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Abstract: This paper underlines the need to improve SRR cell design parameters to 
achieve both a negative refractive index and optimal impedance matching for advanced 
metamaterial applications. Metamaterials have unique light manipulation characteristics 
because of their negative refractive index and excellent impedance matching. This paper 
looks at numerous split-ring resonator (SRR) cell designs to find the best combinations. 
Square SRR cells consistently achieved a negative refractive index and excellent 
impedance matching throughout simulations, outperforming alternative forms such as 
circular SRRs. Increasing strip width often improves the negative refractive index, although 
it may create dispersion. Optimal separation distance resulted in a negative refractive index 
and perfect impedance for particular SRR forms (SSRR, HSRR, and OSRR); however, 
CSRR designs degraded with greater separations. All SRR forms produced satisfactory 
results, however CSRR designs had a somewhat poorer performance. Notably, a greater 
outer side (a = 22mm) SSSR cells resulted in a much higher negative refractive index 
throughout varying strip widths and separation distances. 
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1. Introduction 
In the world of electromagnetic engineering, 

split voltage engineering, known as split ring 
resonator (SRR), has been truly revolutionary, 
achieving an unprecedented transformation in 
our understanding of electromagnetic materials, 
opening up amazing new opportunities for 
designing cutting-edge technical systems and 
devices [1, 2]. Major contributions to 
metamaterials research were made by R. Shelby 
et al.,  who empirically established the existence 
of a negative refractive index [3]. This 
pioneering accomplishment set the path for 
future research into the fundamental principles 
driving metamaterial behavior, notably SRR 
structures. Concurrently, theoretical 
investigations to explicate the function of 
bianisotropy in producing negative permeability, 
creating the theoretical framework for 
comprehending the complexities of SRR-based 
metamaterials, were conducted by R. Marqués et 

al. [4]. The search to understand the resonance 
frequency association with negative refractive 
index in SRR structures has resulted in novel 
metamaterial characterization techniques [5]. J. 
Pendry et al. introduced a method for 
determining the effective permittivity and 
permeability of metamaterials using reflection 
and transmission coefficients, offering valuable 
insights into the design and optimization of SRR 
topologies [6]. Theoretical frameworks that 
permitted the research of typical electromagnetic 
phenomena, resulting in the realization of 
negative refractive index metamaterials, are 
presented in J. Pendry et al. [6]. Furthermore, 
comprehensive works have served as invaluable 
resources, providing in-depth analyses of 
metamaterial physics and engineering 
explorations that cover the fundamental 
principles and practical applications of SRR 
structures [7, 8].  
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Achieving a negative refractive index is the 
major objective of SRR development. This 
unusual trait occurs when both the effective 
permittivity and permeability of the SRR 
structure become negative at the same time [9, 
10]. However, a hidden player, effective 
impedance, has a substantial impact on 
performance. Perfect power transmission 
requires a real part of effective impedance equal 
to z₀ (the characteristic impedance of open 
space), which is seldom achieved. In SRRs with 
a negative refractive index, the imaginary part of 
the effective impedance frequently differs from 
zero [11, 12]. This non-zero impedance 
imaginary part, together with the corresponding 
real part, adds to energy losses within the SRR, 
reducing its efficacy. Careful optimization of 
SRR shape and materials is required to achieve a 
compromise between obtaining a negative 
refractive index and reducing energy losses [13]. 
Researchers can tune the structure's 
electromagnetic response by precisely altering 
the size, shape, and composition of the SRR unit 
cells [14]. This enables them to attain the 
necessary negative refractive index while 
reducing the energy losses indicated by the non-
zero imaginary element of impedance [15, 16]. 
The tricky balancing act of getting a negative n 
while avoiding energy losses is an ongoing focus 
of research in SRR development. Advances in 
material science and nanofabrication techniques 
are paving the way for the development of SRRs 
with higher performance and lower energy losses 
[17]. This offers great potential for the creation 
of new gadgets and applications that take 
advantage of the unique qualities of negative 
refraction [18]. Impedance matching is vital in 
electromagnetic systems to minimize wave 
reflection and maximize transmission. In 
metamaterials, particularly those using split-ring 
resonators (SRRs), it ensures efficient energy 
transfer and optimal functionality, such as 
negative refractive indices and enhanced 
resonance [19]. Proper SRR design aligns 
impedance with the surrounding medium, 
reducing energy loss and improving performance 
in applications like medical imaging, 
communication systems, and advanced optical 
devices [20]. This makes impedance matching a 

