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Abstract: The ground state features of the semi-doubly magic 12C nucleus (i.e. binding 
energy, nuclear radius, radial density distribution, and single particle energies) are 
estimated using ab initio calculations at equilibrium and under high static compression. 
Nijmegen and Reid soft-core (RSC) potentials are used as input nucleon-nucleon 
interactions. Within the framework of the constrained spherical Hartree-Fock 
approximations, we do the calculations in no-core shell-model space, which consists of six 
major oscillator shells (i.e. 21 single particle orbitals). The sensitivity of the ground state 
features of the 12C nucleus to the degree of compression and the sensitivity of the equation 
of state to the two potentials are investigated. We also discovered that the nuclear binding 
energy calculated using the Nijmegen potential is higher than that calculated using the RSC 
potential. When utilizing the Nijmegen potential, the curve reaches zero binding energy 
faster than when using the RSC potential. Besides, in the case of Nijmegen, the spectrum of 
single-particle energies increases more quickly than in the case of RSC potential under 
compression. The space between single-particle energy shells is also visible in the energy 
spectrum. At high compression, the radial density distribution becomes higher than that in 
the interior zone when the RSC potential is applied. 

Keywords: Nijmegen potential, RSC potential, Ab-initio calculations model, Radial 
density distribution, Ground state, 12C nucleus. 

 
1. Introduction 

The essential and challenging problem in the 
nuclear structure theory is the solution of the 
Schrodinger equation for a finite nucleus. The 
analytic solution is impossible (save in a few 
basic circumstances), thus one must resort to 
approximation, either in the numerical solution 
of the equation or in the Hamiltonian 
specification, or both [1]. The calculations in 
light nuclei and heavy nuclei with closed shells 
were done using the NCSM [2]. The inter-
nucleon interaction can be represented by a 
potential for the purposes of studying nuclear 
structure. Nijmegen [3], Reid soft-core (RSC) 
[4], CD-Bonn [5], and Argonne V18 [6] have all 
been used as potential models in the past. Their 
strong repulsive core, however, causes 

convergence problems in nuclear structure 
calculations; hence, none of them can be 
employed directly in nuclear structure 
calculations. The Bruckner G-matrix has 
conventionally been utilized as a starting point to 
address this challenge [7]. As of late, the ab 
initio no-core shell NSM model with realistic 
effective NN interactions has been utilized to 
light nuclei [8-10]. It has been demonstrated that 
the NCSM approach can be used to solve the 
three-nucleon and four-nucleon-bound state 
problems in a consistent manner. The NCSM is 
based on a new variant of the widely used nuclei 
shell model. Shell-model calculations have 
traditionally been done with closed, inert cores 
of nucleons and only a few active valence 
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nucleons. Microscopic interactions, which were 
created for few-nucleon systems, could not 
characterize the interaction of these valence 
nucleons with the core and other valence 
nucleons. As a result, these attempts to link the 
effective shell model interaction to the basic 
nuclear interaction have not been entirely 
successful. With the development of the NCSM 
in 1990, which treats all nucleons in the nucleus 
as active, the situation was changed [11]. The 
NCSM allows for the systematic calculation of 
effective interactions using bare NN and 3N 
forces.  Compared to conventional shell model 
calculations, this is the NCSM's strength [11]. 

In this article, we applied a realistic effective 
interaction based on two different potentials, the 
Nijmegen and Reid soft-core (RSC), to 
investigate the ground state features of closed 
shell semi-doubly magic of 12C nucleus under 
equilibrium conditions, large static compression, 
and at zero temperature. Within the framework 
of the constrained spherical Hartree-Fock 
(CSHF) approximations, the NCSM space has 
six primary oscillator shells (i.e. 21 single 
particle orbitals) throughout our calculations. At 
zero temperature, we explore the susceptibility 
of the 12C nucleus ground state features, 
including binding energy, nuclear radius, radial 
density distribution, and single particle energies, 
to the strength of compression.  

Hartree-Fock is a well-established method for 
modeling semi-realistic interactions, even for the 
heaviest nuclei [12], and it's flexible enough to 
deal with many-body forces [13, 14]. It is also a 
starting point for several body methods that are 
widely employed in heavier systems [12]. The 
choice to focus on 12C is motivated by its 
significance in neutrino research, particularly in 
neutrino liquid-scintillator detectors, where 12C 
plays a crucial role [9]. 

