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Abstract: We have resorted to a modified form of Modified Newtonian Dynamics 
(MOND) to account for galactic rotation curves, as a possible alternative to the dark-matter 
paradigm, by assuming that either (i) the gravitational constant is a function of distance 
scale, or, (ii) the gravitational-to-inertial mass ratio is a function of distance scale. We have 
used a linear approximation of each function, from which two new parameters appeared 
that have to be determined: G1, the first-order coefficient of gravitational coupling and C1, 
the first-order coefficient of gravitational-to-inertial mass ratio. We have generated 
simplified theoretical rotation curves for some hypothetical spherical galaxies by varying 
our model’s parameters. We have concluded that our model gives a qualitatively and 
quantitatively acceptable behavior of the galactic-rotation curves for some values of those 
parameters: G1 between around 10-31 and 10-30 m2 s-2 kg-1; or, C1 between 10-21 and           
10-20 m-1. Our model also may imply the existence of a critical distance at which the 
MOND effects become significant rather than a critical acceleration. Furthermore, 
assuming that the critical centripetal acceleration in our model is equivalent to that in 
Milgrom’s MOND (ܽ), we found that ܽ is not a constant, but a linear function of the 
galactic baryonic mass (ܽ ≈ ଵܩ

ଶܯ/ܩ). We were able to re-derive Milgrom’s version of 
MOND (ܽ

ଶ/ܽ =  .(ଶݎ/ܯܩ
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1. Introduction 

Dark matter is the generally accepted 
paradigm among astrophysicists and 
cosmologists to explain the higher rate of 
rotation in galaxies than could be sustained by 
the amount of the observed normal matter alone, 
as well as to explain the higher velocity 
dispersions of galaxies in galactic clusters than 
what is observed. For a historical review of the 
dark-matter issue, one may refer to [1, 2]. 
Scientists also consider, in their modern 
cosmological models, such as the ΛCDM model 
(which contains dark energy, cold dark matter 

and ordinary matter), that dark matter is an 
essential ingredient that plays a central role in 
our understanding of the large-scale structure of 
the universe as well as of the microwave 
background radiation. Recent studies based on 
the Planck mission data, for example, estimate 
that dark matter adds up to 26.8 percent of the 
total mass of the universe, whereas baryonic 
(ordinary) matter accounts for just 4.9 percent, 
the rest being dark energy [3]. That is, we have 
more than five times more dark matter than 
ordinary matter in the universe. 
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1.1 Galactic Rotation Curves  

By the 1970s, it was confirmed that the 
observed rotation curves for galaxies did not 
follow the expected Keplerian behavior in the 
outer regions of galaxies (in the sense that the 
circular velocities v of stars and/ or gas in the 
galactic disc are proportional to r-1/2, r being the 
radial distance from the galactic centre); rather, 
it was found that the speed v almost remains 
constant after peaking – what is known as flat 
rotation curves [4]. To explain the observations, 
the majority of researchers were led to accept the 
fact that galaxies contain unseen dark matter as 
an important component of galaxies, where the 
dark matter’s mass should increase with radius in 
order for rotation velocities to remain constant. 
That is, according to the standard view, most of 
the dark matter in galaxies is contained in the 
galactic halos [1].  

1.2 Some Problems with Dark Matter  

Despite the successes of the ΛCDM model, 
which includes, among other things, velocity 
dispersions of galaxies in galactic clusters, the 
observed fluctuations in the Cosmic Microwave 
Background and the formation of the first 
structures in the universe, the main problem with 
dark matter remains that its nature is still 
unknown. There are many dark-matter 
candidates from particle physics, the most 
famous of which are the Weakly Interactive 
Massive Particles or WIMPs. But, the list of 
dark-matter candidates also includes super-
WIMPs, light gravitinos, hidden dark matter, 
sterile neutrinos and axions [5]. However, the 
problem remains that all experiments to detect 
particles that might be dark-matter candidates 
have given negative results so far. For a review 
of the current situation of the research on dark-
matter candidates, (see, for instance: [6, 7]). 

There are, of course, other problems with the 
dark-matter paradigm, particularly at the galactic 
level, such as the core-cusp problem, known as 
the cuspy halo problem, which refers to a 
discrepancy between the inferred dark-matter 
density profiles of low-mass galaxies and the 
density profiles predicted by cosmological N-
body simulations (see, for instance: [8]). 

1.3 Some Suggested Alternatives to Dark 
Matter  

For the above reasons, many researchers have 
attempted to find some alternatives to the dark-
matter paradigm in order to explain 

observational results, particularly at the galactic 
scales.  

Perhaps, the most popular of these attempts is 
the Modified Newtonian Dynamics (MOND), 
which was put forward by Milgrom [9, 10, 11] in 
the early 1980s. Milgrom proposed a 
modification of Newton's laws to account for the 
observed properties of galaxies as an alternative 
to the invisible dark-matter halos at the galactic 
level. His idea is based on the assumption that at 
accelerations well above a certain critical 
acceleration, a0: a/a0 >> 1, Newton’s second law 
applies, whereas at very low accelerations: a/a0 
<< 1, that law becomes: F = m a2/a0, which 
eventually leads to constant circular velocities at 
large radial distances from the galactic centre. 
MOND fully describes the rotation curves of 
some galaxies given only it is baryonic mass, 
where it predicts a far strong correlation between 
the baryonic mass distribution and the dark-
matter hypotheses [12].  

