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Abstract: The Hamiltonian of an exciton in a thin layer of WS,-transition metal
dichalcogenide (TMD) was solved by the 1/N expansion method, and the corresponding
exciton bound-state energies were obtained. The Hamiltonian describes an electron-hole
particle system interacting through an attractive Rytova-Keldysh potential (Vi) in a sheet
of WS,, which is presented in an external uniform magnetic field applied perpendicular to
the material sheet plane. We used the computed eigenenergies to calculate the partition
function, which depends on the temperature and magnetic field. We calculated the
magnetic and thermal quantities of WS, TMD material sheet for various values of magnetic
field strength and temperature range. The comparisons show that the calculated exciton
energy spectra against experimental and theoretical corresponding results are in very good
agreement. We have displayed the dependence of magnetization, susceptibility, entropy,
and heat capacity as a function of magnetic field and temperature. The paramagnetic
behavior of materials over a wide range of magnetic fields was considered. In addition, the
density of states (DOS) of TMD-WS, material was calculated, and the resulting DOS plot
shows an oscillator peak behavior for various ranges of the magnetic field strengths.

Keywords: TMD material, Exciton, 1/N expansion, Magnetic susceptibility, Heat capacity,

Entropy, Density of states.

1. Introduction

Transition metal chalcogenide  dimers
(TMDC or TMD) monolayers are atomically
thin MX,-type semiconductors, where M denotes
a transition metal atom (such as Mo or W), and
X represents a chalcogen atom (S, Se, or Te).
One layer of M atoms is sandwiched between
two layers of X atoms. They are part of a large
family of so-called two-dimensional materials
[1]. Monolayers of MoS2, WSz, MoSe2, WSe:,
and MoTe: exhibit direct bandgaps, and can be
used in electronics as transistors and in optics as
emitters and detectors. [2-5]. Their two-
dimensional nature, combined with strong spin—
orbit coupling, makes TMD layers particularly
attractive for advanced electronic and spintronic
applications [6]. Basically, when a positive hole
(an empty electron particle in the valence band)
and an electron combine and can move freely
through a non-metallic crystal as a unit, the

mixing of these two particles is called an
exciton. Excitons play an important role in
transition metal chalcogenide (TMD)
monolayers.

The two-dimensional nature and high spin-
orbit coupling of TMD layers render them useful
for electronic applications [7]. Work on and use
of TMD monolayers is an important research and
development area for potential applications in
electronics. TMDs are combined with 2D
materials such as graphene and hexagonal boron
nitride to make van der Waals heterostructures.
This is to work on optimizing these
heterogeneous structures for use as building
blocks for many different devices, such as
transistors, solar cells, LEDs, photodetectors,
fuel cells, photocatalysts, and sensors. We need
to use these devices in our daily lives so that
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they become smaller, cheaper, and more efficient
by using single layers [8, 9].

In recent years, the study of excitons in
(TMD) monolayers has attracted much attention
because their presence has a significant positive
impact on the performance of semiconductor
devices and their electrical, optical, and transport
properties. TMD have emerged as an ideal
material platform for exploring the phenomenon
of exciton transfer in the works of Malic, Perea-
Causin, Rosati, Erkensten, and Samuel Brem
[10-12]. In many scientific researches, many
authors have solved the Schrédinger equation for
a quantum dot (QD) in the presence of a constant
magnetic field. Elsaid used the 1/N expansion
method to calculate the energy states of an
electron bound to the donor impurity in the
presence of a magnetic field of arbitrary
strength. [13-15]. The 1/N expansion method is
an effective technique used by many authors,
including Shiau, Frenkel, and others, to solve
many Hamiltonian bound state systems in
reduced dimensions [16-19]. For example,
Wannier, Gregory et al. [20-22] studied the
Hamiltonian quantum dot using this method.
Also, Al-Hayek used the 1/N shifted expansion
method to calculate the binding energy and
energy of the donor impurities with Gaussian
confinement in the quantum dot. The 1/N
method is considered one of the most powerful
and successful methods for solving the
Schrodinger equation for the spherical analog
potential, and it is used in various branches of
theoretical physics. Using this method, we obtain
accurate results for calculations of the
eigenenergy values of the system, without
dealing with path wave functions. Motivated by
these studies, the present work applies the
shifted 1/N expansion method to solve the
exciton Hamiltonian for a thin WS, TMD
material.

