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Abstract: This paper underlines the need to improve SRR cell design parameters to
achieve both a negative refractive index and optimal impedance matching for advanced
metamaterial applications. Metamaterials have unique light manipulation characteristics
because of their negative refractive index and excellent impedance matching. This paper
looks at numerous split-ring resonator (SRR) cell designs to find the best combinations.
Square SRR cells consistently achieved a negative refractive index and excellent
impedance matching throughout simulations, outperforming alternative forms such as
circular SRRs. Increasing strip width often improves the negative refractive index, although
it may create dispersion. Optimal separation distance resulted in a negative refractive index
and perfect impedance for particular SRR forms (SSRR, HSRR, and OSRR); however,
CSRR designs degraded with greater separations. All SRR forms produced satisfactory
results, however CSRR designs had a somewhat poorer performance. Notably, a greater
outer side (¢ = 22mm) SSSR cells resulted in a much higher negative refractive index
throughout varying strip widths and separation distances.
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1. Introduction

In the world of electromagnetic engineering,
split voltage engineering, known as split ring
resonator (SRR), has been truly revolutionary,
achieving an unprecedented transformation in
our understanding of electromagnetic materials,
opening up amazing new opportunities for
designing cutting-edge technical systems and
devices [1, 2]. Major contributions to
metamaterials research were made by R. Shelby
et al., who empirically established the existence
of a negative refractive index [3]. This
pioneering accomplishment set the path for
future research into the fundamental principles
driving metamaterial behavior, notably SRR
structures. Concurrently, theoretical
investigations to explicate the function of
bianisotropy in producing negative permeability,
creating the theoretical framework for
comprehending the complexities of SRR-based
metamaterials, were conducted by R. Marqués et

al. [4]. The search to understand the resonance
frequency association with negative refractive
index in SRR structures has resulted in novel
metamaterial characterization techniques [5]. J.
Pendry et al. introduced a method for
determining the effective permittivity and
permeability of metamaterials using reflection
and transmission coefficients, offering valuable
insights into the design and optimization of SRR
topologies [6]. Theoretical frameworks that
permitted the research of typical electromagnetic
phenomena, resulting in the realization of
negative refractive index metamaterials, are
presented in J. Pendry et al. [6]. Furthermore,
comprehensive works have served as invaluable

resources, providing in-depth analyses of
metamaterial ~ physics and  engineering
explorations that cover the fundamental

principles and practical applications of SRR
structures [7, 8].
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Achieving a negative refractive index is the
major objective of SRR development. This
unusual trait occurs when both the effective
permittivity and permeability of the SRR
structure become negative at the same time [9,
10]. However, a hidden player, -effective
impedance, has a substantial impact on
performance. Perfect power transmission
requires a real part of effective impedance equal
to zo (the characteristic impedance of open
space), which is seldom achieved. In SRRs with
a negative refractive index, the imaginary part of
the effective impedance frequently differs from
zero [11, 12]. This non-zero impedance
imaginary part, together with the corresponding
real part, adds to energy losses within the SRR,
reducing its efficacy. Careful optimization of
SRR shape and materials is required to achieve a
compromise between obtaining a negative
refractive index and reducing energy losses [13].
Researchers can  tune the  structure's
electromagnetic response by precisely altering
the size, shape, and composition of the SRR unit
cells [14]. This enables them to attain the
necessary negative refractive index while
reducing the energy losses indicated by the non-
zero imaginary element of impedance [15, 16].
The tricky balancing act of getting a negative n
while avoiding energy losses is an ongoing focus
of research in SRR development. Advances in
material science and nanofabrication techniques
are paving the way for the development of SRRs
with higher performance and lower energy losses
[17]. This offers great potential for the creation
of new gadgets and applications that take
advantage of the unique qualities of negative
refraction [18]. Impedance matching is vital in
electromagnetic systems to minimize wave
reflection and maximize transmission. In
metamaterials, particularly those using split-ring
resonators (SRRs), it ensures efficient energy
transfer and optimal functionality, such as
negative refractive indices and enhanced
resonance [19]. Proper SRR design aligns
impedance with the surrounding medium,
reducing energy loss and improving performance
in  applications like medical imaging,
communication systems, and advanced optical
devices [20]. This makes impedance matching a
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cornerstone in SRR-based metamaterial design,
enabling broader and more efficient applications
[21].