Since Milgrom's original proposal, 
proponents of MOND have claimed to 
successfully predict a variety of galactic 
phenomena that they state are difficult to 
understand as consequences of dark matter (See, 
for instance: [13, 14]). Bekenstein [15] also 
suggested a relativistic generalization of MOND, 
known as the Tensor–Vector–Scalar (TeVeS) 
Theory. However, MOND and its 
generalizations do not adequately account for the 
observed properties of galactic clusters and no 
satisfactory cosmological model has been 
constructed from the MOND hypothesis. On the 
other hand, many researchers found that the 
critical acceleration a0 cannot be constant in 
individual galaxies the rotation curves of which 
were used to obtain its best-fit value (See, for 
instance: [16, 17]). Furthermore, experiments at 
extremely low accelerations (below a0) have 
been conducted, finding no departure from 
Newton's second law [18]. 

Moffat [19, 20] suggested a theory of 
Modified Gravity (MOG), not only to account 
for galactic rotation curves without invoking 
dark matter [21, 22], but also as an alternative to 
dark matter in general and to dark energy on the 
cosmological scales. 

Fahr [23] suggested using a gravitational 
analogue of the Lorentz force of 
electromagnetism by introducing a “gravo-
inductive” term to the usual “static form” of the 
force of gravity, which would give rise to flat 
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rotation curves without the need of dark matter. 
Sivram [24], however, concluded that such 
gravo-inductive effects are too small to account 
for flat-rotation curves. More recently, Arbab 
[25] also suggested using a gravitational 
analogue of the Lorentz force by introducing a 
“gravito-magnetic” term to gravity in what he 
called the generalized Newton’s law of 
gravitation and he compared it to Milgrom’s 
MOND. Altaie & Suleiman [26] suggested the 
existence of a drag force in the outer regions of 
spiral galaxies, due to some sort of a 
dynamically generated viscous medium, which 
would counterbalance the centripetal force and 
thus give terminal velocities to stars in those 
regions.  

Other researchers suggested a scale-
dependent, or varying, gravitational constant G. 
For instance, Bertolami & Garcia–Bellido [27, 
28] argued about the possibility of a scale-
dependent gravitational coupling that may have 
many consequences in astrophysics and 
cosmology, among which the flatness of 
galactic-rotation curves—though their model 
required the existence of some dark matter to be 
compatible with observations. Christodoulou & 
Kazanas [29], using the baryonic Tully-Fisher 
and the Faber-Jackson relations, concluded that 
the gravitational constant G is inversely 
proportional to acceleration a. Vagnozzi and 
some other researchers used “mimetic gravity” 
as a tool to obtain MOND-like acceleration laws 
that might explain flat-rotation curves (see, for 
instance: [30]).  

In fact, a scale-dependent gravitational 
constant (as mentioned above) may provide a 
theoretical background for the model which we 
are suggesting in this research, as will be shown 
below.  

1.4 About This Work  

We shall use a new approach to Modified 
Newtonian Dynamics (MOND). In this part of 
our work (Part I: Theoretical Considerations), we 
shall only investigate the theoretical aspects of 
our model and its implications. We shall start by 
presenting the physical and mathematical basis 
of our work (Section 2), in which we detail the 
mathematical framework of the classical 
Newtonian dynamics of galactic rotation and our 
version of MOND. In Section 3, we shall 
generate some theoretical simplified rotation 
curves based on our model using computer 
coding, by varying our model’s parameters and 

contrasting them to the classical Newtonian 
approach. Then, we shall discuss all the obtained 
results in Section 4 and present our conclusions 
in Section 5. 

In the second part of this work (Part II: 
Observational Considerations), we shall analyze 
some observational rotation curves for a number 
of galaxies and try to evaluate our model’s 
parameters from them. Our later work shall 
address an estimation of the higher-order 
parameters. Eventually, we will have to search 
for a theoretical framework for our version of 
MOND. That theory should be a relativistic 
generalization of our work, similar to 
Bekenstein’s Tensor–Vector–Scalar theory, 
TeVeS [15], or probably one of the quantum 
gravity theories available in the scientific 
literature.  

2. The Physical-Mathematical 
Foundation of the Model 

We shall start here by considering the orbital 
speed of a star, or a blob of gas, which lies 
outside the galactic bulge of a galaxy, at a 
distance r from the galaxy’s center (GC). 
Assuming that this star (or blob of gas) has an 
inertial mass mi and a gravitational mass mg and 
that it is only influenced by the gravitational pull 
of the galactic bulge’s mass, Mb, the orbital 
speed of the star or blob of gas vc can be 
estimated by using Newton’s 2nd law as follows:  

Σܨ = ݉  ܽ =  ݉ 
௩

మ


  

ac being the centripetal acceleration. Then, using 
Newton’s law of gravitation: 

ܨ =
ீெ್

మ = ݉ 
௩

మ


  

ݒ = ቀீெ್/


ቁ

ଵ/ଶ
.           (1) 

Eq. (1) above is the well-known Keplerian 
speed with its r-1/2 dependence, but where we did 
not cancel the gravitational mass with the inertial 
mass in the equation, for reasons to be explained 
below. 