In this work, we investigate the electronic
energy spectra, magnetic and thermal properties,
the density of states (DOS), and the
magnetocaloric effect (MCE) of the exciton
system made from an atomic sheet of TMD
(WS,), presented in a magnetic field. All these
thermal and magnetic quantities are calculated
from the statistical partition function and the
well-known statistical relations.

The rest of this work is organized as follows.
The Hamiltonian and Schréodinger equation for
2D electron-hole particles in a single-layer
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interacting TMD, which interact through an
attractive Rytova-Keldysh potential, solved by
the 1/N- expansion method, is presented in II,
the Theory and calculation method Section. In
Section III, Results and Discussion, the energy
spectra values obtained by 1/N are presented
against the magnetic field, discussed, and
compared with other studies. This section also
examines thermomagnetic quantities, including
heat capacity Cv, entropy (S), magnetization
(M), susceptibility(X), and magneto-caloric
effect (MCE), as well as the density of energy of
states (DOS) of the nanosheet TMD -WS,
material. The conclusion is presented in the final
Section.

2. Theory and Method of Calculation

The Hamiltonian for electron and hole
particles interacting through an attractive 2D
non-Coulombic potential type is used. The
model of a system has an exciton with effective
mass m* and charge e, moving in a two-
dimensional (2D) plane under the influence of a
uniform magnetic field applied perpendicular to
the monolayer. The corresponding Schrodinger
equation is given as [23]:

Hyp(x,y) = Ep(x,y) (1
A 1(d? da? i d d
=3 (G tan) o (v v+

1

3V (% + ¥ + Vi (r,a) )
where: r = \/x? + y2.

Where 7y, a dimensionless magnetic
parameter, is related to the magnetic field.

Vg(r,a) is the Rytova-Keldysh type
potential.

The nonlocally screened electron—hole

interaction in two-dimensional systems, such as
monolayer transition metal dichalcogenides
(TMDs), is described by the Rytova—Keldysh
potential [23]:

e Y )

where:

Hy and Y, are zero-order Struve and Bessel
functions, respectively;

1y 1s related to the screening length related to the
2D polarizability of the monolayer material;

&g 1s the vacuum permittivity;
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k 1is the average dielectric constant for the
surrounding material;

a 1s the parameter for characterizing potential
and is defined as a = ry/kay, where ag is the
effective Bohr radius.

This potential describes two charges in the
electrostatic interaction for thin semiconductor
and semi-metal films, predicted by Rytova-
Keldysh and then discussed in many research
works [24, 25].

The Hamiltonian, Eq. (2), of the system after
adding Rytova-Keldysh potential, Eq. (3), is
given as:

~ 1( d? d? i d d
e R A G e
1,22 _ ¢ ke _y (kr
8 yer 8&p71y [HO (ro) YO (ro )] (4)
The analytic solution of the Hamiltonian in
Eq. (4) is not attainable. We found that 1/N-
expansion is an effective and accurate technique
in solving the Hamiltonian given by Eq. (4).

We can write the radial part of the
Schrddinger equation in N-dimensional space as

follows:
2 (a2 N-1d 1(14+N—-2)h?
<_ 2m* (d? + r ;) 2m*r2
V(r)) @(r) = EB(r) %)

where m* is the electron effective mass, e is the
charge of the electron, h is related to the Planck
constant, and N is the number of dimensions.
l = |my|, where |m;| is the magnetic
quantum number (m; = 0,+1,+2,+3,...) that
labels the quantum dot (QD) energy states and
appears in the term I[(l + N — 2).

By using the parameter k, k=k—a=N+
2l — a, we can rewrite Eq. (5) to become:

( h? d_2+]€2((h2(1_1_7a)(1—3—a)/

T 2m* dr?

)/ 8m'r? +V()/Q)B(r) = EBE) (6)

where Q = k? is a scaling constant used to make
Eq. (5) and Eq. (6) equivalent.