2. Theoretical Approach 
2.1 Hartree-Fock Energy 

In our theoretical approach to calculate the 
Hartree-Fock energy EHF for the 12C nucleus, 
we consider a nuclear system comprising A 
nucleons (N neutrons and Z protons) with spin s 
= ½, τ = 1/2, and mass m. The Hamiltonian of 
this system incorporates both the single-particle 
energy and a two-body interaction, represented 
by the equation: 

퐻 = ∑ 푡 + ∑ 푉             (1) 

where t is the ith nucleon's kinetic energy 
operator and Vij is the ith and jth nucleon's two-
body interaction term, including the Coulomb 
potential (V = VNN + VC). The second sum's 
limitation I j accounts for the fact that the 
interaction must be summed only once for each 
pair. The accurate solution to the many-body 
issue can be obtained if the problem is solved in 
the whole Hilbert space. This, however, is not 
possible for nuclei with A > 4. As a result, the 
Hilbert space is truncated to a finite model space. 
The price is to define an effective Hamiltonian 
[15–17] as follows: 

퐻 = ∑ 푡 + ∑ (푉 )            (2) 

Then, instead of employing the single particle 
energy operator, we use the relative kinetic 
energy operator (Trel)ij to introduce a two-body 
effective Hamiltonian Heff (ti).  

퐻 = 푇 + 푉             (3) 

where (Trel)ij is the two-body relative kinetic 
energy operator between pairs of nucleons [18], 

(푇 ) =
( )

            (4) 

In the no-core model space, the Veff is the sum 
of the Brueckner G-matrix acting between two 
nucleons. To calculate the effective Hamiltonian, 
Heff, we follow the same calculation procedures 
and strategy in Refs. [15–17]. Our current goal is 
to use a two-particle harmonic oscillator H-O 
basis with good total angular momentum J and 
total isospin T to generate the matrix element of 
the two-body part of the effective Hamiltonian 
(Trel + Veff) in the chosen model space. We can 
detach the relative coordinates from the center-
of-mass coordinates when utilizing the H-O 
basis, which simplifies the calculations of the 
two-body matrix elements [18]. Here, we remind 
the reader of our incentives for employing the 
more effective of the "two infinites." The infinite 
short-range repulsion (V) of the core in finite-
dimensional Hilbert space. The first infinite is 
solved by applying the Block-Horowitz theory to 
amputate the Hilbert space. The second infinity 
is eliminated by solving the Bruckner-Bethe 
Goldstone equation, which involves replacing 
the elements of the matrix V with elements of 
the Bruckner G-matrix in the series expansion 
of: 
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퐺(휔) = 푉 + 푉 퐺(휔)           (5) 

where H0 is the unperturbed single particle 
Hamiltonian, ω is the beginning energy, and Q is 
the Pauli operator that prevents particles from 
scattering into occupied states [10]. 

The system's Hartree-Fock HF energy, 
defined in terms of Heff anti-symmetric two-body 
matrix elements, is: 

퐸 =  ∑ < 휆휇|퐻 |휆휇 >           (6) 

where |λµ> are the single particle HF states. We 
can expand the HF state in terms of H-O states 
as: 

|휆 > = ∑ 퐶 |푘 >            (7) 

where k denotes the collection of quantum 
numbers, k ≡ (푘, mλ, mτλ) and 푘 ≡ (nk, lk, jk). The 
coefficients satisfy the condition ∑ 퐶 = 1. 
Thus, the HF energy in terms of H-O basis is 
written as: 
퐸 =

∑ ∑ ∑ 퐶 ∗퐶  퐶 ∗퐶 휅휅 퐻 휅 휅  (8) 

The coefficients 퐶  is calculated using the 
variational principle, 

∗ 퐸 − ∑ ∑ 퐶 ∗퐶 − 1 휖 = 0         (9) 

where C is one of the 퐶 . The constants 휖  are 
the Lagrange multipliers, which principle 
expresses the single-particle energies. We get 
this by plugging Eq. (9) into Eq. (8): 