In order for the speed, vc, in Eq. (1) to divert 
from the Keplerian behavior, the terms in the 
numerator should somehow be a function of 
distance in one of the following ways: 
 either the gravitational constant, G, is a 

function of distance: G = G(r), probably as a 
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result of a scale-dependent gravitational 
coupling, or, 

 the gravitational-to-inertial mass ratio, or 
݉/݉, is a function of distance; that is: 
݉/݉ =  which means that the ,(ݎ)݂
equivalence principle is somehow violated at 
some large distance scales. 

However, before using this sort of Modified 
Newtonian Dynamics (MOND), we shall 
rederive the basic equations of the Newtonian 
dynamics in galaxies, since they will be needed 
in both parts of our work. 
2.1 Purely Newtonian Behavior 

2.1.1 Within the Galactic Bulge 

Let us start with a star that lies at a distance r 
from the galactic center (GC) of a certain galaxy, 
but within its galactic bulge; the volume of the 
galactic sphere of radius r that is concentric with 
the GC is: 

ܸ =  ସగ
ଷ

  ଷݎ

The total mass of matter contained within this 
spherical volume is: 

ܯ = ܸ 〈ߩ〉 = 〈ߩ〉 ସగ
ଷ

 ଷ           (2)ݎ

where 〈ߩ〉 is the average mass density of the 
galactic bulge. That is: 

〈ߩ〉 = ெ್
 ್

= ெ್
రഏ
య ್య .           (3) 

Mb & rb being the total mass of the galactic bulge 
and its radius, respectively. 

Assuming that the star lying at a distance r 
from the galactic center has a mass m, it will 
therefore experience a force of gravity Fg only 
from the mass contained within the sphere of 
radius r and mass ܯ , which is concentric with 
the galactic center. Using Newton’s law of 
gravitation and Eq. (2), we get the gravitational 
force acting on the star as: 

ܨ = ீெೝ
మ =

ீ〈ఘ〉రഏ
య య

మ   

ܨ =  ସగ
ଷ

 (4)           . ݎ ݉ 〈ߩ〉ܩ

Assuming that stars inside the galactic bulge 
experience a purely centripetal acceleration due 
to the influence of gravitation, we may use 
Newton’s 2nd law to calculate the orbital (or 
circular) speed, ݒ, of this star: 

Σܨ = ݉ ܽ =  ݉ ௩
మ


            (5) 

From the previous two Eqs. (4) & (5), we get: 

Σܨ = ܨ =  ݉ ܽ =  ݉ ௩
మ


  

ସగ
ଷ

ݎ ݉ 〈ߩ〉ܩ = ݉ ௩
మ


  

ݒ
ଶ = ସగ

ଷ
  ଶݎ 〈ߩ〉ܩ

ݒ = ቀସగ
ଷ

ቁ〈ߩ〉ܩ
భ
మ = ݎ ݇  (6)            ݎ 

where: ݇ = ቀସగ
ଷ

ቁ〈ߩ〉ܩ
ଵ/ଶ

.          (7) 

Noting that ݇, the constant of proportionality 
between the rotational speed and distance r, may 
vary from one galaxy to another, since it depends 
on the value of the mean mass density of the 
galactic bulge, 〈ߩ〉. If ݇ is estimated 
observationally for a given galaxy, the mean 
mass density 〈ߩ〉 of its galactic bulge may be 
estimated using Eq. (7) as: 

〈ߩ〉 = ݇
ଶ ቀସగ

ଷ
ቁܩ

ିଵ
 .           (8) 

Furthermore, if the radius of the galactic 
bulge, rb, is also estimated for the same galaxy, 
its total mass, Mb, may be determined using Eq. 
(3). 

The centripetal acceleration in this case, using 
Eq. (6), will be: 

ܽ =  ௩
మ


=  

( )మ


  

ܽ =  ݇
ଶ (9)             . ݎ 

2.1.2 Outside the Galactic Bulge 
If a star of mass m lies at a distance r from 

the galactic center (GC) of a certain galaxy, but 
well beyond its galactic bulge, we may assume 
that this star is mainly influenced by the 
gravitation of the total mass contained within 
this galactic bulge, ܯ, if we neglect the 
influence of the disc stars. In this case, the 
gravitational force upon this star will be:  

ܨ ≈ ீெ್
మ  .            (10) 

Applying Newton’s 2nd law to calculate the 
circular speed ݒ of this star and inserting Eq. 
(10): 

Σܨ = ݉ ܽ =  ݉ ௩
మ
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Σܨ = ܨ =  ݉ ௩
మ


  

ீெ್
మ = ݉ ௩

మ


  

ݒ = ቀீெ್


ቁ
ଵ/ଶ

          (11) 

which is the normal Keplerian speed, with its     
r-1/2 dependence. 
2.2 Using our Version of Modified Newtonian 
Dynamics (MOND) 

In this work, we shall not use the MOND 
treatment as proposed by Milgrom [9, 10, 11] 
which considers that the laws of mechanics 
deviate from Newtonian mechanics at very low 
accelerations; rather, we will assume either that 
the gravitational coupling has a sort of scale-
dependence or that the equivalence between the 
gravitational and inertial masses has a sort of 
scale dependence. 
2.2.1 Using a Scale-dependent G 

Motivated by works that considered a scale-
dependent gravitational coupling (see, for 
instance: [27, 28, 29, 30]), we will assume here 
that the gravitational constant, G, has some sort 
of dependence on the scale considered; that is, it 
is a function of distance as G(r). But, since we 
do not know the exact dependence of the 
function G(r) on distance, we will use a Taylor 
series approximation of the function as: 

(ݎ)ܩ = ܩ + ݎଵܩ + ଵ
ଶ

ଶݎଶܩ + ⋯       (12a) 

where G0 is the Newtonian constant of 
gravitation, which we will designate here as the 
zero-order coefficient of gravitational coupling, 
G1 is the first-order coefficient of gravitational 
coupling, G2 is the second-order coefficient of 
gravitational coupling and so forth … . 