We can use the parameter k and the shift
parameter a to expand the Schrodinger equation
to calculate the energy eigenvalues E(n,, m;).
The complete mathematical steps that lead us to
the eigenvalues of QD energy expressions in
terms of powers of 1/k are given explicitly in the

Appendix. The intrinsic energy values E(n,, m;)
are in powers of 1/ k and are given as follows:
En,,m;) =Ey+E; +E, + Ex*+............ These
energy terms are defined in terms of quantum
numbers, potential roots (ro), and derivatives
(Vi(ro)) [26, 27].

The shift parameter a is chosen to make a
second-order contribution E; vanish. In general,
the presence of this condition ensures exact
analytical energy results with the 1/N method for
both the harmonic oscillator and hydrogen
Hamiltonian [28, 29].

The Thermodynamic Properties: Heat Capacity
(Cv) and Entropy (S)

We evaluate the mean
< E((n,,m;,B,T) > expression
partition function Z.

energy,
from the

The complete thermodynamic quantities,
including heat capacity and entropy, start by
evaluating the partition function at any
temperature and magnetic field strength [30]:

<Z>=Yi_, e Ei/KaT (7)

where Kg is the Boltzmann constant, T is the
temperature, J is the index for the microstates of

the system, and Ej is the total energy of the
system in the respective microstate.

Ej
i p.e KBT
< E >= Zl—lf—EJ (8)

Ti_,e KBT
The heat capacity C, is the temperature
derivative of the mean energy given as [30]:

0<E>

= ©)

Similarly, the entropy S of the exciton system
can also be computed using the expression

C, =

__ 0(KpTIn<Z>)
e — (10)

The Magnetic Properties: Magnetization (M)
and Susceptibility (x)

S

The magnetization (M) is defined as the
negative derivative of the average energy of the
two-dimensional exciton system with respect to
the magnetic field strength BBB [30]:

0<E>

5 (11)

where < E >1is the average energy of the
exciton system in the magnetic field (B).

M=-
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The magnetic susceptibility y is obtained by
differentiating the magnetization with respect to
the magnetic field strength [30]:

_ oM
X =38

(12)
The Density of States (DOS):

The DOS of the exciton system of TMD-WS,
material is another property that can reveal
important information about the electronic
structure of nanomaterials. It is expressed as the
sum of a series of delta functions, given by [31,
321

DOS(E) = 3 Xil-s 8(E — Ex) (13)

The delta function can be replaced by a more
practical computation Gaussian distribution as:

1 —(E—Ep)?
WZ"eXp[ 2r2 ] (14)

where I' is the broadening factor, E, is the
eigenenergy of the exciton system, which was

calculated by the 1/N expansion method, and A
is the area of the material sample [32].

The Magneto-Caloric Effect (MCE)

The magnetocaloric effect (MCE) is defined
as the change in the entropy of the system, A
Sm» as a response to the change in the magnetic
energy of the exciton system presented in an
applied magnetic field, given as [33, 34]:

AS,, = S(To, B=o) — S(Ty, B1o)

DOS(E) =

(15)
where:
AS,,, is magnetic entropy change (eV/K);

Sm 1S magnetic entropy;

T, 1s temperature;

B_, is the magnetic field equal to zero;
B, is the magnetic field not equal to zero.

3. Results and Discussion

In this part, the computed physical quantities
will be listed in tables and displayed in figures.
The discussion of the results consists of two
main steps. In the first step, the accuracy of the
energy spectra obtained using the 1/N expansion
method is evaluated by comparison with
previously reported experimental and theoretical
results. In the second step, these excitonic results
are used to explain the dependence of the
magnetothermal properties, DOS and MCE of
the WS, material as the magnetic field strength
changes to include a strong range, B=60 T.

The physical parameters used for WS,, in
numerical computations are: the effective mass
of an electron m* = 0.16m,, the average
dielectric constant of the material k = 1, the
effective screening length of the monolayer
7o = 75A°, and the effective Bohr radius
a = 3.779.[23]

Tables l.a-1.c list the results computed
using the 1/N expansion method and
compare them with the reported results in
Ref. [23]. The quantitative comparison
demonstrates the accuracy of the 1/N
expansion method over the entire range of
magnetic field strengths.