This paper presents a finite element method
(FEM)-based simulation study of several SRR
unit cell configurations within the COMSOL
environment. Also, it focuses on the impedance
imaginary  part that accompanies this
phenomenon and the possibility of achieving an
ideal impedance matching, which is a necessary
condition in electromagnetic systems.

2. Design of Split Ring Resonators

After conducting simulations in the
COMSOL environment, the study aimed to
investigate the influence of geometric
dimensions and dielectric constants on the
bandwidth and resonant frequency of SRRs
within the frequency range of 2-6 GHz, essential
for modern communication systems. To achieve
this, appropriate designs for SRRs were
implemented, and a mesh that provided an
appropriate balance between result quality and
implementation speed was chosen. By altering
the shape, number, and dimensions of the rings,
specific resonant frequencies with desired
bandwidths could be achieved, potentially
leading to multiple resonant frequencies within
the same frequency range. Four main types of
SRR cells were analyzed: square (SSRR),
hexagonal (HSRR), octagonal (OSRR), and
circular (CSRR). Each SRR cell consists of two
metal strips on an insulating surface with a
dielectric constant &, and thickness /4, in the
form of two concentric rings, each ring with a
width C and separated by a distance D; each ring
has a gap of width g, with the gaps oriented in
opposite directions. In our work, these rings
were in the form of a square, hexagon, octagon,
or circle. The length of the dielectric side is L,
the distance from the center to the outer edge of
the shape is 7, (Which is the outer radius of the
large ring in the case of CSRR). The background
of all the rings is the same: five rectangular strips
with width w, length ¢, and the distance between
the strips s. Figure 1 illustrates the model
structure in the COMSOL environment.
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FIG. 1. Structure, ports, PML, periodic conditions, and mesh in COMSOL.

Figure 2 shows the structure of the SSRR unit
cell. The rest of the cells differ only in geometric
shape and employ the same notation for the
engineering parameters. The figure also presents
the background structure. The dimensions of the
metallic strips, gap width, the distance between
strips, dielectric thickness, dielectric constant,

the distance between strips in the background,
strip width in the background, strip length in the
background, cell width, the outer side length,
and the outer ring radius are listed in Table 1 for
all SRRs, with any changes noted accordingly
during the study. Figure 3 shows the
convergence test.
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FIG. 2. SSRR structure and background.

TABLE 1. Simulation parameters.

Parameter = SSRR HSRR OSRR CSRR
L 24mm 24mm 24mm 24mm
a 22mm  13.856mm 9.941mm -

C 2mm 2mm 2mm 2mm

D 2mm 2mm 2mm 2mm
0.3mm 0.3mm 0.3mm 0.3mm

Text 11mm 12mm 11mm 11mm

h 2mm 2mm 2mm 2mm

s 4mm 4mm 4mm 4mm
w 0.3mm 0.3mm 0.3mm 0.3mm
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FIG. 3. Convergence test.

3. Retrieval Method Formation

Excitation of SRR with an external magnetic
field causes the current to flow from one ring
structure to another through the slot between
them. As a result, this structure has a very strong
displacement current flow. The slots in SRR
behave like distributed capacitance, and it
behaves like an LC circuit. In technical terms,
metallic ring structures are modelled by
inductance L and capacitance C. The structure
behaves like an LC circuit having a resonant
frequency given below as [22]:

W = e (1)

where L; is the total inductance and Cris the
total capacitance of the LC circuit. The effective
parameters of a metamaterial slab are determined
by the free-space reflection and transmission
coefficients. To determine the parameters at N
different frequency points, one can either
measure the complicated S-parameters or
employ full-wave electromagnetic simulators.
For normal incident plane waves on a
homogeneous metamaterial slab, the relation
between the S-parameters, the complex
impedance, and the complex refractive index is
provided by [23]:

F(l_e—Zineffkt)
—Zineffkt (2)

Si1=

1-I?e
(1_F2)e—ineffkt
Sa1 = " amg R )
where I = (Zeff - 1)/(Zeff + 1), t is the
metamaterial slab thickness, and n.rr is the
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complex effective refractive index (n.rr = n' +

in"), with n'and n’’ being the real and imaginary
parts of ngrr, respectively. The parameters
Sipand S,; are complex and related to
reflectance and the transmittance, respectively,
as:T = |S;1|?and t = |S, 2.