However, for our purposes in this research, 
where we are interested in distance scales within 
galaxies, we will limit our treatment to the first 
two terms of the series and neglect higher-order 
terms; that is:  
(ݎ)ܩ ≈ ܩ +  (12b)         . ݎଵܩ

Now, if we consider a star that lies at a 
distance r from the galactic center (GC) of a 
certain galaxy, but well beyond its galactic 
bulge, and neglecting the gravitational influence 
of matter outside the bulge (as a first 
approximation), the star will be mainly 
influenced by the mass of the galactic bulge, ܯ, 

in which case, using the modified form of 
gravitational coupling – Eq. (12b), the 
gravitational force upon this star will be:  

ܨ = ீ()ெ್
మ ≈ (ீబାீభ)ெ್

మ  .        (13) 

To calculate the circular speed, ݒ, for this 
star, we apply Newton’s 2nd law and insert Eq. 
(13) into it: 

Σܨ = ݉ ܽ =  ݉ ௩
మ


  

ܨ =  ݉ ௩
మ


  

(ீబାீభ)ெ್
మ ≈ ݉ ௩

మ


  

ݒ ≈ ቀ(ீబାீభ)ெ್


ቁ
ଵ/ଶ

  

ݒ ≈ ቀீబெ್


+ ቁܯଵܩ
ଵ/ଶ

 .         (14) 

The latter equation expresses the modified 
form of the circular speed ݒ. But, it should be 
noted here that (using the same system of units) 
the value of G1 should be many orders of 
magnitude smaller than the Newtonian constant 
of gravitation, G0, in order to be consistent with 
experiments and observations, as will be shown. 

At distance scales much smaller than a certain 
critical distance, rc (at r << rc), the 1st term under 
the square root in Eq. (14) is dominant, so that 
the circular speed ݒ reduces to its Keplerian 
form with its r-1/2 dependence. 

At distance scales comparable to that critical 
distance, rc (at r = rc), the value of the 2nd term 
under the square root in Eq. (14) becomes 
comparable to the 1st one; that is: 
ீబெ್


≈   ܯଵܩ

or:       

ݎ ≈ ܩ
ଵܩ

ൗ  .          (15) 

When we consider distance scales that are 
much larger than the critical distance (ݎ ≫  ,(ݎ
we may neglect the 1st term under the square root 
in Eq. (14), so that the circular speed of a star at 
such a distance, the asymptotic speed, becomes: 

,௦௬ݒ ≈ (ܯଵܩ)
భ
మ ≈  (16)          .ݐݏ݊ܿ

Noting here that we have neglected the 
possible effects of the coefficient G2 and higher 
terms in Eq. (12a). 
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At the critical distance, rc, the critical 
centripetal acceleration can be estimated using 
Eqs. (14) & (15) as follows:  

ܽ, =  ௩,ೝ
మ


= ଵ


ቀீబெ್


+   ቁܯଵܩ

ܽ, =  ீబெ್
మ + ீభெ್


  

 = ீబெ್
(ீబ/ீభ)మ + ீభெ್

ீబ/ீభ
  

ܽ, = ଶ ீభ
మெ್

ீబ
≈ ଵܩ)

ଶ/ܩ)ܯ .         (17) 

That is, the critical centripetal acceleration 
here is proportional to the total (baryonic) mass 
of the galactic bulge, unlike Milgrom’s MOND, 
where his critical acceleration is assumed to be 
constant [16]. 

2.2.2 Using a Scale-dependent Gravitational-
to-Inertial Mass Ratio 

It is possible to obtain similar results as above 
if the equivalence principle is violated at large 
distance scales. Let us start by using Eq. (1) to 
express the circular speed of a star at a distance r 
from the galactic center (GC), while retaining 
the ratio mg/mi: 

ݒ = ቀீெ್





ቁ

ଵ/ଶ
.           (18) 

Let us assume that the gravitational constant 
does not vary here with distance, as in the 
classical Newtonian approach, but that the 
equivalence principle is somehow violated at 
some large distance scales; i.e., the gravitational 
and inertial masses are no longer equivalent at 
such scales and that the gravitational-to-inertial 
mass ratio may be expressed as a function of 
some distance scale: ݉/݉ =  Since that .(ݎ)݂
function is unknown to us, we may expand it as a 
Taylor series approximation as: 



 = (ݎ)݂  ≈ 1 + ݎଵܥ + ଶݎଶܥ + ⋯ .       (19) 

If we neglect the second-order and higher 
terms in Eq. (19) – as we did with the 
gravitational coupling function above – and only 
take the first two terms in the equation, then by 
inserting it into Eq. (18), we get: 

ݒ = ቀீெ್


[1 + ቁ[ݎଵܥ
ଵ/ଶ

  

ݒ = ቀீெ್


+ ቁܯܩଵܥ
ଵ/ଶ

.         (20) 

It should be noted that the value of the 
coefficient C1 should be very small in order for 

Eq. (20) to reduce to the Keplerian speed at 
distances much smaller than the critical distance 
rc. At the critical distance, r = rc, the two terms 
under the square root in Eq. (20) become equal, 
so that: 
ீெ್


≈ ܯܩଵܥ ⇒ ݎ  ≈ 1

ଵܥ
ൗ  .        (21) 

At very large distances from the galactic 
center, much larger than the critical distance 
ݎ) ≫  ), we may neglect the first term under theݎ
square root in Eq. (20), so that the asymptotic 
circular speed of a star at such a distance 
becomes: 

,௦௬ݒ ≈ (ܯܩଵܥ)
భ
మ ≈  (22)         .ݐݏ݊ܿ

-- neglecting the probable effects of the 
coefficient C2 and higher terms in Eq. (19). 