TABLE 1.a. Ground-state energies (1s, 2s) (in eV) at different magnetic field strengths (in T in the
present work and in units of y in Ref [23], where y = 0.01 corresponds to a magnetic field B =
60.16T) for WS,, calculated using the 1/N-shift expansions method and compared with the reported

results in Ref. [23].

WS, Is|1,0 > 2s (2,0 >
B(T) r E (present work) (eV) E(Ref[23]) (eV) E (present work) (eV) E (Ref[23]) (eV)
0.00 0.00000 -0.3179 -0.3187 -0.1523 -0.1516
7.52 0.00125 -0.3179 -0.3184 -0.1520 -0.1513
15.0 0.00250 -0.3178 -0.3186 -0.1514 -0.1507
30.0 0.00500 -0.3175 -0.3179 -0.1488 -0.1478
45.1 0.00750 -0.3170 -0.3178 -0.1446 -0.1436
60.1 0.01000 -0.3163 -0.3128 -0.1392 -0.1378
150 0.02500 -0.3086 -0.3094 -0.0888 -0.0853
300 0.05000 -0.2854 -0.2862 0.0303 0.0339
601 0.10000 -0.2188 -0.2188 0.3092 0.3106
3008 0.50000 0.5246 0.5259 2.7905 2.9713
4512 0.75000 1.0328 1.0344 4.3861 4.3874
6016 1.00000 1.5568 1.5525 5.9913 5.9938
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TABLE 1.b. Ground-state energies (3s, 4s) (in eV) at different values of magnetic field strength (in a
unit of T in present work and a unit of y in Ref [23], where y = 0.01 corresponds to a magnetic field
of B = 60.16T) for WS,, calculated using the 1/N-shift expansions method, compared with the
reported results in Ref. [23].

3s 4s
WS, 13,0 > 4,0 >
B (T) r E (present work) (eV) E (Ref[23]) (eV) E (present work) (eV) E (1({:{/[)2 3D
0.00 0.00000 -0.0952 -0.0944 -0.0657 -0.0648
7.52 0.00125 -0.0944 -0.0936 -0.0639 -0.0631
15.0 0.00250 -0.0922 -0.0909 -0.0591 -0.0579
30.0 0.00500 -0.0843 -0.0827 -0.0439 -0.0404
45.1 0.00750 -0.0730 -0.0700 -0.0227 -0.0178
60.1 0.01000 -0.0591 -0.0552 0.0027 0.0074
150 0.02500 0.0562 0.0596 0.1868 0.1872
300 0.05000 0.2868 0.2886 0.5277 0.5285
601 0.10000 0.7839 0.7845 1.2436 1.2408
3008 0.50000 5.0074 5.0114 7.2089 7.2151
4512 0.75000 7.6905 7.6978 10.979 10.993
6016 1.00000 10.383 10.392 14.759 14.777

TABLE 1.c. Ground-state energies (5s, 6s) (in a unit of eV) at different values of magnetic field
strength (in a unit of T in present work and a unit of y in Ref [23], where y = 0.01 corresponds to a
magnetic field B = 60.16T) for WS,, calculated using the 1/N-shift expansions method, compared
with the reported results in Ref. [23].

WS, 5s 15,0 > 6s 16,0 >
B (T) Y E (present work) (eV) E (Ref[23]) (eV) E (present work) (eV) E (Ref[23]) (eV)
0.00 0.00000 -0.0481 -0.0474 -0.0367 -0.0361
7.52 0.00125 -0.0448 -0.0439 -0.0312 -0.0300
15.0 0.00250 -0.0366 -0.0304 -0.0196 -0.0156
30.0 0.00500 -0.0119 -0.0069 0.0180 0.0226
45.1 0.00750 0.0220 0.0261 0.0642 0.0674
60.1 0.01000 0.0595 0.0631 0.1132 0.1158
150 0.02500 0.3109 0.3121 0.4312 0.4310
300 0.05000 0.7616 0.7619 0.9917 0.9883
601 0.10000 1.6961 1.6937 2.1446 2.1421
3008 0.50000 9.4029 9.4133 11.592 11.581
4512 0.75000 14.260 14.276 17.537 17.559
6016 1.00000 19.127 19.153 23.491 23.524