∑ 퐶 ∑ 퐶 ∗퐶 휅휅 퐻 휅 휅 =
퐶  휖            (10) 

We define, 

ℎ|휆 ≥ 휖 |휆 >  
⟨푘|ℎ|휆⟩ = 휖 ⟨푘|휆⟩  

∑ ⟨푘|ℎ|푘 ⟩ = 퐶  휖          (11) 

By equating Eqs. (10) and (11), we get: 

⟨푘|ℎ|푘 ⟩ = ∑ 퐶 ∗퐶 휅휅 퐻 휅 휅   
(12) 

Equation (11) is solved by selecting an 
acceptable set {|k>} so that the series for |λ> 
converges quickly, allowing us to truncate it 
after a few terms. Once {|k>} is picked, iteration 
can be used to try to locate a solution. To do so, 
one estimates a set of values 퐶   from which 

⟨푘|ℎ|푘 ⟩ is calculated. After that, Eq. (12) is 
solved for a new set {퐶  } and ⟨푘|ℎ|푘 ⟩ is 
calculated. This procedure is repeated until a 
self-contained solution is found.  

The single-particle density matrix is defined 
as follows: 

∑ 퐶 퐶 = 휌휅 휅          (13) 

By incorporating the constraint term 
β⟨N│r2│N' ⟩ in Eqs. (9) and (12), the radial 
constraint is introduced to the issue, where β is 
the constraint parameter. The radial constraint 
acts as a static external force on the nucleus, 
compressing or expanding it. If β is negative 
(positive), the nuclear radius decreases 
(increases) from its equilibrium value of β = 0. 
We employ a spherical Hartree-Fock (SHF) 
computer code based designed according to Eqs. 
(11) and (12). 

2.2 Root-Mean-Square Radius (Rrms) 

The root-mean-square rrms radius is an 
essential indicator for the change of the nuclear 
density distribution due to the compression of 
the nucleus. We calculate the rrms using the 
following equation [19]: 

푟 = (〈푟 〉) / = ∫ ( )
∫ ( )

/
        (14) 

where ρ is the single-particle density matrix. The 
wave function is written in the H-O coordinate, 
starting from an anti-symmetrized Slater 
determinant, which contains the component of 
the center-of-mass motion. Consequently, the 
single-particle density is calculated with the 
wave function includeing contribution from the 
center-of-mass motion [19]. 

3. Methodology and Scaling 
We use the H-O basis with a value of ℏ휔 = 

14MeV to evaluate the Heff matrix elements. We 
use the scaling rule of Refs. [15–17] to make 
applying Heff to a wide range of nuclei as simple 
as feasible. That is, if we refer to a matrix 
element of an operator Heff as 〈Heff 〉, we are 
assuming that it was calculated on an oscillator 
basis with ℏω'. The matrix elements of Heff on a 
basis with ℏω' are roughly provided by: 

〈퐻 〉 =  ℏ
ℏ

〈퐻 〉          (15) 

As a result, when we employ the scale 
element of Heff in 6-space for 12C, we acquaint 
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the factor ℏω'. In addition, the overall factors λ1 
and λ2 are introduced to adjust the kinetic energy 
and effective nucleon-nucleon interaction matrix 
elements, respectively. To explore the sensitivity 
of EHF and rrms to changing the adjusting 
parameters, we have investigated how EHF and 
rrms responded to different values of λ1, λ2, and 
ℏ휔 without compression until an agreement 
between EHF and rrms with the corresponding 
experimental quantities is reached. 

Table 1 shows the fitted values of ℏ휔 , λ1, 
and λ2 for 12C at equilibrium. The numerical 
value of λ1 is less than unity because the kinetic 
energy operator (Trel) is a positive definite 
operator, and if it is normalized into a finite 
model space by itself, its magnitude will be 
reduced. However, the numerical value of λ2 is 
more than unity to compensate for the absence of 
acceptable linking when the full Hilbert space is 
truncated to a finite space model. We utilize a 
big model space with six primary shells, or 21 
nucleon orbitals, each with definite quantum 
numbers, n, l, s, and J, in our calculations. 