cornerstone in SRR-based metamaterial design, 
enabling broader and more efficient applications 
[21]. 

This paper presents a finite element method 
(FEM)–based simulation study of several SRR 
unit cell configurations within the COMSOL 
environment. Also, it focuses on the impedance 
imaginary part that accompanies this 
phenomenon and the possibility of achieving an 
ideal impedance matching, which is a necessary 
condition in electromagnetic systems.  

2. Design of Split Ring Resonators  
After conducting simulations in the 

COMSOL environment, the study aimed to 
investigate the influence of geometric 
dimensions and dielectric constants on the 
bandwidth and resonant frequency of SRRs 
within the frequency range of 2-6 GHz, essential 
for modern communication systems. To achieve 
this, appropriate designs for SRRs were 
implemented, and a mesh that provided an 
appropriate balance between result quality and 
implementation speed was chosen. By altering 
the shape, number, and dimensions of the rings, 
specific resonant frequencies with desired 
bandwidths could be achieved, potentially 
leading to multiple resonant frequencies within 
the same frequency range. Four main types of 
SRR cells were analyzed: square (SSRR), 
hexagonal (HSRR), octagonal (OSRR), and 
circular (CSRR). Each SRR cell consists of two 
metal strips on an insulating surface with a 
dielectric constant ߝ௥  and thickness h, in the 
form of two concentric rings, each ring with a 
width C and separated by a distance D; each ring 
has a gap of width g, with the gaps oriented in 
opposite directions. In our work, these rings 
were in the form of a square, hexagon, octagon, 
or circle. The length of the dielectric side is L, 
the distance from the center to the outer edge of 
the shape is ݎ௘௫௧ (which is the outer radius of the 
large ring in the case of CSRR). The background 
of all the rings is the same: five rectangular strips 
with width w, length ℓ, and the distance between 
the strips s. Figure 1 illustrates the model 
structure in the COMSOL environment.  
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FIG. 1. Structure, ports, PML, periodic conditions, and mesh in COMSOL. 

Figure 2 shows the structure of the SSRR unit 
cell. The rest of the cells differ only in geometric 
shape and employ the same notation for the 
engineering parameters. The figure also presents 
the background structure. The dimensions of the 
metallic strips, gap width, the distance between 
strips, dielectric thickness, dielectric constant, 

the distance between strips in the background, 
strip width in the background, strip length in the 
background, cell width, the outer side length, 
and the outer ring radius are listed in Table 1 for 
all SRRs, with any changes noted accordingly 
during the study. Figure 3 shows the 
convergence test.  

 
FIG. 2. SSRR structure and background. 

TABLE 1. Simulation parameters. 
Parameter SSRR HSRR OSRR CSRR 

L 24mm 24mm 24mm 24mm 
a 22mm 13.856mm 9.941mm - 
C 2mm 2mm 2mm 2mm 
D 2mm 2mm 2mm 2mm 
g 0.3mm 0.3mm 0.3mm 0.3mm 

 ௘௫௧ 11mm 12mm 11mm 11mmݎ
h 2mm 2mm 2mm 2mm 
s 4mm 4mm 4mm 4mm 
w 0.3mm 0.3mm 0.3mm 0.3mm 
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FIG. 3. Convergence test. 