In addition, energy values at different from <s> to <p > to see how energy
quantum levels (| n,m>) were calculated for the  essentially depends on these values and to see
same field values that were defined in the  the changes that occur in energy at these
previous tables in order to make the work more  quantum numbers, as shown in Table 2.
comprehensive. We changed the quantum state
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TABLE 2. Ground-state energies (in a unit of eV) at different values of magnetic field strength (in a
unit of T in the present work and unit of y in Ref [23], where y = 0.01 corresponds to the magnetic

field B = 60.16T) for WS,, calculated using the 1/N-shift expansions method.

WS Ip 2p 3p p Sp 6p

: 1,1 > 2,1 > 31> 41> |51> 61>
B(I) v E(eV) E(eV) E(eV) E(eV) E(eV) E(eV)
0.00 0.00000 -0.1843  -0.1098  -0.0739 -0.0532 -0.0401 -0.0313
7.52 0.00125 -0.1815  -0.1065  -0.0698 -0.0477 -0.0326 -0.0213
15.0 0.00250 -0.1784  -0.1023  -0.0633 -0.0378 -0.0188 -0.0027
30.0 0.00500 -0.1717  -0.0912  -0.0451 -0.0106 0.0195 0.0481
45.1 0.00750 -0.1640  -0.0773  -0.0220 0.0236 0.0657 0.1058
60.1 0.01000 -0.1557  -0.0614  0.0040 0.0611 0.1146 0.1660
150 0.02500 -0.0944  0.0517  0.1883 0.3123 0.4324 0.5502
300 0.05000 0.0299  0.2879  0.5289 0.7627 0.9927 1.2201
601 0.10000 0.3095  0.7848  1.2444 1.6969 2.1453 2.5911
3008 0.50000 2.7907  5.0073  7.2089 9.4030 11.592 13.779
4512 0.75000 4.3861  7.6903  10.979 14260 17.537 20.811
6016 1.00000 5.9912 10382  14.759 19.127 23.491 27.852

In Figs. 1(a) and 1(b), for the sake of more
qualitative comparisons, the tabulated energy
values are also displayed against the magnetic
field for different s-states. The effect of magnetic
field confinement on the ground-state energies is
illustrated. The figures show that the first level is
not affected by an increase in the magnetic field,
as it maintains an almost constant value.

0.2
(a

0.1

s
@
=
>
e -0.1
w
-0.2
-0.3
0 10 20 30 40 S0 60
B(M

However, for higher energy levels, a noticeable
dependence on the magnetic field is observed,
with the energy values increasing as the
magnetic field strength increases. This is
completely consistent with the results of Ref.
[23]. Comparing the two figures, we can see a
good match between the two works.

0.10

0.05

(a.)

0.00

Energy

-0.05 F -

ls

-0.10 L L . L
0.00 0.01 0.02 0.03 0.04 0.05

Magnetic field y (a.u)

FIG. 1. Ground-state energy as a function of magnetic field for WS, Figures are taken from Ref. [23]. Different
systems of energy and magnetic field units are used in both plots. (a) present work, (b) Ref. [23]. The two figures
have different scales, where y = 0.01 corresponds to the magnetic field of B = 60.16T.

Figure 2 shows the influence of the magnetic
field effect on the ground-state energies for
higher quantum p-states labelled by magnetic

602

quantum number m. As the magnetic field
increases, the energy values also increase.
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0.2

Energy(eV)

o 10 20

30 40 50 60

B(T)

FIG. 2. Ground-state energy <E> as a function of magnetic field (B) on the ground-state energies for quantum
number (p) of WS,.

Next, we studied the ground state energy as a
function of temperature at different values of the
magnetic field. As shown in Fig. 3, when we
turn off the magnetic field (B = 0T), we find that
the average energies increase with increasing

-0.311
-0.312

-0.313

I
e
w
—
>

-0.315

Average energy(eV)

-0.316

-0.317

-0.318

0 200 400

temperature. In addition, the average energy
convergence is achieved as we increase the
number of exciton states from 15 to 20.

