity, 
Entropy, Density of states. 

 
 

1. Introduction 
Transition metal chalcogenide dimers 

(TMDC or TMD) monolayers are atomically 
thin MX2-type semiconductors, where M denotes 
a transition metal atom (such as Mo or W), and 
X represents a chalcogen atom (S, Se, or Te). 
One layer of M atoms is sandwiched between 
two layers of X atoms. They are part of a large 
family of so-called two-dimensional materials 
[1]. Monolayers of MoS₂, WS₂, MoSe₂, WSe₂, 
and MoTe₂ exhibit direct bandgaps, and can be 
used in electronics as transistors and in optics as 
emitters and detectors. [2-5]. Their two-
dimensional nature, combined with strong spin–
orbit coupling, makes TMD layers particularly 
attractive for advanced electronic and spintronic 
applications [6]. Basically, when a positive hole 
(an empty electron particle in the valence band) 
and an electron combine and can move freely 
through a non-metallic crystal as a unit, the 

mixing of these two particles is called an 
exciton. Excitons play an important role in 
transition metal chalcogenide (TMD) 
monolayers. 

The two-dimensional nature and high spin-
orbit coupling of TMD layers render them useful 
for electronic applications [7]. Work on and use 
of TMD monolayers is an important research and 
development area for potential applications in 
electronics. TMDs are combined with 2D 
materials such as graphene and hexagonal boron 
nitride to make van der Waals heterostructures. 
This is to work on optimizing these 
heterogeneous structures for use as building 
blocks for many different devices, such as 
transistors, solar cells, LEDs, photodetectors, 
fuel cells, photocatalysts, and sensors. We need 
to use these devices in our daily lives so that 
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they become smaller, cheaper, and more efficient 
by using single layers [8, 9].  

In recent years, the study of excitons in 
(TMD) monolayers has attracted much attention 
because their presence has a significant positive 
impact on the performance of semiconductor 
devices and their electrical, optical, and transport 
properties. TMD have emerged as an ideal 
material platform for exploring the phenomenon 
of exciton transfer in the works of Malic, Perea-
Causin, Rosati, Erkensten, and Samuel Brem 
[10-12]. In many scientific researches, many 
authors have solved the Schrödinger equation for 
a quantum dot (QD) in the presence of a constant 
magnetic field. Elsaid used the 1/N expansion 
method to calculate the energy states of an 
electron bound to the donor impurity in the 
presence of a magnetic field of arbitrary 
strength. [13-15]. The 1/N expansion method is 
an effective technique used by many authors, 
including Shiau, Frenkel, and others, to solve 
many Hamiltonian bound state systems in 
reduced dimensions [16-19]. For example, 
Wannier, Gregory et al. [20-22] studied the 
Hamiltonian quantum dot using this method. 
Also, Al-Hayek used the 1/N shifted expansion 
method to calculate the binding energy and 
energy of the donor impurities with Gaussian 
confinement in the quantum dot. The 1/N 
method is considered one of the most powerful 
and successful methods for solving the 
Schrödinger equation for the spherical analog 
potential, and it is used in various branches of 
theoretical physics. Using this method, we obtain 
accurate results for calculations of the 
eigenenergy values of the system, without 
dealing with path wave functions. Motivated by 
these studies, the present work applies the 
shifted 1/N expansion method to solve the 
exciton Hamiltonian for a thin WS2 TMD 
material. 

In this work, we investigate the electronic 
energy spectra, magnetic and thermal properties, 
the density of states (DOS), and the 
magnetocaloric effect (MCE) of the exciton 
system made from an atomic sheet of TMD 
(WS2), presented in a magnetic field. All these 
thermal and magnetic quantities are calculated 
from the statistical partition function and the 
well-known statistical relations.  