3. Retrieval Method Formation 
Excitation of SRR with an external magnetic 

field causes the current to flow from one ring 
structure to another through the slot between 
them. As a result, this structure has a very strong 
displacement current flow. The slots in SRR 
behave like distributed capacitance, and it 
behaves like an LC circuit. In technical terms, 
metallic ring structures are modelled by 
inductance L and capacitance C. The structure 
behaves like an LC circuit having a resonant 
frequency given below as [22]: 

ோݓ = ଵ
ඥ௅೅஼೅

 (1)  

where ்ܮ is the total inductance and ்ܥis the 
total capacitance of the LC circuit. The effective 
parameters of a metamaterial slab are determined 
by the free-space reflection and transmission 
coefficients. To determine the parameters at N 
different frequency points, one can either 
measure the complicated S-parameters or 
employ full-wave electromagnetic simulators. 
For normal incident plane waves on a 
homogeneous metamaterial slab, the relation 
between the S-parameters, the complex 
impedance, and the complex refractive index is 
provided by [23]: 

ଵܵଵ = ௰(ଵି௘షమ೔೙೐೑೑ೖ೟)

ଵି௰మ௘షమ೔೙೐೑೑ೖ೟  (2) 

 ܵଶଵ = ൫ଵି௰మ൯௘ష೔೙೐೑೑ೖ೟

ଵି௰మ௘షమ೔೙೐೑೑ೖ೟   (3) 

where ߁ = ௘௙௙ݖ) − ௘௙௙ݖ)/(1 +  is the ݐ ,(1
metamaterial slab thickness, and ݊௘௙௙ is the 

complex effective refractive index (݊௘௙௙ = ݊ᇱ +
݅݊ᇳ), with ݊′and ݊ᇱᇲ  being the real and imaginary 
parts of ݊௘௙௙, respectively. The parameters 

ଵܵଵ and ܵଶଵ are complex and related to 
reflectance and the transmittance, respectively, 
as: ݎ = | ଵܵଵ|ଶ and ݐ = |ܵଶଵ|ଶ. 

The complex effective wave impedance ݖ௘௙௙ 
is defined as [24]: 

௘௙௙ݖ = ܴ + ݅ܺ = ܴ + ݅ ቀ்ܮݓ − ଵ
௪஼೅

ቁ (4) 

The parameters ݖ௘௙௙ , ݊௘௙௙ are related to S-
parameters as [22]: 

௘௙௙ݖ = ±ට(ଵାௌభభ)మିௌమభ
మ

(ଵିௌభభ)మିௌమభ
మ  (5) 

݊௘௙௙ = ± ଵ
௞೚௔

ଵିݏ݋ܿ ቀଵିௌభభ
మ ାௌమభ

మ

ଶௌమభ
ቁ + ଶగ௠

௞೚௔
, ݉ =

0,1,2. .. (6)  

where ݇௢  is the free-space wavenumber, m is the 
multivalued logarithmic function's branch index, 
and a is the metamaterial slab thickness. As seen 
in [25], when the metamaterial thickness is 
modest, m is set to zero. When a is large, these 
branches can lie arbitrarily close to one another, 
making the selection of the correct branch 
difficult in the case of dispersive materials. For 
this reason, the best results are obtained for the 
smallest possible thickness of the sample, as is 
commonly known in the analysis of continuous 
materials. Even with a small sample, more than 
one thickness must be measured to identify the 
correct branches of the solution that yield 
consistently the same values for n.  
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The real value of the complex wave 
impedance and the imaginary value of the 
complex refractive index must both be greater 
than or equal to zero for a passive metamaterial, 
i.e., ܴ ≥ 0, ݊ᇳ ≥ 0. Therefore, the sign of ݖ௘௙௙ 
must be decided in light of those circumstances. 
Specifically, the real and imaginary components 
of the complex refractive index are ݊′ =
ܴ݁{݊௘௙௙},  ݊″ =  .respectively [26] ,{௘௙௙݊}݉ܫ
There are ambiguities in the formulations of the 
metamaterial's effective permittivity and 
permeability due to the resultant branch 
uncertainty in the real part of the complex 
refractive index. The following formulas connect 
the complex permittivity and complex 
permeability to the complex refractive index and 
the wave impedance [27]: 