600 800 1000

Temp(kelvin)
FIG. 3. Average energy as a function of temperature when we turn off the magnetic field (B=0T) for WS,,
computed for different numbers of S-states.

In Fig. 4, we now switched on the magnetic
field and tested again the convergence of the
average energy of the exciton system against the
temperature, calculated at fixed magnetic field

strength, B= 60T, and various numbers of
bases. The figure clearly shows a very good
convergence behavior of the average energy for
taking only 15 bases of exciton S-states.
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FIG. 4. Average energy € as a function of temperature (T) when we switched the magnetic field (B = 60.16T)

for different numbers of S-states for WS,.

The dependence of the heat capacity on
temperature and magnetic field for the WS- sheet
is shown in Fig. 5. For the zero magnetic field
case (B = 0), the heat capacity increases with
temperature, reaching a peak value, known as the

Schottky anomaly, atC"/kB ~ 2.4 at 1000° K.

reaches almost asymptotic
T=3000K for WS, In the presence of a strong
magnetic field B = 60 T, the exciton becomes
more confined, and the exciton heat capacity
reaches a peak value of approximately 1.8 at

1200K.

The heat capacity starts decreasing until it
1.0 T i ‘
! B=6018T
0'8 B ' / ‘\ N | e B=0
'l ‘, “ \
I. A/ ‘\
0.6 i r: / ‘\\
N :' "I R
0.4+ /|
i
:1‘ 5
:," p
0.2} g
if R R
0.0} —
0 1000 2000 3000 4000 5000
Temp(Kelvin)

Figure 6 shows the entropy as a function of
temperature and magnetic field. The plot shows

that the entropy increases with
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FIG. 5. Heat capacity as a function of temperature and magnetic field for WS,
temperature until it reaches a saturation entropy

limit of S /kB ~1.7 for zero magnetic field at

increasing
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3000 K, and 1.6 at 60.16 T at the same
temperature. We reduced the temperature to
2000° K to see the stability of entropy in the sub-

figure for both cases, with and without a
magnetic field.

e —— —
B=0 e — - i
.
----- B=6016T s
1.5}
I / /18l et
o 1.0 il
& ! y
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/ 4
/ @
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0.0 —— 0 500 1000 1500 2000
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FIG. 6. Entropy as a function of temperature for different magnetic field strengths for WS (the inset figure is
plotted for the low temperature range).

Magnetic properties were also studied, starting
with the computation of statistical energy for WS,
under the effect of temperature and magnetic
field. The statistical energy, shown in the present

work for WS, in Fig. 7, is calculated at 100 K
and 300 K for a magnetic field range from 0 to

60 T. The statistical energy is found to reach -
0.318 eV at 100 K and -0.317 eV at 300 K.

-0.3165 e
Y ¥
® . o
B 7
2 _0.3170/
= v
Q g
r e i
3 .
@ Sl
& -0.3175| o
& i
// ﬂ-"
-0.3180 ______---
0 10 20 30 40 50 60
B(T)

FIG. 7. Statistical energy as a function of magnetic field for WS,.

We have calculated the magnetization in
units of effective Bohr magneton [35], p, =

eh/2m* = 0.3622*10° eV/T, for WS,. Also, we

studied the magnetization as a function of
magnetic field at different values of temperature.
Figure 8 shows that the magnetization curve
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decreases with increasing magnetic field, starting
from zero at 0 T to reach -0.05 at 60 T at 900 K.

When we decreased the temperature to 10 K,
the magnetization reached -0.14 at 60 T, see Fig.
8. This means that, when we decrease the

temperature, the magnetization increases at high
magnetic fields (60 T), but at low magnetic
fields (0 T) the magnetization takes the same
value and starts from zero.

0.00F TR
-0.02+
-0.04}

-0.06

MI[JB

-0.08+

-0.10

-0.12}

-0.14

0 10 20

30 40 50 60
B(T)

FIG. 8. Magnetization as a function of magnetic field at 900 K and 10 K for WS,.

In Fig. 9, we studied the behavior of
computed magnetic susceptibility for both low
and high temperature ranges in the presence of a

magnetic field for WS,. The results are displayed
for temperatures of 10 K and 150 K.