The complex effective wave impedance z.f¢
is defined as [24]:
Zesr =R+ iX =R+i(wly ——) (4)
T
The parameters z,fr,n.rr are related to S-
parameters as [22]:

_ ’(1‘*'511)2—5221
Zeff = t (1-811)%-53, 5)

1 1 1—Sf1+5221) 2mm
Nefr = T——coS (— —,m=
eff T ~koa 28551 koa’

0,1,2... (6)

where k, is the free-space wavenumber, m is the
multivalued logarithmic function's branch index,
and a is the metamaterial slab thickness. As seen
in [25], when the metamaterial thickness is
modest, m is set to zero. When « is large, these
branches can lie arbitrarily close to one another,
making the selection of the correct branch
difficult in the case of dispersive materials. For
this reason, the best results are obtained for the
smallest possible thickness of the sample, as is
commonly known in the analysis of continuous
materials. Even with a small sample, more than
one thickness must be measured to identify the
correct branches of the solution that yield
consistently the same values for 7.
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The real value of the complex wave
impedance and the imaginary value of the
complex refractive index must both be greater
than or equal to zero for a passive metamaterial,
i.e., R>0,n" = 0. Therefore, the sign of z.¢r
must be decided in light of those circumstances.
Specifically, the real and imaginary components
of the complex refractive index are n' =
Refngsr}, n' = Im{ngsr}, respectively [26].
There are ambiguities in the formulations of the
metamaterial's  effective  permittivity  and
permeability due to the resultant branch
uncertainty in the real part of the complex
refractive index. The following formulas connect
the complex permittivity and complex
permeability to the complex refractive index and
the wave impedance [27]:

Eeff = Neff/Zefs (7

Heff = NefrZefs ®)

4. Results and Discussion

Figure 4 depicts the relationship of S;; with
frequency in the 2-6 GHz band using various
values of D, which denote the distance between
two strips. It is worth noting that each D value
results in various behaviors in terms of
resonance frequency, bandwidth, and minimum
attainable value. While it is possible to achieve
another resonant frequency within the same
range, our attention is on the case with a greater
bandwidth, also known as the fundamental
resonant frequency. Furthermore, when D grows,
the fundamental resonant frequency shifts to the
right. However, it is critical to understand that D
cannot expand indefinitely since it is inextricably
tied to cell size.

s,,(dB)

-35 !

2 25 3 3.5

4 4.5 5 55 6

frequency(GHz)
FIG. 4. S;; as functions of frequency using many values of D for SSRR.

In Fig. 5, we show the connection between
the normalized real refractive index and the
normalized frequency for various C values inside
the SSRR cell. Our primary focus is on the
fundamental resonance frequency, which
demonstrates a clear relationship between the
refractive index and resonance frequency
regions. Although comparable patterns appear
when additional parameters such as C, s, A, a,
and dielectric constant are changed, it is worth
noting that the resonant frequency and
bandwidth vary with time. As a result, we avoid
demonstrating these recurrent actions. Instead,
we stress the resonance frequency's relationship
with the negative refractive index, as well as the
real and imaginary parts of impedance.

Figure 6 presents the real part of the
refractive index, the imaginary part of the

impedance, and the real part of impedance at
resonance as functions of strip width for many
SRRs at h =3 mm, D =2 mm, & = 4.3, s = 4
mm. Figure 6(a) shows that the resonance
frequency occurs when the refractive index is
negative. In general, raising C leads to an
increase in the real refractive index. The CSRR
cell exhibits the highest real refractive index,
while the SSRR shows the lowest. The figure
shows that the real refractive index is negative
until it approaches C > 3, after which it is
positive in the case of cell CSRR. However, it
always remains negative in SSRR and OSRR
cells. When C is less than 3.5, the HSRR cell
produces a negative refractive index. The
metamaterial property is attained for all cells by
creating C < 3. It is clearly evident from Fig.
6(b) that the imaginary part of the impedance is
close to zero at first and then increases slowly as
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the strip width increases for square, hexagonal,
and octagonal cells, but it increases strongly in
the case of the circular cell and then decreases to
negative values. Losses and imperfect coupling
between the cell and wire may increase the
imaginary value of impedance. Additionally,

C=0.5mm

s 11T )
s OIS 1)
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nonlinear effects can introduce extra frequency
components into the cell response, further
causing deviations of the impedance imaginary
part from zero. In general, increasing the strip
width makes the impedance imaginary part non-
zZero.
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FIG. 5. Normalized S;,; and effective refractive index as functions of frequency using many values of strip width
for SSRR.