The rest of this work is organized as follows. 
The Hamiltonian and Schrödinger equation for 
2D electron-hole particles in a single-layer 

interacting TMD, which interact through an 
attractive Rytova-Keldysh potential, solved by 
the 1/N- expansion method, is presented in II, 
the Theory and calculation method Section. In 
Section III, Results and Discussion, the energy 
spectra values obtained by 1/N are presented 
against the magnetic field, discussed, and 
compared with other studies. This section also 
examines thermomagnetic quantities, including 
heat capacity Cv, entropy (S), magnetization 
(M), susceptibility(X), and magneto-caloric 
effect (MCE), as well as the density of energy of 
states (DOS) of the nanosheet TMD -WS2 
material. The conclusion is presented in the final 
Section. 

2. Theory and Method of Calculation 
The Hamiltonian for electron and hole 

particles interacting through an attractive 2D 
non-Coulombic potential type is used. The 
model of a system has an exciton with effective 
mass m* and charge e, moving in a two-
dimensional (2D) plane under the influence of a 
uniform magnetic field applied perpendicular to 
the monolayer. The corresponding Schrodinger 
equation is given as [23]: 

Ĥ߰(ݔ, (ݕ = ,ݔ)߰ܧ  (1)  (ݕ

Ĥ = − ଵ
ଶ

ቀ ௗమ

ௗ௫మ + ௗమ

ௗ௬మቁ − ௜
ଶ

ߛ ቀݔ ௗ
ௗ௬

− ݕ ௗ
ௗ௫

ቁ +
ଵ
଼

ଶݔ)ଶߛ + (ଶݕ + ௄ܸ(ݎ,  (2)  (ߙ

where: ݎ = ඥݔଶ +  .ଶݕ
Where ߛ, a dimensionless magnetic 

parameter, is related to the magnetic field. 

௄ܸ(ݎ,  is the Rytova-Keldysh type (ߙ
potential. 

The nonlocally screened electron–hole 
interaction in two-dimensional systems, such as 
monolayer transition metal dichalcogenides 
(TMDs), is described by the Rytova–Keldysh 
potential [23]: 

ோܸ௄(ݎ) = − ௘మ

଼ఌబ௥బ
ቂܪ଴ ቀ௞௥

௥బ
ቁ − ଴ܻ ቀ௞௥

௥బ
ቁቃ  (3) 

where: 
 ଴ and ଴ܻ are zero-order Struve and Besselܪ

functions, respectively; 
 ଴ is related to the screening length related to theݎ

2D polarizability of the monolayer material;  
  ;଴ is the vacuum permittivityߝ
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݇ is the average dielectric constant for the 
surrounding material;  

 is the parameter for characterizing potential ߙ
and is defined as ߙ = ଴/݇ܽ଴ݎ

∗, where ܽ଴
∗  is the 

effective Bohr radius. 

This potential describes two charges in the 
electrostatic interaction for thin semiconductor 
and semi-metal films, predicted by Rytova-
Keldysh and then discussed in many research 
works [24, 25]. 

The Hamiltonian, Eq. (2), of the system after 
adding Rytova-Keldysh potential, Eq. (3), is 
given as:  

Ĥ = − ଵ
ଶ

ቀ ௗమ

ௗ௫మ + ௗమ

ௗ௬మቁ − ௜
ଶ

ߛ ቀݔ ௗ
ௗ௬

− ݕ ௗ
ௗ௫

ቁ +
ଵ
଼

ଶݎଶߛ − ௘మ

଼ఌబ௥బ
ቂܪ଴ ቀ௞௥

௥బ
ቁ − ଴ܻ ቀ௞௥

௥బ
ቁቃ (4) 

The analytic solution of the Hamiltonian in 
Eq. (4) is not attainable. We found that 1/N- 
expansion is an effective and accurate technique 
in solving the Hamiltonian given by Eq. (4). 