By comparing Eq. (16) with Eq. (22); i.e., the 
asymptotic circular speeds of stars (or gas) 
within galaxies at large distances from the 
galactic center, we notice that: 

ݒ ≈ ଵ/ଶ(ܯଵܩ) ≈ ଵ/ଶ(ܯܩଵܥ) =   .ଵ/ଶ(ܯܩଵܥ)

That is: 

ଵܥ = ଵܩ 
ܩ

ൗ = 1 ൗݎ            (23) 

-- using Eq. (21). 
2.3 Relationship with Milgrom’s MOND 

To illustrate the relationship between our 
approach and Modified Newtonian Dynamics 
(MOND) and Milgrom’s MOND – as mainly 
described in Milgrom [16] [17] [18], let us start 
with the critical centripetal acceleration that we 
have introduced in Eq. (17). By assuming that it 
is analogous to Milgrom’s critical acceleration, 
or, ܽ ≈ ܽ, , we may rewrite Eq. (17) as:  

ܽ ≈  ீభ
మெ್

ீబ
 . 

From which: 

ଵܩ = (ܽܩ/ܯ)
భ
మ .         (24) 

Then, applying Newton’s 2nd law and 
inserting the modified law of gravity – Eq. (13), 
we get:  

Σܨ = (ீబାீభ)ெ್
మ =  ݉ ܽ . 

From which, at large enough distances (so 
that ܩ may be neglected), we get: 

ܽ ≈  (25)         . ݎ/ܯ ଵܩ
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By inserting ܩଵ from Eq. (24) into Eq. (25), 
squaring both sides and rearranging, we get: 

ܽ = ቀబீబ
ெ್

ቁ
భ
మ  ெ್


  

ܽ
ଶ = బீబ

ெ್

 ெ್
మ

మ   


మ

బ
=  ீబெ್

మ            (26) 

where Eq. (26) is exactly Milgrom’s MOND 
equation. 

Furthermore, starting by Eq. (17), we have: 
ܽ ܩ ≈ ଵܩ

ଶܯ. By multiplying this equation by 
the mass Mb, we get: ܽ ܩܯ ≈ ଵܩ

ଶܯ
ଶ =

 .ଶ(ܯ ଵܩ)

Then, by taking the fourth root of the latter 
equation, we get: 

,௦௬ݒ ≈ (ܽ ܩܯ)ଵ/ସ ≈  ଵ/ଶ       (27)(ܯ ଵܩ)

where both parts of Eq. (27) give the asymptotic 
circular speed in the outer regions of the galaxy, 
 ,௦௬, the middle part using Milgrom’sݒ
MOND and the right part using our model – 
from Eq. (16). In fact, the middle part of Eq. (27) 
turns into its right part by simply expressing the 
critical acceleration as a0 = (G1

2/G0) Mb, from 
Eq. (17). 

3. Theoretical Rotation Curves 
As a first approximation, and in order to 

study the pure effect of our Modified-Newtonian 
approach, we have assumed that the total 
galactic mass is centered in the galactic bulge, 

thus neglecting the effects of mass distribution 
outside the bulge. The goal here was to see 
which combination of values of the galactic 
bulge (baryonic) mass, Mb, and the 1st-order 
coefficient of gravitational coupling, G1, may 
yield reasonable values of circular speeds for 
stars or gas outside the galactic bulge.  

Based on the above, we shall present below 
the results of the theoretical (simulated) rotation 
curves that we have generated for our 
hypothetical galaxies: 
1. Using the purely Newtonian behavior for the 

inner region of the galaxy (galactic bulge), 
Eq. (6), and for its outer region, Eq. (11); and, 

2. Using our approach to MOND, Eq. (14) or 
Eq. (20).  
In Table (1), we list the physical constants 

and fixed parameters that we have used in our 
model’s calculations. In Table (2), we list the 
input and output parameters for the case of a 
galaxy that has a constant number of stars in its 
galactic bulge (i.e., a constant mass), which was 
fixed to 1010 stars, but where we have varied the 
values of the 1st-order coefficient of gravitational 
coupling, G1 – as shown in the same table. In 
Table (3), we list the input and output parameters 
for the opposite case: a galaxy that has a constant 
value of the 1st-order coefficient of gravitational 
coupling: G1 = 1×10-30 m2 s-2 kg-1, but where the 
number of stars in the galactic bulge (or its total 
mass) was varied as shown in the same table. 
Figs. (1) to (7) represent the theoretical rotation 
curves for each case, using both classical 
Newtonian dynamics and our model. 