௘௙௙ߝ = ݊௘௙௙/ݖ௘௙௙ (7) 

௘௙௙ߤ = ݊௘௙௙ݖ௘௙௙ (8) 

4. Results and Discussion 
Figure 4 depicts the relationship of ଵܵଵ with 

frequency in the 2-6 GHz band using various 
values of D, which denote the distance between 
two strips. It is worth noting that each D value 
results in various behaviors in terms of 
resonance frequency, bandwidth, and minimum 
attainable value. While it is possible to achieve 
another resonant frequency within the same 
range, our attention is on the case with a greater 
bandwidth, also known as the fundamental 
resonant frequency. Furthermore, when D grows, 
the fundamental resonant frequency shifts to the 
right. However, it is critical to understand that D 
cannot expand indefinitely since it is inextricably 
tied to cell size. 

 
FIG. 4. ଵܵଵ as functions of frequency using many values of D for SSRR. 

In Fig. 5, we show the connection between 
the normalized real refractive index and the 
normalized frequency for various C values inside 
the SSRR cell. Our primary focus is on the 
fundamental resonance frequency, which 
demonstrates a clear relationship between the 
refractive index and resonance frequency 
regions. Although comparable patterns appear 
when additional parameters such as C, s, h, a, 
and dielectric constant are changed, it is worth 
noting that the resonant frequency and 
bandwidth vary with time. As a result, we avoid 
demonstrating these recurrent actions. Instead, 
we stress the resonance frequency's relationship 
with the negative refractive index, as well as the 
real and imaginary parts of impedance. 

Figure 6 presents the real part of the 
refractive index, the imaginary part of the 

impedance, and the real part of impedance at 
resonance as functions of strip width for many 
SRRs at h = 3 mm, D = 2 mm, ߝ௥ = 4.3, s = 4 
mm. Figure 6(a) shows that the resonance 
frequency occurs when the refractive index is 
negative. In general, raising C leads to an 
increase in the real refractive index. The CSRR 
cell exhibits the highest real refractive index, 
while the SSRR shows the lowest. The figure 
shows that the real refractive index is negative 
until it approaches C > 3, after which it is 
positive in the case of cell CSRR. However, it 
always remains negative in SSRR and OSRR 
cells. When C is less than 3.5, the HSRR cell 
produces a negative refractive index. The 
metamaterial property is attained for all cells by 
creating C < 3. It is clearly evident from Fig. 
6(b) that the imaginary part of the impedance is 
close to zero at first and then increases slowly as 
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the strip width increases for square, hexagonal, 
and octagonal cells, but it increases strongly in 
the case of the circular cell and then decreases to 
negative values. Losses and imperfect coupling 
between the cell and wire may increase the 
imaginary value of impedance. Additionally, 

nonlinear effects can introduce extra frequency 
components into the cell response, further 
causing deviations of the impedance imaginary 
part from zero. In general, increasing the strip 
width makes the impedance imaginary part non-
zero. 

 
FIG. 5. Normalized ଵܵଵ and effective refractive index as functions of frequency using many values of strip width 

for SSRR. 