We can write the radial part of the 
Schrödinger equation in N-dimensional space as 
follows: 

ቆ− ћమ

ଶ௠∗ ቀ ௗమ

ௗ௥మ + ேିଵ
௥

ௗ
ௗ௥

ቁ + ௟(௟ାேିଶ)ћమ

ଶ௠∗௥మ +

ቇ(ݎ)ܸ Ø(ݎ) =  (5) (ݎ)Øܧ

where ݉∗ is the electron effective mass, e is the 
charge of the electron, ћ is related to the Planck 
constant, and N is the number of dimensions. 
݈ = |݉௟|, where |݉௟| is the magnetic 
quantum number (݉௟ = 0, ±1, ±2, ±3, … ) that 
labels the quantum dot (QD) energy states and 
appears in the term ݈(݈ + ܰ − 2). 

By using the parameter ݇, ሜ݇ = ݇ − ܽ = ܰ +
2݈ − ܽ, we can rewrite Eq. (5) to become: 

ቀ− ћమ

ଶ௠∗  ௗమ

ௗ௥మ + ݇̄ଶ ((ћଶ ቀ1 − ଵି௔
௞̄ ቁ (1 − 3 − ܽ)/

ଶݎ∗8݉ / ((̄݇  + ቁܳ/(ݎ)ܸ Ø(ݎ) =  (6) (ݎ)Øܧ

where ܳ = ݇̄ଶ is a scaling constant used to make 
Eq. (5) and Eq. (6) equivalent. 

We can use the parameter ݇̄ and the shift 
parameter a to expand the Schrodinger equation 
to calculate the energy eigenvalues ܧ(݊௥ , ݉௟). 
The complete mathematical steps that lead us to 
the eigenvalues of QD energy expressions in 
terms of powers of 1/k̄ are given explicitly in the 

Appendix. The intrinsic energy values ܧ(݊௥ , ݉௟) 
are in powers of 1/ ݇̄ and are given as follows: 
௥݊)ܧ , ݉௟) = ଴ܧ + ଵܧ + ଶܧ +  ଶ+............ Theseܧ
energy terms are defined in terms of quantum 
numbers, potential roots (r0), and derivatives 
(Vn(r0)) [26, 27]. 

The shift parameter ܽ is chosen to make a 
second-order contribution ܧଵ vanish. In general, 
the presence of this condition ensures exact 
analytical energy results with the 1/N method for 
both the harmonic oscillator and hydrogen 
Hamiltonian [28, 29].  

The Thermodynamic Properties: Heat Capacity 
(Cv) and Entropy (S)  

We evaluate the mean energy,  
< ,௥݊))ܧ ݉௟ , ,ܤ ܶ) > expression from the 
partition function ܼ. 

The complete thermodynamic quantities, 
including heat capacity and entropy, start by 
evaluating the partition function at any 
temperature and magnetic field strength [30]: 

< ܼ >= ∑௝ୀଵ
௜  ݁ିாೕ/௄ಳ்  (7) 

where  is the Boltzmann constant,  is the 
temperature,  is the index for the microstates of 
the system, and  is the total energy of the 
system in the respective microstate. 

< ܧ >=
∑ೕసభ

೔  ாೕ௘
ష

ಶೕ
಼ಳ೅

∑ೕసభ
೔ ௘

ష
ಶೕ

಼ಳ೅

 (8) 

The heat capacity ܥ௩ is the temperature 
derivative of the mean energy given as [30]: 

௩ܥ = డழாவ
డ்

  (9) 

Similarly, the entropy S of the exciton system 
can also be computed using the expression  

ܵ = డ(௄ಳ୘ ୪୬ழ୞வ)
డ୘

  (10) 

The Magnetic Properties: Magnetization (ܯ) 
and Susceptibility (χ) 

The magnetization (ܯ) is defined as the 
negative derivative of the average energy of the 
two-dimensional exciton system with respect to 
the magnetic field strength BBB [30]:  

ܯ = − డழாவ
డ஻

  (11) 

where < ܧ > is the average energy of the 
exciton system in the magnetic field (ܤ). 
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The magnetic susceptibility χ is obtained by 
differentiating the magnetization with respect to 
the magnetic field strength [30]: 