TABLE 1. Adjustment values for the 12C nucleus 
in 6- shells using Nijmegen and RSC 
potentials to achieve agreement between HF 
and experimental data [20]. 

Potential ℎ휔  (MeV) 휆  휆  

Nijmegen 8.454 0.976 1.200 

RSC 10.104 0.973 1.420 

The major steps of one iteration of the 
constraint SHF computations are now outlined. 
The number of nucleons, the number of HF 
occupied states, the 2J, l, n values of the H-O 
orbitals, the H-O constants ℏω, ℏω', and the 
number of repetitions are read and saved. 
According to the formulations in Eqs. (11) and 
(12), the initial quantities to be calculated and 
stored are the HF Hamiltonian matrix elements. 
To do so, we begin by reading and storing 
nucleon densities of unity. The matrix elements 
of the effect Hamiltonian 푖. 푒. 푇 , 푉 =
퐺 , 푉  are retrieved and scaled with λ1, 
λ2, ℏ휔 . A second set of HF Hamiltonian matrix 
elements, ⟨N│h│N'⟩', is calculated using this set 
of HF Hamiltonian matrix elements. It includes 
the term constraint and is defined as follows: 

⟨푁|ℎ|푁 ⟩ = ⟨푁|ℎ|푁 ⟩ − 훽⟨푁|푟 |푁 ⟩       (16) 

The associated eigenvalues and eigenvectors 
are calculated using the second set of HF 

Hamiltonian matrix elements. New nucleon 
densities are calculated using the eigenvectors. 
Eq. (14) is used to calculate the rms radius using 
the new nucleon densities. Finally, using the HF 
Hamiltonian matrix elements from the first set 
and new nucleon densities, the Hartree-Fock 
Energy (EHF) is determined using Eqs. (11) and 
(12), bringing the first iteration to a close. The 
second iteration starts with the nucleon densities 
computed in the first repetition and calculates the 
delineated quantities in the same way as the first 
repetition. Until a confluent solution is found, 
the accordant process continues. 

4. Results and Discussion: 
We find the equilibrium (rrms) and EHF for 12C 

using RSC (Nijmegen) potentials, rrms = 
2.3508fm (rrms = 2.3498fm) (fm = 10−15m), and 
EHF = −92.174MeV (EHF = −92.167 MeV), 
respectively. The experimental nuclear radius for 
12C is rexp = 2.35fm, while the experimental 
binding energy is Ebind = −92.162MeV according 
to Ref. [20]. There is also an agreement between 
our results and the Navratil results [9], where the 
radius energy and the binding energy in the 
Navratil results, respectively, are 2.228 fm, 
92.353MeV in the CD Bonn case and 2.228fm, 
92.195 in Argonne V8 case. In addition, we 
discover that the occupied orbitals are 0s1/2 and 
0p3/2, which is consistent with the standard shell 
model. 

In six-oscillator shells, the Hartree-Fock 
energy EHF is plotted as a function of the root-
mean-square radius (rrms) of 12C as shown in 
Fig.1. In prior studies [15], we found that 
compressing the nucleus (i.e. reducing its 
volume) lowers the binding energy of the 
nucleus. In the case of 12C, lowering its volume 
to about 12% of its equilibrium volume reduces 
the binding energy by 2% utilizing RSC 
potential. Furthermore, when we reduce the 
nuclear volume by around 6%, the change in 
nuclear binding energy is just about 1%. 
However, by employing the Nijmegen potential 
for the same decrease in nuclear volume as the 
volume at equilibrium, the binding energy will 
be reduced by 11% and 1%, respectively. As a 
result, as the nucleus is compressed, the nuclear 
equation of state stiffens. We also see that the 
RSC potential softens the equation of state more 
than the Nijmegen potential. Furthermore, the 
curve for Nijmegen potential reaches zero 
binding energy quicker than RSC potential, and 
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the nuclear binding energy for Nijmegen 
potential is greater than the binding energy for 
RSC potential at substantial static compression. 
The ground state features of the 4He nucleus 
under large static compression were explored in 

Refs. [21, 22] using Nijmegen and RSC 
potentials, and they came to the same 
conclusion, which was one of our motives for 
employing the same two distinct potentials for 
the 12C. 