In Fig. 6(c), the matching between the system 
impedance and the characteristic impedance 
happens at ݖ௘௙௙/ݖ଴ = 1. When condition 
଴ݖ/௘௙௙ݖ = 1 is met, the ideal case for 
electromagnetic systems occurs. Note that 
condition ݖ௘௙௙/ݖ଴ = 1 is achieved almost at the 
beginning for all cells, but it is not achieved as C 
continues to increase, and the cell furthest from 
condition ݖ௘௙௙/ݖ଴ = 1 is the CSRR cell. The 
cases ݖ௘௙௙/ݖ଴ > 1 indicate that the SRR cell's 
effective impedance exceeds the line's 
characteristic impedance. The entering 

electromagnetic wave may be reflected at the 
SRR cell interface due to an impedance 
mismatch. The greater the ratio ݖ௘௙௙/ݖ଴, the 
stronger the reflection may be. When ݖ௘௙௙/ݖ଴ <
1, the SRR cell's effective impedance is lower 
than the line's characteristic impedance. In this 
situation, the SRR cell may cause dispersion, 
which means that the propagation speed of 
different frequencies within the electromagnetic 
wave will vary. The smaller the ratio ݖ௘௙௙/ݖ଴, 
the greater the dispersion impact may be.  

 
FIG. 6. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the 

resonance frequency as functions of strip width for many SRRs. 
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Figure 7 shows the dependence of the real 
part of the refractive index, the imaginary part of 
the impedance, and the real part of impedance at 
resonance on the distance between the strips for 
many SRRs at h = 3 mm, C = 2 mm, ߝ௥ = 4.3, 
and s = 4 mm. Figure 7(a) shows that the real 
part of the refractive index is negative at the 
resonance frequency when D < 4.7 mm for 
square, HSRR, and OSRR cells, and it is 
negative in the case of the CSRR cell when D < 
3.8 mm. Note that the SSRR/CSRR cells always 
represent the lowest/highest real refractive index. 
Figure 7(b) shows that the imaginary part of the 
impedance starts close to zero for all cells except 
the CSRR case, and after D > 3.5 mm, the values 
begin to increase or decrease depending on the 
cell type, with HSRR and OSRR cells 
maintaining some degree of stability until D = 
3.5 mm. In the case of the CSRR cell, the 
impedance imaginary part is not the same as its 
predecessors but rather alternates between 
positive and negative. Also, the SSRR cell will 

have values far from zero when D = 3 mm. In 
general, the negative imaginary part of the 
impedance moves away from zero in response to 
the corresponding negative refractive index. 
Positive values mean that the characteristic of 
inductance is dominant, and negative values 
mean that the characteristic of capacitance is 
dominant, while a zero value means that the 
impedance is composed of resistance only. 
Figure 7(c) shows that the condition ݖ௘௙௙/ݖ଴ =
1 is met for HSRR and OSRR cells at D < 3.8 
mm, while it is met at D < 3 mm for SSRR cells. 
In the case of the CSRR cell, the impedance 
varies greatly, and condition ݖ௘௙௙/ݖ଴ = 1 is not 
met except at a few points. In general, for all 
cells except the CSRR cell, a wide range of D 
values can be obtained that achieve a negative 
refractive index, zero impedance imaginary part, 
and meet the necessary condition ݖ௘௙௙/ݖ଴ = 1 
for the ideal case in electromagnetic systems. 

 
FIG. 7. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the 

resonance frequency as a function of distance between the strips for many SRRs. 
Figure 8 shows the dependence of the real 

part of the refractive index, the imaginary part of 
the impedance, and the real part of impedance at 
resonance on the dielectric thickness for many 
SRRs at D = 2 mm, C = 2 mm, ߝ௥ = 4.3, s = 4 
mm. Figure 8(a) shows that a negative refractive 
index is achieved in HSRR and CSRR cells as 
long as h < 2.3 mm. It is achieved for SSRR and 
OSRR cells as long as h < 2.8 mm. The 
SSRR/CSRR cells achieve the lowest/highest 
negative refractive index. Figure 8(b) shows a 
slight increase in the impedance imaginary part 
values for all cells, with the impedance 
imaginary part of the CSRR/SSRR cells being 
the highest/lowest. We can confirm here that the 
impedance imaginary part is small under the 
simulated conditions. Also, we note that the 
impedance imaginary part corresponding to 
negative refractive indices is the lowest. Note 

that the imaginary part of impedance should be 
zero at the resonant frequency, but this was not 
achieved due to neglecting the phenomena of 
loss, coupling, and nonlinearity. This is due to 
the following: at the resonance frequency 
௘௙௙ݖ =  ,଴, the effective impedance will be realݖ
and the imaginary impedance will be zero; and 
due to absorption effects, coupling within the 
cell parts, and perhaps also nonlinear effects that 
can occur in the insulator, the imaginary part of 
the impedance will not be zero at the resonance 
frequency. 