0.002460 -
0.002458] — Tt
0.002456
0.002454 |

0.002452+

Magnetic susceptibility (X)/us.T

0.002450 -

2 4

6 8 10
B(T)

FIG. 9. Magnetic susceptibility as a function of a magnetic field at 10 K and 150 K for WS,.

The density of states (DOS) is a significant
physical quantity to reveal information about the
electronic properties of materials, by describing
the system's responses to Hamiltonian
parameters, such as the magnetic field and
confinement potential.

In Fig. 10, the DOS is plotted as a function of
energy at different values of the magnetic field
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(50 T, 60.16 T). The plot for WS, below shows
that the presence of the external magnetic field
removes the degeneracy of the states, so the
DOS gives one at each value of the energy
spectrum. We observe that as the magnetic field
strength increases, the Landau level energy
separation hw, also increases, leading to a
reduction in the number of LL-states in the DOS
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of WS, material. For example, the number of
states (3 states) at B = 60 T (black color, dashed
plot) is smaller than the number of states (4

states) for a lower magnetic field strength (red
color, solid line plot) and for a fixed energy
range (E).

40
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(2]
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FIG. 10. DOS vs. energy for WS; at different magnetic field values.
The magnetocaloric effect (MCE) was  large, and thus more thermal energy is needed to

studied in order to identify the thermomagnetic
properties by investigating the behavior of the
material with the temperature changes when the
material is exposed to a changing magnetic field.
Our study is devoted to a sheet made from TMD
materials (WS;). The MCE, represented by AS
against the temperature T, shows a Gaussian
distribution. A high temperature is required to
see the MCE in TMD since the binding energy
for an exciton in a strong magnetic field is very

be absorbed by the exciton. We observe that this
temperature is far from the room temperature
range, as TMD materials require very high
thermal energy (E;;) in order to increase the
kinetic energy (K) of the electron. Under these
conditions, the exciton system transitions
randomly between states, producing the
observed entropy variation, as shown in Fig. 11
[36, 37].
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FIG. 11. MCE vs temperature for WS, at different magnetic field values, AS,,, = S(B_¢0.16) — S(B=o).

4. Conclusions

In conclusion, we have investigated the
magnetothermal properties of WS, TMD
material. Additionally, we have studied the DOS

and MCE of the same material as functions of
the magnetic field. The Schrodinger equation for
the exciton system in a magnetic field was
solved by using the shifted 1/N expansion
method to find the eigenenergy states. We have
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tested the computed results by the 1/N method
against different computation results calculated
by various numerical methods. The results show
that the 1/N method is both accurate and
effective for solving the exciton Hamiltonian
system with a spherically symmetric potential
such as Vzi. We have ensured the convergence
issue of the statistical energy by varying the
number of states in each computation step. The
behavior of the magnetothermal properties of the
exciton system for WS, nanosheet had been
studied as a function of magnetic field and
temperature. The results show that the heat
capacity curve exhibits a Schottky anomaly.
Furthermore, the magnetic susceptibility curve
for WS, was calculated and displayed. We have
calculated the density of the state function, DOS,
of the exciton system. The DOS plots show an
oscillatory-type behavior for different values of
the magnetic field, reflecting the Landau-level
(LL) states of the exciton system presented in a
magnetic field.

The present study also investigates the MCE
of an exciton in TMD material, which is defined
as the magnetothermodynamic phenomena that
has an application in magnetic refrigeration. We
have found that the calculated AS — T plot for
the exciton system of the WS, monolayer has a
Gaussian distribution shape.

This study reveals that the WS,-TMD
material has attractive magnetic and thermal
properties, which make WS, a very promising
material in the next generation of
nanoelectronics.