 

TABLE 1. Fixed Constants and Parameters Used in the Model’s Calculations. 
Constant/ Parameter Symbol Value Unit 

Newtonian 
Gravitational 

Constant 
G0 6.674E-11 

N m2 kg-2 

= m3 s-2 kg-

1 
Solar Mass MS 2.000E+30 kg 
Light-Year LY 9.500E+15 m 
Kilo-Parsec KPC 3.26E+03 light-year 
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TABLE 2. Input and Output Parameters for the Case of a Galaxy with a Constant Number of Stars in 
the Galactic Bulge (Constant Mass): NG=1.000E+10, Using Different 1st-order Coefficients of 
Gravitational Coupling, G1 

 Case I Case II Case III Case IV 

Input 
Parameters 

G1i = 1.000E-29 G1 = 1.000E-30 G1 = 1.000E-31 G1 = 1.000E-32 
NGii = 1.000E+10 NG = 1.000E+10 NG = 1.000E+10 NG = 1.000E+10 
RGiii = 9.500E+20 RG = 9.500E+20 RG = 4.750E+21 RG = 2.850E+22 

Output 
Parameters 

RC1iv = 6.674E+18 
RC2iv = 2.153E-01 

RC1 = 6.674E+19 
RC2 = 2.153 

RC1 = 6.674E+20 
RC2 = 2.153E+01 

RC1 = 6.674E+21 
RC2 = 2.153E+02 

RHOBAR1v= 1.606E-
17 

RHOBAR2 = 
2.39E+11 

RHOBAR1 = 
1.606E-20 

RHOBAR2 = 
2.39E+08 

RHOBAR1 = 1.606E-
23 

RHOBAR2 = 
2.39E+05 

RHOBAR1 = 
1.606E-26 

RHOBAR2 = 
2.39E+02 

KG1vi = 6.701E-14 
KG2vi = 2.08E+03 

KG1 = 2.119E-15 
KG2 = 6.57E+01 

KG1 = 6.701E-17 
KG2 = 2.08 

KG1 = 2.119E-18 
KG2 = 6.57E-02 

C1vii = 1.498E-19 C1 = 1.498E-20 C1 = 1.498E-21 C1 = 1.498E-22 
ACRviii = 2,997E-08 ACR = 2,997E-10 ACR = 2,997E-12 ACR = 2,997E-14 

Output 
Rotation 
Curves 

Fig. 1 Fig. 2 Fig. 3 Fig. 4 

(i) G1: 1st-order coefficient of gravitational coupling, in m2 s-2 kg-1. 
(ii) NG: number of stars in the galactic bulge.  
(iii) RG: total galactic radius, in m. 
(iv) RC: critical radius, (1) in m; (2) in kpc. 
(v) RHOBAR: mean density of the galactic bulge, (1) in kg m-3; (2) in  M⊙  kpc-3. 
(vi) KG: constant of proportionality between speed and distance, (1) in m s-1 m-1; (2) in km s-1 kpc-1. 
(vii) C1: 1st-order coefficient of gravitational-to-inertial mass ratio, in m-1. 
ACR: critical acceleration, in m s-2. 

 

TABLE 3. Input and Output Parameters for the Case of a Galaxy with a Constant Value of the 1st-
order Coefficient of Gravitational Coupling, G1=1.000E-30, Using Different Numbers of Stars in 
the Galactic Bulge, NG (Different Masses) 

 Case V Case VI Case VII 

Input 
Parameters 

NGi = 1.000E+09 NG = 1.000E+10 NG = 1.000E+11 
G1iI = 1.000E-30 G1 = 1.000E-30 G1 = 1.000E-30 

RGiii = 9.500E+20 RG = 9.500E+20 RG = 9.500E+20 

 
Output 

Parameters 

RC1iv = 6.674E+19 
RC2iv = 2.153 

RC1 = 6.674E+19 
RC2 = 2.153 

RC1 = 6.674E+19 
RC2 = 2.153 

RHOBAR1v = 1.606E-21 
RHOBAR2v = 2.39E+07 

RHOBAR1 = 1.606E-20 
RHOBAR2 = 2.39E+08 

RHOBAR1 = 1.606E-19 
RHOBAR2 = 2.39E+09 

KG1vi = 6.701E-16 
KG2vi = 2.08E+01 

KG1 = 2.119E-15 
KG2 = 6.57E+01 

KG1 = 6.701E-15 
KG2 = 2.08E+02 

C1vii = 1.498E-20 C1 = 1.498E-20 C1 = 1.498E-20 
ACRviii = 2,997E-11 ACR = 2,997E-10 ACR = 2,997E-09 

Output Rotation 
Curves Fig. 5 Fig. 6 Fig. 7 

(i) G1: 1st-order coefficient of gravitational coupling, in m2 s-2 kg-1. 
(ii) NG: number of stars in the galactic bulge.  
(iii) RG: total galactic radius, in m. 
(iv) RC: critical radius, (1) in m; (2) in kpc. 
(v) RHOBAR: mean density of the galactic bulge, (1) in kg m-3; (2) in  M⊙  kpc-3. 
(vi) KG: constant of proportionality between speed and distance, (1) in m s-1 m-1; (2) in km s-1 kpc-1. 
(vii) C1: 1st-order coefficient of gravitational-to-inertial mass ratio, in m-1. 
ACR: critical acceleration, in m s-2. 
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FIG. 1. Theoretical Rotation Curve, Case I. 