Figure 8(c) shows the fulfillment of the 
condition ݖ௘௙௙/ݖ଴ ≈ 1, which is necessary for 
electromagnetic systems for all values of h using 
every SRR cell. The sign of approximation, not 
equality, is used due to the presence of a small 
amount of impedance imaginary part, depending 
on the cell type.  
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FIG. 8. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at 

resonance frequency as a function of dielectric thickness for many SRRs. 
Figure 9 shows the dependence of the real 

part of the refractive index, the imaginary part of 
the impedance, and the real part of the 
impedance at resonance on the dielectric 
thickness for many SRRs at D = 2 mm, C = 2 
mm, ߝ௥ = 4.3, h = 3 mm. Figure 9(a) shows that 
a negative refractive index is achieved at all 
values of s and for all cells, with SSRR/CSRR 
cells achieving the lowest/highest negative 
refractive indices. It can also be noted that the 
variation of the refractive index in all cases is 
small. The figure shows that the impedance 
imaginary part in all cells has small values and 
that SSRR/CSRR achieves the lowest/highest 
values, and the impedance imaginary part in the 
case of the CSRR cell is three or four times 
greater than that of the SSRR cell. In general, it 
can be understood from this that the conditions 
causing negative impedance (losses, coupling, 
and nonlinearity) are minimal under the 
simulated conditions. Figure 9(c) shows that 
condition ݖ௘௙௙/ݖ଴ ≈ 1 is met at the resonance 
frequency for all values of s and for all cells 
used. Accordingly, under the present simulation 

conditions, a metamaterial with a near-zero 
impedance imaginary part can be obtained, and 
the ideal impedance condition can be achieved.  

Figure 10 shows the dependence of the real 
part of the refractive index, the imaginary part of 
the impedance, and the real part of the 
impedance at resonance on the dielectric 
constant value for SSRR and CSRR cells at D = 
2 mm, C = 2 mm, s = 4 mm, h = 3 mm. Figure 
10(a) shows that SSRR/CSRR achieve the 
lowest/highest negative refractive indices over 
every dielectric constant range. In Fig. 10(b), the 
impedance imaginary part achieved in the case 
of CSRR is much larger than in SSRR, but in 
general, it is very small. Figure 10(c) 
demonstrates that near-ideal impedance 
matching is maintained across all dielectric 
constant values for the two cells used. The 
current simulation conditions achieved the 
metamaterial property, reduced the impedance 
imaginary part to the lowest possible level, and 
achieved the ideal impedance condition.  

 
FIG. 9. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at 

resonance frequency as a function of distance between strips in the background for many SRRs. 
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FIG. 10. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the 

resonance frequency as a function of dielectric constant for SSRR and CSRR cells. 

Figure 11 shows the dependence of the real 
part of the refractive index, the imaginary part of 
the impedance, and the real part of impedance at 
resonance on strip width for SSRR (a = 22 mm, a 
= 20 mm) and CSRR (ݎ௘௫௧ = 11 ݉݉, ௘௫௧ݎ =
10 ݉݉) cells at D = 2 mm, s = 4 mm, h = 2 mm, 
௥ߝ = 4.3. Figure 11(a) shows that the SSRR cell 
(a = 22 mm) exhibits the lowest negative 
refractive index for all strip widths. The SSRR (a 
= 20 mm) and CSRR (ݎ௘௫௧ = 11 ݉݉) cells have 
a negative refractive index up to a strip width C 
< 2.9 mm. The CSRR (ݎ௘௫௧ = 10 ݉݉) cell has 
the largest negative refractive index up to strip 
width C < 2.3 mm. Figure 11(b) shows an 
impedance imaginary part that increases slightly 
with the increase in the strip width of the SSRR 
cell (a = 22 mm). For the SSRR (a = 22 mm) and 
CSRR(ݎ௘௫௧ = 11 ݉݉) cells, the impedance 
imaginary part starts small, then increases 
slightly, and then increases strongly and 
decreases to negative values. For the CSRR 