 
FIG. 1. Energy EHF of Constrained Spherical Hartree-Fock Vs. of rrms for 12C in 6-oscillator/shells. Potentials 

from RSC and Nijmegen. 

Fig. 2 shows the single-particle energy levels 
(SPE) as a function of the rrms in six oscillator 
shells. It is important to understand that the 
orbital ordering agrees with the standard shell 
model's orbital ordering. Furthermore, in both 
potentials, we detect the splitting of the levels in 
each shell as a measure of the intensity of L-S 
coupling. This is also clear from the shifting 
down of 0f7/5 orbit from p-f shell to s-d shell. 
However, as the nucleus' compression is 
increased, L-S coupling gets weaker. 
Furthermore, as the nucleus' compression is 
increased, the orbits curve higher. When 
utilizing the Nijmegen potential, the Single 
Particle Energy (SPE) Levels are bending 
upwards faster. This is detailed in the results of 
4He [15], and it is owing to the effect of the 

nucleon's kinetic energy, which becomes more 
significant than the nucleon's attractive mean 
field. Furthermore, the SPEs utilizing the 
Nijmegen potential are less bound than the SPEs 
using the RSC potential, especially as the 
nucleus is compressed more and more. 
Moreover, the underlying microscopic 
Hamiltonian entirely forms the energy spectrum. 
In the dominating nucleon orbitals, this produced 
energy spectrum corresponds to the theoretical 
shell model's expected ordering. Furthermore, 
the energy levels have distinct gaps between the 
shells. One of the most striking findings is that in 
the compressed nucleus, the orbitals nearest to 
binding energy are more delicate for the two 
potentials. 

 
FIG. 2. Single particle energy (S.P.E.) vs. rrms for 12C in 6-oscillator shells. Potentials from Nijmegen and 

(RSC).  
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Fig. 3 illustrates the radial density distribution 
for neutrons ρn,, protons ρp, and ρtotal = ρn +ρp 
using the Nijmegen potential at equilibrium (i.e. 
at rrms = 2.35fm). Figure 4 illustrates the radial 
density distribution at equilibrium (rrms = 2.35fm) 
and at a significant static compression (rrms = 
2.26fm) using Nijmegen potential. In Fig. 5, we 
compare ρtotal at two different values of rrms; at 
rrms = 2.35fm (i.e. equilibrium) and at rrms = 
2.06fm using RSC potential. In Fig. 6, we 
compare ρtotal at two different potentials 

(Nijmegen and RSC) at equilibrium (rrms = 
2.35fm). Furthermore, in Fig. 7, we compare the 
total at two different potentials (Nijmegen and 
RSC) at large static compression (rrms = 2.26fm). 
The radial density distribution function for 
neutrons ρn, protons ρp, and sum ρtotal of the 
nucleus as a function of radial distance from the 
nucleus center at equilibrium (i.e. rrms = 2.35 
fm) using the Nijmegen potential is shown in 
Fig. 3. 

 
FIG. 3. Radial density distribution for 12C as a function of nuclear radius r(fm) at equilibrium (rrms = 2.35fm) 

using Nijmegen potential. 

 
FIG. 4. ρtotal for 12C at equilibrium (rrms = 2·35fm) and large static compression (rrms = 2.26fm) vs. of nuclear 

radius r(fm) utilizing Nijmegen potential. 
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FIG. 5. ρtotal vs. nuclear radius r(fm) for 12C at equilibrium (rrms = 2.35fm) and large static compression (rrms = 

2.06fm) utilizing RSC potential. 

 
FIG. 6. ρtotal for 12C at equilibrium (rrms = 2.35fm) vs. of nuclear radius r(fm) utilizing Nijmegen and RSC 

potentials. 

 
FIG. 7. ρtotal for 12C at large static compression (rrms = 2.26fm) utilizing Nijmegen and RSC potentials. 