Appendix
Shifted 1/N Expansion Method

The 1/N expansion method is used to solve
Eq. (5) systematically in terms of the expansion
parameter LK. At large Kk, the contribution of
energy comes from the effective potential:

P v

Vorr = 8m*r? = Q

(A1)

2 i
where @ = k° is a scaling constant. Verf has a
minimum value at 7o, so that we have:

am'r3v (ry) = /#Q (A2)

To shift the origin of the coordinate system to
the position of the minimum of the effective
potential, a new variable x is defined:
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x=—@-—-r
ot 0 (A3)
Using a Taylor expansion around the
effective minimum r0 (corresponding to x = 0),
an analytical equation similar to the Schrédinger
equation for a one-dimensional solvable
nonharmonic  oscillator is obtained. The
coefficients of both equations are compared to
determine all parameters of the anharmonic
oscillator in terms of K, Q, r0, and the potential
derivatives, allowing the determination of the
energy spectrum. The oscillator frequency is

then given by:

h roV'(r
w=— (342 (ro)
2m V(rg) (A4)
To calculate the energy eigenvalues, the
Schrodinger equation is expanded in powers of

1/k, where K =N +2l—a N s the number of
spatial dimensions and (@)is the so-called

) 1/2

shifted parameter. The shifted parameter ¢ is
defined as:

2(2n, — 1)m*w
h (AS)

For any values of radial quantum numbers 7r

and My, the energy eigenvalues E(ny,m;) are
given by:

E(n,m)) =Ey+E;+E,+E; (A6)
where:
Q
Eo=V(r) +
0 (r) (8*771‘*7'2
El = _(Cl - Cf)
(8*m")
E; = (E;y + ay)/r?
az
E; = —
3 k*r?
where:
Q=(N+2+l-a)’
ca=(1-a)
2=(2-a)
c=(2-a)
c3 = (3 - (l)

Kmail et al.
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a1:nl*ez+3*nz*e4—05*(e12+6*nl*e1*e3+n4*e§)

a; =t7 +typ +tig

Cg = w_l

The forms of previous parameters are given

in the following;:

t7=1t; —cs*(t; +t3+ty+1ts+tg)
tip = c& * (tg + to + tio + t11)

tig =—ci * (t13 + t14 + t15)

with:
ty=ny*dy+3*ny;*dy+5 *n3*dg
t2=n1*e22+12*n2*e2*e4
t3=2%e;*dy +2*ng *e,>
ty=6*ny*e; *d3 +30 *ny ey *ds

ts =6*ny;*e3*dy +2*ny*e3*ds

te =10 *ng * e3 * ds
t8=4*elz*e2+36*n1*el*e2*e3
t9=8*n4*e2*e§
t10=24*n1*e§*e4+8 *N7* e * e3 * ey
t11=12*n8*e§*e4

t13=8*ei*e3+108*n1*e%*e§

cg=2*m"*w

€1 = 61/\/‘3—4
e; =€/cy

_ 3/2
e3 = €e3/cy !

ey = €4/cy’
dy =61/ cy
dy =63 /cy

d3 = 83/cy 32
dy = 64/cy 2
ds = 85/cy >/?
dg = 8g/cy’
also:

€1 =c2/(2*m")

€ =—3*c3/(4*m")

€3 =—1/(2*m") + (rs = der; () /(6 * Q)
€, =5/(8*m") + (rg » dery (r))/(24 * Q)
8y =—cy*c3/(4*m”")

6, =3 *c; *c3/(8+m")

63 = Cz/m‘

84 =—5=*c;/(4*m")

85 =—3/(4*m") + (r7 = ders (r)) /(120 = Q)
8¢ =7/(8 *m") + (rg » derg (1))/(720 * Q)

where (n’s), (d’s), and (¢’s) are parameters given  where:

t14=48*n4*61*€g

tys =30 * ng * €3

as: dv
derl(r)=d—

n=1+2=*n, r
5 d*v
np=14+2x*n,.+2*n, derz(r)=¥
n3=3+8*n.+6*n.2+4+n.3 d3v
2 der3(r)=d—

ng=11+30 *n, +30 *n, r
d*v

ng=21+59*n.+51*n,2+34*n> der4(r)=¥
ng=13+40*n, +42*n, > +28*n,> dsv
5 ders(r)=d—

n;=31+78*n,.+78 *n, d6r
\'%

ng =57+189 *n. +225+n, 2 +150 *n, ° derg (r) = ——

ng=31+109 *n, +141*n, 2 +94+n, >
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