cell (ݎ௘௫௧ = 10 ݉݉), we see that the impedance 
imaginary part changes severely, which is the 
worst case. This means that the nature of the 
impedance imaginary part depends on the 
achievement of the negative refractive index. In 
general, a near-zero imaginary impedance is 
observed only within a limited range of strip 
widths. 

Figure 11(c) confirms this trend for 
impedance matching. Ideal impedance condition 
଴ݖ/௘௙௙ݖ ≈ 1 is achieved only over a small strip 
width range for most cells.  

For C > 1.5 mm, all cells except the SSRR (a 
= 22 mm) deviate from the ideal condition. The 
SSRR cell (a = 22 mm) maintains near-ideal 
impedance ݖ௘௙௙/ݖ଴ ≈ 1 across the full range of 
strip widths. Overall, for all cells, near-ideal 
impedance consistently coincides with a negative 
refractive index at the resonance frequency.

 
FIG. 11. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at 

resonance frequency as a function of strip width for many SRR cells. 

Figure 12 shows the dependence of the real 
part of the refractive index, the imaginary part of 
the impedance, and the real part of the 

impedance at resonance on the distance between 
strips for SSRR (a = 22 mm, a = 20 mm) and 
CSRR (ݎ௘௫௧ = 11 ݉݉, ௘௫௧ݎ = 10 ݉݉) cells at C 
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= 2 mm, s = 4 mm, h = 2 mm, and ߝ௥ = 4.3. 
Figure 12(c) shows that the SSRR cell (a = 22 
mm) achieves a negative refractive index at D < 
4.8 mm, and that the two cells, SSRR (a = 20 
mm) and CSRR (ݎ௘௫௧ = 11 ݉݉), achieve a 
negative refractive index at D < 3.7 mm. The 
CSRR (ݎ௘௫௧ = 10 ݉݉) cell shows the most 
irregular behavior, with the refractive index 
initially negative, then becoming positive, and 
returning to negative values. Figure 12(b) shows 
that the SSRR cell (a = 22 mm) initially achieves 

near zero impedance imaginary part and then 
increases, while the other cells exhibit significant 
variations in the imaginary impedance across the 
range. 
Figure 12(c) shows the impedance matching 
condition. Near-ideal impedance is achieved 
only at the beginning for the SSRR cell (a = 22 
mm). All other cells remain far from the ideal 
impedance condition throughout the examined 
range.

 
FIG. 12. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the 

resonance frequency as a function of  distance between strips for many SRR cells. 

Figure 13 shows the bandwidth, resonance 
frequency, and minimum ଵܵଵ as functions of the 
dielectric thickness h for the four types of SRR. 

The bandwidth decreases as h increases. The 
octagonal cell exhibits the smallest bandwidth, 
while the circular and square cells show similar 
bandwidth values at h = 0.7, 2 mm. The figure 
representing the resonance frequency as a 
function of h shows that the resonance frequency 
is inversely proportional to the dielectric 
thickness. Among the geometries, the circular 
cell achieves the highest resonance frequency, 

whereas the square cell exhibits the lowest. The 
figure that represents the minimum value of 

ଵܵଵ as a function of h shows a direct proportion 
between the minimum value of ଵܵଵ and the 
dielectric thickness. We notice that the minimum 
value of ଵܵଵ is the highest possible in the case of 
circuit, but when it is less than h = 1 mm, it 
begins to decline and achieves the lowest value 
for the minimum value of ଵܵଵ and also in the 
octagonal state, at less than h = 1.5 mm, it begins 
to decline and is less than the square case.  