The neutrons’ and protons’ densities are 
almost the same except in the interior region, 
where the neutrons are denser than protons. The 
Coulomb repulsion force between the protons 
causes this variation in density. Thus motivated, 
we seek to test the extent of the compression of 

the nucleus and the sensitivity of the equation of 
the state to the potential under the compression. 
The total radial density distribution ρtotal has been 
shown based on the radial distance from the 
center of the nucleus at equilibrium (i.e. rrms = 
2.35fm) and at (rrms = 2.26fm). On the one hand, 
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using the Nijmegen potential (Fig. 4) and RSC at 
equilibrium (i.e. rrms = 2.35fm) and at (rrms = 
2.06fm), we discovered that if the nucleus 
volume is lowered by 11% of the situation of 
equilibrium, the radial density increases by 
around 2.10 of its value in the case of 
equilibrium. On the other hand, utilizing RSC, if 
the volume is lowered by 67% of the equilibrium 
situation, the radial density increases by around 
2.3 of its value as shown in Fig. 5. As seen in 
Fig. 4, as the nucleus is compressed, the nuclear 
density gets denser on the inside and less dense 
in the exterior (i.e. closer to the nucleus' surface). 
As a result, the surface of the nucleus becomes 
more sensitive as the load is increased. However, 
in Fig. 5, we notice the same features as in Fig. 
4, that is the interior of the nucleus becomes 
denser than the exterior as we compress the 
nucleus. There is one difference, though: 
increasing the nuclear density is more obvious 
using RSC than using Nijmegen potential. Figure 
6 shows the total radial density distribution ρtota 
with the two potentials at large static 
compression (rrms = 2.26 fm) (Nijmegen and 
RSC). The following are our conclusions. First, 
the nuclear density became denser on the inside 
and smaller dense in the exterior (i.e. close to the 
surface of the nucleus) as the nucleus 
compressed for the two potentials. This means as 
the static load is increased more and more, the 
surface of the nucleus becomes more and more 
responsive. Second, using RSC potential, the rise 
in nuclear density with compression in the 
interior is more prominent than using Nijmegen 
potential. The nuclear density using Nijmegen 
potential is closer to the nuclear saturation 
density calculated using the empirical formulas, 
ranging from 0.15 to 0.177 fm-3. Finally, Fig. 7 
shows the overall radial density distribution with 
the two potentials at equilibrium (rrms = 2.35fm) 
(Nijmegen and RSC). The interior region of the 
nuclear density is bigger when employing RSC 
than when utilizing Nijmegen potential, as 
shown in this figure. In the exterior region, the 
situation is reversed.   

5. Conclusions 
By using RSC and Nijmegen potentials, we 

established that for 12C, the values of equilibrium 

root-mean-square radius (rrms) are 2.351fm and 
2.35fm, while the corresponding EHF energies 
are -92.174MeV and -92.167MeV, respectively. 
Experimental data indicates that the nuclear 
radius for 12C equals 2.35fm and the value of the 
binding energy equals -92.162MeV [20]. The 
minimum rrms radii for 12C obtained are 
2.063fm, and 2.255fm, while the corresponding 
EHF are -49.579MeV and -82.444MeV, for RSC 
and Nijmegen potentials, respectively.  

When it comes to 12C, RSC can compress the 
nucleus to a smaller size than Nijmegen 
potential. With the exception of the inner region, 
where neutrons are denser than protons, the 
densities of neutrons and protons are about equal 
at equilibrium. The Coulomb repulsion force 
between protons is responsible for the difference 
in densities. When the two potentials (Nijmegen 
and RSC) are in equilibrium, the RSC potential 
has a higher nuclear density than the Nijmegen 
potential. In the exterior region, the scenario is 
reversed. Furthermore, the orbit ordering is equal 
to the standard shell model's orbit ordering. The 
space between the shells is clearly visible. The 
separation of the levels in each shell indicates 
that L-S coupling is sufficient in strength when 
either of the potentials is applied. This is also 
clear from shifting down the 0f7/5 orbit from the 
p-f shell to the s-d shell. As the static strain on 
the nucleus increases, the L-S coupling gets 
stronger. In addition, the levels curve up as we 
compress the nucleus further, and this curvature 
is more rapid when using Nijmegen potential. 
This signifies that the nucleus' kinetic energy, 
which is a positive quantity, is becoming 
increasingly significant over the nucleon's 
attractive mean field. Finally, we note that while 
utilizing Nijmegen potential, the SPEs are 
greater than when using RSC potential, 
especially at high compression. 
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