 
FIG. 2. Theoretical Rotation Curve, Case II. 

 
FIG. 3. Theoretical Rotation Curve, Case III. 
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FIG. 4. Theoretical Rotation Curve, Case IV. 

 
FIG. 5. Theoretical Rotation Curve, Case V. 

 
FIG. 6. Theoretical Rotation Curve, Case VI. 
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FIG. 7. Theoretical Rotation Curve, Case VII. 

 

4. Discussions 
4.1 Table (2) 

Referring to Table (2), for the case of a 
galaxy with a constant number of stars in the 
galactic bulge (i.e., constant mass): NG = 1010, 
but using different 1st-order coefficients of 
gravitational coupling, G1, it is noticed that: 
 In general, the critical radius rc increases with 

decreasing the value of the coefficient G1, 
because there is an inverse relationship 
between them.  

 In Case I, when G1 has the largest value (G1 = 
10ିଶଽ m2 s-2 kg-1), the critical radius of the 
galactic bulge Rc will be 0.21 kpc. But, 
according to observational results (as will be 
shown in Part II of this study), this value is 
too small for ordinary galaxies. 

 In Case IV, when G1 has the smallest value 
(G1 = 10ିଷଶ m2 s-2 kg-1), the value of rc was 
around 215 kpc, which is too high for real 
galaxies.  

 In general, the values of the mean density of 
the galactic bulge, < ߩ >, decrease with 
decreasing the value of G1, which is expected, 
since the number of stars is constant (the 
mass is constant), whereas the radius of the 
galactic bulge increases (i.e., the volume of 
the galactic bulge increases). 

 The values of the proportionality constant kg 
decrease with decreasing the value of the 
coefficient G1, which is also expected, since 
the mean density < ߩ > is decreasing in this 

case and the constant kg is proportional to the 
mean density as: ݇ ∝ (< ߩ >)ଵ/ଶ. 

 For every one order-of-magnitude decrease in 
the value of G1, there are three orders-of-
magnitude decrease in the value of < ߩ >, 
which is also expected, since the density (at 
constant number of stars or bulge mass) is 
inversely proportional with cubic rc: < ߩ > ∝
ݎ 

ିଷ. 
 The values of the first-order gravitational-to-

inertial mass ratio C1 decrease with 
decreasing the value of G1, which is expected, 
since ܥଵ =  ., and G0 is constantܩ/ଵܩ

 In general, the values of the critical 
acceleration, ܽ,, decrease with decreasing 
the value of G1, which is expected, since the 
number of stars is constant (the mass is 
constant), whereas the radius of the galactic 
bulge increases: 

ܽ, = ீబெ್
మ = ଶ ீభ

మெ್
ீబ

. 

4.2 Table (3) 

Referring to Table (3), for the case of a 
galaxy with a constant value of the 1st-order 
coefficient of gravitational coupling, G1 =   
1×10-30 m2 s-2 kg-1, using different numbers of 
stars in the galactic bulge, NG (i.e., different 
masses), it is noticed that: 
 The values of the critical radius rc are 

constant throughout the three cases, since the 
1st-order coefficient of gravitational coupling 
G1 is constant, with a value of around 2.2 
kpc, which is of the same order of magnitude 
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as the observational values, as will be shown 
in Part II of this study. 

 Values of the mean density < ߩ > increase 
with increasing the number of stars in the 
bulge NG (i.e., increasing the galactic bulge 
mass), which is also expected, since the 
galactic bulge radius rc is constant (i.e., the 
volume is constant), whereas the mass 
(number of stars in the bulge) is increasing.  

 The values of the proportionality constant ݇ 
increase with increasing the number of stars 
in the bulge NG (i.e., increasing the galactic 
bulge mass), which is also expected, since the 
mean density RHOBAR is increasing in this 
case and the constant ݇is proportional to the 
mean density as: ݇ ∝ (< ߩ >)ଵ/ଶ. 

 The values of the first-order gravitational-to-
inertial mass ratio C1 are constant throughout 
the three cases, since the 1st-order coefficient 
of gravitational coupling G1 is constant. 

 The values of the critical acceleration ܽ,  
increase with increasing the value of the 
number of stars (i.e., bulge mass), which is 
expected, since the radius of the galactic 
bulge is constant, whereas the number of stars 
is increasing (the mass is increasing), where: 
ܽ, = ீబெ್

మ = ଶ ீభ
మெ್

ீబ
. 

4.3 Figures 

It should be noted at the outset that all the 
generated rotation curves have a sharp edge at 
their maximum values of circular speed, which is 
unlike the observational rotation curves. This is 
due to the fact that in our model, we assumed 
that all the stars are concentrated inside the 
galactic bulge, which has a spherical shape of a 
specific (critical) radius and with a constant 
(average) mass density everywhere, which is not 
really realistic, of course. But, this is done as a 
first approximation, since our goal here was not 
to fit observational data with our theoretical 
model, but rather to see the general qualitative 
and quantitative behavior of the generated 
theoretical rotation curves based on our model’s 
assumptions alone. 

Referring to the theoretical rotation curve for 
Case I in Fig. 1, it is noticed that the values of 
the circular speed are very high compared to 
observational galactic rotation curves – as will 
be shown in Part II of this study. For example, 
the maximum speed is around 400 km/s in the 

purely Newtonian curve and around 600 km/s in 
the modified Newtonian curve. Also, the value 
of the critical radius is too small (around 0.2 
kpc).  