In Fig. 6(c), the matching between the system
impedance and the characteristic impedance

happens at zgrr/zg = 1. When condition
Zesr/Z2o =1 1is met, the ideal case for
electromagnetic systems occurs. Note that

condition zgsr/zy = 1 is achieved almost at the
beginning for all cells, but it is not achieved as C
continues to increase, and the cell furthest from
condition zgsr/zo =1 is the CSRR cell. The
cases Zqrr/Zo > 1 indicate that the SRR cell's

electromagnetic wave may be reflected at the
SRR cell interface due to an impedance
mismatch. The greater the ratio z.rr/z, the
stronger the reflection may be. When zg5f/zy <
1, the SRR cell's effective impedance is lower
than the line's characteristic impedance. In this
situation, the SRR cell may cause dispersion,
which means that the propagation speed of
different frequencies within the electromagnetic
wave will vary. The smaller the ratio zess/z,

effective  impedance exceeds the line's  the greater the dispersion impact may be.
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FIG. 6. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the
resonance frequency as functions of strip width for many SRRs.
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Figure 7 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of impedance at
resonance on the distance between the strips for
many SRRs at 7 =3 mm, C =2 mm, &, = 4.3,
and s = 4 mm. Figure 7(a) shows that the real
part of the refractive index is negative at the
resonance frequency when D < 4.7 mm for
square, HSRR, and OSRR cells, and it is
negative in the case of the CSRR cell when D <
3.8 mm. Note that the SSRR/CSRR cells always
represent the lowest/highest real refractive index.
Figure 7(b) shows that the imaginary part of the
impedance starts close to zero for all cells except
the CSRR case, and after D > 3.5 mm, the values
begin to increase or decrease depending on the
cell type, with HSRR and OSRR cells
maintaining some degree of stability until D =
3.5 mm. In the case of the CSRR cell, the
impedance imaginary part is not the same as its
predecessors but rather alternates between
positive and negative. Also, the SSRR cell will

0.2

have values far from zero when D = 3 mm. In
general, the negative imaginary part of the
impedance moves away from zero in response to
the corresponding negative refractive index.
Positive values mean that the characteristic of
inductance is dominant, and negative values
mean that the characteristic of capacitance is
dominant, while a zero value means that the
impedance is composed of resistance only.
Figure 7(c) shows that the condition z.ff/zy =
1 is met for HSRR and OSRR cells at D < 3.8
mm, while it is met at D < 3 mm for SSRR cells.
In the case of the CSRR cell, the impedance
varies greatly, and condition zgsr/zy = 1 is not
met except at a few points. In general, for all
cells except the CSRR cell, a wide range of D
values can be obtained that achieve a negative
refractive index, zero impedance imaginary part,
and meet the necessary condition zgsr/zo = 1
for the ideal case in electromagnetic systems.
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FIG. 7. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the
resonance frequency as a function of distance between the strips for many SRRs.

Figure 8 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of impedance at
resonance on the dielectric thickness for many
SRRs at D=2 mm, C=2 mm, & =43, s =4
mm. Figure 8(a) shows that a negative refractive
index is achieved in HSRR and CSRR cells as
long as & < 2.3 mm. It is achieved for SSRR and
OSRR cells as long as &2 < 2.8 mm. The
SSRR/CSRR cells achieve the lowest/highest
negative refractive index. Figure 8(b) shows a
slight increase in the impedance imaginary part
values for all cells, with the impedance
imaginary part of the CSRR/SSRR cells being
the highest/lowest. We can confirm here that the
impedance imaginary part is small under the
simulated conditions. Also, we note that the
impedance imaginary part corresponding to
negative refractive indices is the lowest. Note

that the imaginary part of impedance should be
zero at the resonant frequency, but this was not
achieved due to neglecting the phenomena of
loss, coupling, and nonlinearity. This is due to
the following: at the resonance frequency
Zerf = Zg, the effective impedance will be real,
and the imaginary impedance will be zero; and
due to absorption effects, coupling within the
cell parts, and perhaps also nonlinear effects that
can occur in the insulator, the imaginary part of
the impedance will not be zero at the resonance
frequency.