߯ = డெ
డ஻

  (12) 

The Density of States (DOS): 
The DOS of the exciton system of TMD-WS2 

material is another property that can reveal 
important information about the electronic 
structure of nanomaterials. It is expressed as the 
sum of a series of delta functions, given by [31, 
32]: 

(ܧ)ܱܵܦ = ଵ
஺

∑ ܧ)ߜ − ௡)ேܧ
௡ୀଵ  (13) 

The delta function can be replaced by a more 
practical computation Gaussian distribution as: 

(ܧ)ܱܵܦ = ଵ
√ଶగ௰మ ∑ exp ቂି(ாିா೙)మ

ଶ௰మ ቃ௡  (14) 

where Γ is the broadening factor, ݊ܧ is the 
eigenenergy of the exciton system, which was 
calculated by the 1/N expansion method, and A 
is the area of the material sample [32]. 

The Magneto-Caloric Effect (MCE) 

The magnetocaloric effect (MCE) is defined 
as the change in the entropy of the system, △
ܵ௠, as a response to the change in the magnetic 
energy of the exciton system presented in an 
applied magnetic field, given as [33, 34]: 

∆ܵ௠ = ܵ( ଴ܶ , (ୀ଴ܤ − ܵ( ଴ܶ ,  ஷ଴) (15)ܤ

where:  
∆ܵ௠ is magnetic entropy change (eV/K); 

ܵ௠ is magnetic entropy; 

଴ܶ is temperature; 
 ;ୀ଴ is the magnetic field equal to zeroܤ
 .ஷ଴ is the magnetic field not equal to zeroܤ

3. Results and Discussion 
In this part, the computed physical quantities 

will be listed in tables and displayed in figures. 
The discussion of the results consists of two 
main steps. In the first step, the accuracy of the 
energy spectra obtained using the 1/N expansion 
method is evaluated by comparison with 
previously reported experimental and theoretical 
results. In the second step, these excitonic results 
are used to explain the dependence of the 
magnetothermal properties, DOS and MCE of 
the WS2 material as the magnetic field strength 
changes to include a strong range, B=60 T.  

The physical parameters used for WS2, in 
numerical computations are: the effective mass 
of an electron ݉∗ =  0.16݉௘, the average 
dielectric constant of the material ݇ =  1, the 
effective screening length of the monolayer 
଴ݎ =  and the effective Bohr radius ,°ܣ75
ܽ =  3.779. [23] 

Tables 1.a-1.c list the results computed 
using the 1/N expansion method and 
compare them with the reported results in 
Ref. [23]. The quantitative comparison 
demonstrates the accuracy of the 1/N 
expansion method over the entire range of 
magnetic field strengths. 

TABLE 1.a. Ground-state energies (1s, 2s) (in eV) at different magnetic field strengths (in T in the 
present work and in units of γ in Ref [23], where γ = 0.01 corresponds to a magnetic field B = 
60.16T) for WS2, calculated using the 1/N-shift expansions method and compared with the reported 
results in Ref. [23]. 

WS2  1s |1,0 > 2s |2,0 > 
B(T) Γ E (present work) (eV) E(Ref [23]) (eV) E (present work) (eV) E (Ref[23]) (eV) 
0.00 0.00000 -0.3179 -0.3187 -0.1523 -0.1516 
7.52 0.00125 -0.3179 -0.3184 -0.1520 -0.1513 
15.0 0.00250 -0.3178 -0.3186 -0.1514 -0.1507 
30.0 0.00500 -0.3175 -0.3179 -0.1488 -0.1478 
45.1 0.00750 -0.3170 -0.3178 -0.1446 -0.1436 
60.1 0.01000 -0.3163 -0.3128 -0.1392 -0.1378 
150 0.02500 -0.3086 -0.3094 -0.0888 -0.0853 
300 0.05000 -0.2854 -0.2862 0.0303 0.0339 
601 0.10000 -0.2188 -0.2188 0.3092 0.3106 
3008 0.50000 0.5246 0.5259 2.7905 2.9713 
4512 0.75000 1.0328 1.0344 4.3861 4.3874 
6016 1.00000 1.5568 1.5525 5.9913 5.9938 
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TABLE 1.b. Ground-state energies (3s, 4s) (in eV) at different values of magnetic field strength (in a 
unit of T in present work and a unit of γ in Ref [23], where γ = 0.01 corresponds to a magnetic field 
of B = 60.16T) for WS2, calculated using the 1/N-shift expansions method, compared with the 
reported results in Ref. [23]. 
WS2  3s 