Referring to the theoretical rotation curves for 
Case II and Case III in Figs. 2 and 3, 
respectively, it is noticed that when the number 
of stars in the galactic bulge is around NG = 1010 

stars and the values of the 1st-order coefficient of 
gravitational coupling G1 are between 10ିଷ and 
10ିଷଵ m2 s-2 kg-1, the values of rotational 
velocities are compatible with observational 
values (between around 200 km/s and around 60 
km/s); and so are the values of the critical radius 
(galactic bulge radius), which fall between 
around 2 kpc and around 20 kpc. 

Referring to the theoretical rotation curve for 
Case IV in Fig. 4, where NG = 1010 stars and the 
value of G1 is 10ିଷଶ m2 s-2 kg-1, it is noticed that 
the values of the circular speed are very low (no 
more than 20 km/s). Also, the value of the 
critical radius is too large (around 200 kpc), 
which has never been observed in any published 
literature. 

Referring to the theoretical rotation curves for 
Case V and Case VI in Figs. 5 and 6, 
respectively, it is noticed that when we have a 
constant value of the 1st-order coefficient of 
gravitational coupling G1=10ିଷ m2 s-2 kg-1 and 
a number of stars in the galactic bulge between 
NG = 109 and 1010, values of the theoretical 
rotational velocities (60 km/s – 200 km/s) are 
compatible with observational values, but with a 
constant value of the critical radius (bulge 
radius) of around 2 kpc. 

Referring to the theoretical rotation curve for 
Case VII in Fig. 7, where the value of G1=10ିଷ 
m2 s-2 kg-1 and the number of stars was increased 
to 1011 (with a galactic bulge radius of 2 kpc), it 
is noticed that the values of the circular speed are 
too high (up to around 600 km/s), which may not 
be compatible with observations. 

Considering all the theoretical rotation 
curves, it is noticed that for the inner region of 
the galaxy (i.e., the galactic bulge), the modified 
Newtonian curve is a bit higher than its 
corresponding purely Newtonian curve and a 
little bit curved rather than linear.  
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5. Conclusions 
Based on the above results and discussions, 

we may conclude the following: 
 Using our version of Modified Newtonian 

Dynamics (MOND), which consists of either: 
using a linearized function of the scale-
dependent gravitational coupling: G(r); or 
using a linearized function of the scale-
dependent gravitational-to-inertial mass ratio 
f(r); the model gives a qualitatively and 
quantitatively acceptable behavior of the 
galactic-rotation curves for certain values of 
the model’s parameters. 

 At very small distance scales, either of the 
following occurs: the effect of the first-order 
coefficient of the scale-dependent 
gravitational coupling G1 becomes negligible 
and we turn back to classical Newtonian 
dynamics, or the effect of the first-order 
coefficient of the scale-dependent 
gravitational-to-inertial mass ratio C1 
becomes negligible and we turn back to 
classical Newtonian dynamics. 

 The values of the first-order coefficients that 
give quantitatively acceptable description of 
galactic-rotation curves are as follows: For 
the first-order coefficient of gravitational 
coupling G1, it falls between around 10-31 and 
10-30 m2 s-2 kg-1. As for the first-order 
coefficient of gravitational-to-inertial mass 
ratio C1, it falls between around 10-21 and    
10-20 m-1. Both values should be further 
refined by comparison to observations – 
which is left to Part II of this study. 

 Relationship with Milgrom’s MOND: 
Assuming that Milgrom’s critical acceleration 
[16] is the same as the critical acceleration 
that we estimated from our model (ܽ ≈
ܽ,), we conclude the following: 

o The critical acceleration and the 1st-order 
coefficient of gravitational coupling are 
related thus: ܽ ≈  ீభ

మெ್
ீబ

 – Eq. (17).  

o Milgrom’s equation of Modified Newton’s 
Dynamics (MOND) can be derived: 

మ

బ
=

 ீబெ್
మ  – Eq. (26).  

o The asymptotic circular speed in the outer 
regions of the galaxy can be expressed in 
terms of the critical acceleration or in terms 
of the 1st-order coefficient of gravitational 
coupling as: ݒ,௦௬ ≈ (ܽ ܩܯ)ଵ/ସ ≈
 .ଵ/ଶ – Eq. (27)(ܯ ଵܩ)

o Unlike Milgrom’s version of Modified 
Newtonian Dynamics (MOND) that requires 
a fixed value of critical acceleration to reach 
before the MOND effects play a significant 
role (of the order of 10-10 m2 s-1), our version 
of MOND implies that there is a critical 
distance at which the MOND effects become 
significant and that the critical acceleration 
ܽ is proportional to the baryonic mass of the 
galaxy – according to Eq. (17).  

o However, if Milgrom’s critical acceleration 
ܽ is indeed a constant, then the 1st-order 
coefficient of gravitational coupling ܩଵ 
depends on the baryonic mass of the galaxy, 
according to the following formula: ܩଵ =
(ܽܩ/ܯ)

భ
మ – Eq. (24).  

 Our version of MOND may be further 
extended to deal with the scale of galactic 
clusters and superclusters, up to the 
cosmological scales. But, in order to deal 
with such large scales, we need to estimate 
the higher-order coefficients of the scale-
dependent gravitational coupling (or the 
scale-dependent gravitational-to-inertial mass 
ratio), which is left for future studies.  
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