 
FIG. 13. Bandwidth, resonance frequency, and minimum value of ଵܵଵ as functions of h for different 

SRRs. 
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Figure 14 shows the bandwidth, resonance 
frequency, and minimum value of ଵܵଵ as 
functions of D using four types of SRR. It 
appears from the figure representing the 
bandwidth as a function of D that the bandwidth 
increases with increasing D for all four types of 
SRR, but for the case of the circuit, we notice 
that it tends to stabilize from D = 4.5 mm and 
above. The largest bandwidth is obtained for the 
square, while the octagonal exhibits the smallest. 
The resonance frequency appears to increase 
with increasing D in the case of a circle and 
decrease correspondingly in the case of a square. 
The minimal value of ଵܵଵ appears to increase as 
D increases; however, in the case of an 
octagonal, the minimum value of ଵܵଵ tends to 
stabilize between D = 1 mm and D = 1.5 mm. 
The peak is the largest in the case of a circle and 
the least in the case of a square. Figure 15 shows 
the bandwidth, resonance frequency, and 

minimum value of ଵܵଵ as functions of C for the 
four types of SRR. The bandwidth increases with 
increasing C for all cases; however, for the 
circuit, it tends to stabilize for C = 2.5 mm and 
above. The bandwidth is the largest possible in 
the case of a square and the smallest possible in 
the case of an octagonal. The resonance 
frequency increases with increasing C in the case 
of a circle and decreases as much in the case of a 
square. The minimal value of ଵܵଵ appears to 
increase as C increases; however, in the case of 
an octagonal, the minimum value of ଵܵଵ tends to 
stabilize between C = 0.5mm and C = 1.5mm. 
The peak is the largest possible in the case of a 
circle and the least possible in the case of a 
square. When the strip width in the SRR is 
increased, reflections and deviations in the signal 
transmission are reduced, and this is reflected by 
increasing the minimum value of ଵܵଵ.  

 
FIG. 14. Bandwidth, resonance frequency, and minimum of ଵܵଵ as functions of D for different SRRs. 

 
FIG. 15. Bandwidth, resonance frequency, and minimum of ଵܵଵ as functions of C for different SRRs. 
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5. Conclusions 

In conclusion, increasing C, D, and h leads to an 
increase in the resonant frequency and 
bandwidth, and, in some cases, to the appearance 
of additional resonant modes for the four types 
of SRR. The resonant frequency, the bandwidth, 
and the minimum value of ଵܵଵ increase with 
increasing C and D for all types of SRR, and 
there may be some cases of stability in some 
types of SRR. The SSRR cell consistently 
achieved a negative refractive index and 
excellent impedance matching throughout 
several simulations. This shows that the 
metamaterials have strong characteristics, 
making them suitable designs. Other cell forms, 
such as CSRR, often fared poorly. Wider strips 
enhance the negative refractive index but may 
add undesirable features, such as dispersion. The 
optimal spacing between strips resulted in a 

negative refractive index and perfect impedance 
௘௙௙ݖ ≈  ,଴ for SSRR, HSRR, and OSRR cellsݖ
whereas CSRR designs suffered at wider 
separations. For varying strip widths and 
dielectric constants, all SRR forms obtained a 
negative refractive index and excellent 
impedance matching. However, the performance 
of the CSRR design was marginally lower. 
Larger side lengths (a = 22mm) resulted in 
improved negative refractive index values for 
both strip width and strip separation changes. 
The work emphasizes the need to improve SRR 
cell design characteristics, particularly the outer 
radius, to achieve both a negative refractive 
index and optimal impedance matching for 
metamaterial applications.  
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