|3,0 > 
4s 

|4,0 > 

B (T) Γ E (present work) (eV) E (Ref [23]) (eV) E (present work) (eV) E (Ref[23]) 
(eV) 

0.00 0.00000 -0.0952 -0.0944 -0.0657 -0.0648 
7.52 0.00125 -0.0944 -0.0936 -0.0639 -0.0631 
15.0 0.00250 -0.0922 -0.0909 -0.0591 -0.0579 
30.0 0.00500 -0.0843 -0.0827 -0.0439 -0.0404 
45.1 0.00750 -0.0730 -0.0700 -0.0227 -0.0178 
60.1 0.01000 -0.0591 -0.0552 0.0027 0.0074 
150 0.02500 0.0562 0.0596 0.1868 0.1872 
300 0.05000 0.2868 0.2886 0.5277 0.5285 
601 0.10000 0.7839 0.7845 1.2436 1.2408 
3008 0.50000 5.0074 5.0114 7.2089 7.2151 
4512 0.75000 7.6905 7.6978 10.979 10.993 
6016 1.00000 10.383 10.392 14.759 14.777 

TABLE 1.c. Ground-state energies (5s, 6s) (in a unit of eV) at different values of magnetic field 
strength (in a unit of T in present work and a unit of γ in Ref [23], where γ = 0.01 corresponds to a 
magnetic field B = 60.16T) for WS2, calculated using the 1/N-shift expansions method, compared 
with the reported results in Ref. [23]. 

WS2  5s |5,0 > 6s |6,0 > 
 

B (T) γ E (present work) (eV) E (Ref [23]) (eV) E (present work) (eV) E (Ref[23]) (eV) 

0.00 0.00000 -0.0481 -0.0474 -0.0367 -0.0361 
7.52 0.00125 -0.0448 -0.0439 -0.0312 -0.0300 
15.0 0.00250 -0.0366 -0.0304 -0.0196 -0.0156 
30.0 0.00500 -0.0119 -0.0069 0.0180 0.0226 
45.1 0.00750 0.0220 0.0261 0.0642 0.0674 
60.1 0.01000 0.0595 0.0631 0.1132 0.1158 
150 0.02500 0.3109 0.3121 0.4312 0.4310 
300 0.05000 0.7616 0.7619 0.9917 0.9883 
601 0.10000 1.6961 1.6937 2.1446 2.1421 
3008 0.50000 9.4029 9.4133 11.592 11.581 
4512 0.75000 14.260 14.276 17.537 17.559 
6016 1.00000 19.127 19.153 23.491 23.524 
In addition, energy values at different 

quantum levels (| n,m>) were calculated for the 
same field values that were defined in the 
previous tables in order to make the work more 
comprehensive. We changed the quantum state 

from < ݏ > to < ݌ > to see how energy 
essentially depends on these values and to see 
the changes that occur in energy at these 
quantum numbers, as shown in Table 2.  
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TABLE 2. Ground-state energies (in a unit of eV) at different values of magnetic field strength (in a 
unit of T in the present work and unit of γ in Ref [23], where γ = 0.01 corresponds to the magnetic 
field B = 60.16T) for WS2, calculated using the 1/N-shift expansions method. 