Figure 8(c) shows the fulfillment of the
condition z.rr/zo ~ 1, which is necessary for
electromagnetic systems for all values of / using
every SRR cell. The sign of approximation, not
equality, is used due to the presence of a small
amount of impedance imaginary part, depending
on the cell type.
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FIG. 8. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at
resonance frequency as a function of dielectric thickness for many SRRs.

Figure 9 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of the
impedance at resonance on the dielectric
thickness for many SRRs at D = 2 mm, C = 2
mm, & = 4.3, h = 3 mm. Figure 9(a) shows that
a negative refractive index is achieved at all
values of s and for all cells, with SSRR/CSRR
cells achieving the lowest/highest negative
refractive indices. It can also be noted that the
variation of the refractive index in all cases is
small. The figure shows that the impedance
imaginary part in all cells has small values and
that SSRR/CSRR achieves the lowest/highest
values, and the impedance imaginary part in the
case of the CSRR cell is three or four times
greater than that of the SSRR cell. In general, it
can be understood from this that the conditions
causing negative impedance (losses, coupling,
and nonlinearity) are minimal under the
simulated conditions. Figure 9(c) shows that
condition Zgrr/zy ~ 1 is met at the resonance
frequency for all values of s and for all cells
used. Accordingly, under the present simulation

conditions, a metamaterial with a near-zero
impedance imaginary part can be obtained, and
the ideal impedance condition can be achieved.

Figure 10 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of the
impedance at resonance on the dielectric
constant value for SSRR and CSRR cells at D =
2 mm, C=2 mm, s =4 mm, h =3 mm. Figure
10(a) shows that SSRR/CSRR achieve the
lowest/highest negative refractive indices over
every dielectric constant range. In Fig. 10(b), the
impedance imaginary part achieved in the case
of CSRR is much larger than in SSRR, but in
general, it is very small. Figure 10(c)
demonstrates  that near-ideal impedance
matching is maintained across all dielectric
constant values for the two cells used. The
current simulation conditions achieved the
metamaterial property, reduced the impedance
imaginary part to the lowest possible level, and
achieved the ideal impedance condition.
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FIG. 9. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at
resonance frequency as a function of distance between strips in the background for many SRRs.
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Figure 11 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of impedance at
resonance on strip width for SSRR (a = 22 mm, a
= 20 mm) and CSRR (1o = 11 mm,1py =
10 mm) cells at D=2 mm, s =4 mm, h = 2 mm,
& = 4.3. Figure 11(a) shows that the SSRR cell
(@ = 22 mm) exhibits the lowest negative
refractive index for all strip widths. The SSRR (a
=20 mm) and CSRR (7,5 = 11 mm) cells have
a negative refractive index up to a strip width C
< 2.9 mm. The CSRR (7., = 10 mm) cell has
the largest negative refractive index up to strip
width C < 2.3 mm. Figure 11(b) shows an
impedance imaginary part that increases slightly
with the increase in the strip width of the SSRR
cell (@ =22 mm). For the SSRR (a = 22 mm) and
CSRR(7py; = 11 mm) cells, the impedance
imaginary part starts small, then increases
slightly, and then increases strongly and
decreases to negative values. For the CSRR

cell (1o = 10 mm), we see that the impedance
imaginary part changes severely, which is the
worst case. This means that the nature of the
impedance imaginary part depends on the
achievement of the negative refractive index. In
general, a near-zero imaginary impedance is
observed only within a limited range of strip
widths.

Figure 11(c) confirms this trend for
impedance matching. Ideal impedance condition
Zerf/Zo = 1 is achieved only over a small strip
width range for most cells.