WS2  1p 
|1,1 > 

2p 
|2,1 > 

3p 
|3,1 > 

4p 
|4,1 > 

5p 
|5,1 > 

6p 
|6,1 > 

B(T) γ E(eV) E(eV) E(eV) E(eV) E(eV) E(eV) 
0.00 0.00000 -0.1843 -0.1098 -0.0739 -0.0532 -0.0401 -0.0313 
7.52 0.00125 -0.1815 -0.1065 -0.0698 -0.0477 -0.0326 -0.0213 
15.0 0.00250 -0.1784 -0.1023 -0.0633 -0.0378 -0.0188 -0.0027 
30.0 0.00500 -0.1717 -0.0912 -0.0451 -0.0106 0.0195 0.0481 
45.1 0.00750 -0.1640 -0.0773 -0.0220 0.0236 0.0657 0.1058 
60.1 0.01000 -0.1557 -0.0614 0.0040 0.0611 0.1146 0.1660 
150 0.02500 -0.0944 0.0517 0.1883 0.3123 0.4324 0.5502 
300 0.05000 0.0299 0.2879 0.5289 0.7627 0.9927 1.2201 
601 0.10000 0.3095 0.7848 1.2444 1.6969 2.1453 2.5911 
3008 0.50000 2.7907 5.0073 7.2089 9.4030 11.592 13.779 
4512 0.75000 4.3861 7.6903 10.979 14.260 17.537 20.811 
6016 1.00000 5.9912 10.382 14.759 19.127 23.491 27.852 

In Figs. 1(a) and 1(b), for the sake of more 
qualitative comparisons, the tabulated energy 
values are also displayed against the magnetic 
field for different s-states. The effect of magnetic 
field confinement on the ground-state energies is 
illustrated. The figures show that the first level is 
not affected by an increase in the magnetic field, 
as it maintains an almost constant value. 

However, for higher energy levels, a noticeable 
dependence on the magnetic field is observed, 
with the energy values increasing as the 
magnetic field strength increases. This is 
completely consistent with the results of Ref. 
[23]. Comparing the two figures, we can see a 
good match between the two works.  

 
FIG. 1. Ground-state energy as a function of magnetic field for WS2. Figures are taken from Ref. [23]. Different 

systems of energy and magnetic field units are used in both plots. (a) present work, (b) Ref. [23]. The two figures 
have different scales, where γ = 0.01 corresponds to the magnetic field of B = 60.16T. 

Figure 2 shows the influence of the magnetic 
field effect on the ground-state energies for 
higher quantum p-states labelled by magnetic 

quantum number m. As the magnetic field 
increases, the energy values also increase.  
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FIG. 2. Ground-state energy <E> as a function of magnetic field (B) on the ground-state energies for quantum 

number (p) of WS2. 

Next, we studied the ground state energy as a 
function of temperature at different values of the 
magnetic field. As shown in Fig. 3, when we 
turn off the magnetic field (B = 0T), we find that 
the average energies increase with increasing 

temperature. In addition, the average energy 
convergence is achieved as we increase the 
number of exciton states from 15 to 20. 

 
FIG. 3. Average energy as a function of temperature when we turn off the magnetic field (B=0T) for WS2, 

computed for different numbers of S-states.

In Fig. 4, we now switched on the magnetic 
field and tested again the convergence of the 
average energy of the exciton system against the 
temperature, calculated at fixed magnetic field 

strength, B≈ 60 ܶ, and various numbers of 
bases. The figure clearly shows a very good 
convergence behavior of the average energy for 
taking only 15 bases of exciton S-states.  
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FIG. 4. Average energy ∈ as a function of temperature (T) when we switched the magnetic field (B = 60.16T) 

for different numbers of S-states for WS2. 

The dependence of the heat capacity on 
temperature and magnetic field for the WS₂ sheet 
is shown in Fig. 5. For the zero magnetic field 
case (B = 0), the heat capacity increases with 
temperature, reaching a peak value, known as the 
Schottky anomaly, atܥ௩

݇஻
ൗ ≈ 2.4 at 10000 K. 

The heat capacity starts decreasing until it 

reaches almost asymptotic zero value at 
T≈3000K for WS2. In the presence of a strong 
magnetic field B ≈ 60 ܶ, the exciton becomes 
more confined, and the exciton heat capacity 
reaches a peak value of approximately 1.8 at 
1200K. 

 
FIG. 5. Heat capacity as a function of temperature and magnetic field for WS2. 

Figure 6 shows the entropy as a function of 
temperature and magnetic field. The plot shows 
that the entropy increases with increasing 

temperature until it reaches a saturation entropy 
limit of ܵ

݇஻
ൗ ≈1.7 for zero magnetic field at 
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3000 K, and 1.6 at 60.16 T at the same 
temperature. We reduced the temperature to 
20000 K to see the stability of entropy in the sub-

figure for both cases, with and without a 
magnetic field. 

 
FIG. 6. Entropy as a function of temperature for different magnetic field strengths for WS (the inset figure is 

plotted for the low temperature range).

Magnetic properties were also studied, starting 
with the computation of statistical energy for WS2 
under the effect of temperature and magnetic 
field. The statistical energy, shown in the present 

work for WS2 in Fig. 7, is calculated at 100 K 
and 300 K for a magnetic field range from 0 to 
60 T. The statistical energy is found to reach -
0.318 eV at 100 K and -0.317 eV at 300 K. 

 
FIG. 7. Statistical energy as a function of magnetic field for WS2. 

We have calculated the magnetization in 
units of effective Bohr magneton [35], μB = 
eћ/2m∗ = 0.3622*10-3 eV/T, for WS2. Also, we 

studied the magnetization as a function of 
magnetic field at different values of temperature. 
Figure 8 shows that the magnetization curve 
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decreases with increasing magnetic field, starting 
from zero at 0 T to reach -0.05 at 60 T at 900 K.  

When we decreased the temperature to 10 K, 
the magnetization reached -0.14 at 60 T, see Fig. 
8. This means that, when we decrease the 

temperature, the magnetization increases at high 
magnetic fields (60 T), but at low magnetic 
fields (0 T) the magnetization takes the same 
value and starts from zero. 

 
FIG. 8. Magnetization as a function of magnetic field at 900 K and 10 K for WS2. 

In Fig. 9, we studied the behavior of 
computed magnetic susceptibility for both low 
and high temperature ranges in the presence of a 

magnetic field for WS2. The results are displayed 
for temperatures of 10 K and 150 K. 

 
FIG. 9. Magnetic susceptibility as a function of a magnetic field at 10 K and 150 K for WS2. 

The density of states (DOS) is a significant 
physical quantity to reveal information about the 
electronic properties of materials, by describing 
the system's responses to Hamiltonian 
parameters, such as the magnetic field and 
confinement potential. 

In Fig. 10, the DOS is plotted as a function of 
energy at different values of the magnetic field 

(50 T, 60.16 T). The plot for WS2 below shows 
that the presence of the external magnetic field 
removes the degeneracy of the states, so the 
DOS gives one at each value of the energy 
spectrum. We observe that as the magnetic field 
strength increases, the Landau level energy 
separation ℎ߱௖  also increases, leading to a 
reduction in the number of LL-states in the DOS 
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of WS2 material. For example, the number of 
states (3 states) at B = 60 T (black color, dashed 
plot) is smaller than the number of states (4 

states) for a lower magnetic field strength (red 
color, solid line plot) and for a fixed energy 
range (E). 

 
FIG. 10. DOS vs. energy for WS2 at different magnetic field values. 

The magnetocaloric effect (MCE) was 
studied in order to identify the thermomagnetic 
properties by investigating the behavior of the 
material with the temperature changes when the 
material is exposed to a changing magnetic field. 
Our study is devoted to a sheet made from TMD 
materials (WS2). The MCE, represented by ∆ܵ 
against the temperature T, shows a Gaussian 
distribution. A high temperature is required to 
see the MCE in TMD since the binding energy 
for an exciton in a strong magnetic field is very 

large, and thus more thermal energy is needed to 
be absorbed by the exciton. We observe that this 
temperature is far from the room temperature 
range, as TMD materials require very high 
thermal energy (ܧ௧௛) in order to increase the 
kinetic energy (K) of the electron. Under these 
conditions, the exciton system transitions 
randomly between states, producing the 
observed entropy variation, as shown in Fig. 11 
[36, 37].

 
FIG. 11. MCE vs temperature for WS2 at different magnetic field values, ∆ܵ௠ = (ୀ଺଴.ଵ଺ܤ)ܵ −  .(ୀ଴ܤ)ܵ

4. Conclusions 
In conclusion, we have investigated the 

magnetothermal properties of WS2 TMD 
material. Additionally, we have studied the DOS 

and MCE of the same material as functions of 
the magnetic field. The Schrödinger equation for 
the exciton system in a magnetic field was 
solved by using the shifted 1/N expansion 
method to find the eigenenergy states. We have 
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tested the computed results by the 1/N method 
against different computation results calculated 
by various numerical methods. The results show 
that the 1/N method is both accurate and 
effective for solving the exciton Hamiltonian 
system with a spherically symmetric potential 
such as ோܸ௄. We have ensured the convergence 
issue of the statistical energy by varying the 
number of states in each computation step. The 
behavior of the magnetothermal properties of the 
exciton system for WS2 nanosheet had been 
studied as a function of magnetic field and 
temperature. The results show that the heat 
capacity curve exhibits a Schottky anomaly. 
Furthermore, the magnetic susceptibility curve 
for WS2 was calculated and displayed. We have 
calculated the density of the state function, DOS, 
of the exciton system. The DOS plots show an 
oscillatory-type behavior for different values of 
the magnetic field, reflecting the Landau-level 
(LL) states of the exciton system presented in a 
magnetic field. 

The present study also investigates the MCE 
of an exciton in TMD material, which is defined 
as the magnetothermodynamic phenomena that 
has an application in magnetic refrigeration. We 
have found that the calculated ∆ܵ − ܶ plot for 
the exciton system of the WS2 monolayer has a 
Gaussian distribution shape. 

This study reveals that the WS2-TMD 
material has attractive magnetic and thermal 
properties, which make WS2 a very promising 
material in the next generation of 
nanoelectronics. 

Appendix 
Shifted 1/N Expansion Method 

The 1/N expansion method is used to solve 
Eq. (5) systematically in terms of the expansion 
parameter 1⁄k̄. At large k̄, the contribution of 
energy comes from the effective potential: 

          (A1) 

where  is a scaling constant.  has a 
minimum value at , so that we have: 

         (A2)  
To shift the origin of the coordinate system to 

the position of the minimum of the effective 
potential, a new variable x is defined: 

        (A3) 

Using a Taylor expansion around the 
effective minimum r0 (corresponding to x = 0), 
an analytical equation similar to the Schrödinger 
equation for a one-dimensional solvable 
nonharmonic oscillator is obtained. The 
coefficients of both equations are compared to 
determine all parameters of the anharmonic 
oscillator in terms of k̄, Q, r0, and the potential 
derivatives, allowing the determination of the 
energy spectrum. The oscillator frequency is 
then given by: 

         (A4) 
To calculate the energy eigenvalues, the 

Schrödinger equation is expanded in powers of 
1/ , where ,  is the number of 
spatial dimensions and is the so-called 
shifted parameter. The shifted parameter  is 
defined as: 

         (A5) 

For any values of radial quantum numbers  
and , the energy eigenvalues  are 
given by:  

       (A6) 

where: 

  

  

  

  
where: 
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The forms of previous parameters are given 

in the following: 

  

  

  
with:  

  

  

  

  

  

  

  

  

  

  

  

  

  
where (n’s), (d’s), and (e’s) are parameters given 
as:  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
also: 
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