For C > 1.5 mm, all cells except the SSRR (a
= 22 mm) deviate from the ideal condition. The
SSRR cell (@ = 22 mm) maintains near-ideal
impedance z.rr/zo ~ 1 across the full range of
strip widths. Overall, for all cells, near-ideal
impedance consistently coincides with a negative
refractive index at the resonance frequency.
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FIG. 11. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at
resonance frequency as a function of strip width for many SRR cells.

Figure 12 shows the dependence of the real
part of the refractive index, the imaginary part of
the impedance, and the real part of the

impedance at resonance on the distance between
strips for SSRR (¢ = 22 mm, a = 20 mm) and
CSRR (Toyt = 11 mm, 14y = 10 mm) cells at C
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=2 mm,s =4 mm, h =2 mm, and &. = 4.3.
Figure 12(c) shows that the SSRR cell (a = 22
mm) achieves a negative refractive index at D <
4.8 mm, and that the two cells, SSRR (a = 20
mm) and CSRR (rpy; = 11 mm), achieve a
negative refractive index at D < 3.7 mm. The
CSRR  (Toxt = 10mm) cell shows the most
irregular behavior, with the refractive index
initially negative, then becoming positive, and
returning to negative values. Figure 12(b) shows
that the SSRR cell (¢ =22 mm) initially achieves

near zero impedance imaginary part and then
increases, while the other cells exhibit significant
variations in the imaginary impedance across the
range.

Figure 12(c) shows the impedance matching
condition. Near-ideal impedance is achieved
only at the beginning for the SSRR cell (a = 22
mm). All other cells remain far from the ideal
impedance condition throughout the examined
range.
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FIG. 12. Real part of the refractive index, imaginary part of the impedance, and real part of the impedance at the
resonance frequency as a function of distance between strips for many SRR cells.

Figure 13 shows the bandwidth, resonance
frequency, and minimum S;; as functions of the
dielectric thickness / for the four types of SRR.

The bandwidth decreases as / increases. The
octagonal cell exhibits the smallest bandwidth,
while the circular and square cells show similar
bandwidth values at & = 0.7, 2 mm. The figure
representing the resonance frequency as a
function of / shows that the resonance frequency
is inversely proportional to the dielectric
thickness. Among the geometries, the circular
cell achieves the highest resonance frequency,

whereas the square cell exhibits the lowest. The
figure that represents the minimum value of
S11 as a function of h shows a direct proportion
between the minimum value of S;; and the
dielectric thickness. We notice that the minimum
value of S;, is the highest possible in the case of
circuit, but when it is less than 2z = 1 mm, it
begins to decline and achieves the lowest value
for the minimum value of S;; and also in the
octagonal state, at less than # = 1.5 mm, it begins
to decline and is less than the square case.
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FIG. 13. Bandwidth, resonance frequency, and minimum value of S;; as functions of 4 for different
SRRs.
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Figure 14 shows the bandwidth, resonance
frequency, and minimum value of S;; as
functions of D using four types of SRR. It
appears from the figure representing the
bandwidth as a function of D that the bandwidth
increases with increasing D for all four types of
SRR, but for the case of the circuit, we notice
that it tends to stabilize from D = 4.5 mm and
above. The largest bandwidth is obtained for the
square, while the octagonal exhibits the smallest.
The resonance frequency appears to increase
with increasing D in the case of a circle and
decrease correspondingly in the case of a square.
The minimal value of S;; appears to increase as
D increases; however, in the case of an
octagonal, the minimum value of S;; tends to
stabilize between D = 1 mm and D = 1.5 mm.
The peak is the largest in the case of a circle and
the least in the case of a square. Figure 15 shows

minimum value of S;; as functions of C for the
four types of SRR. The bandwidth increases with
increasing C for all cases; however, for the
circuit, it tends to stabilize for C = 2.5 mm and
above. The bandwidth is the largest possible in
the case of a square and the smallest possible in
the case of an octagonal. The resonance
frequency increases with increasing C in the case
of a circle and decreases as much in the case of a
square. The minimal value of S;; appears to
increase as C increases; however, in the case of
an octagonal, the minimum value of S;; tends to
stabilize between C = 0.5mm and C = 1.5mm.
The peak is the largest possible in the case of a
circle and the least possible in the case of a
square. When the strip width in the SRR is
increased, reflections and deviations in the signal
transmission are reduced, and this is reflected by
increasing the minimum value of S;4.
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FIG. 14. Bandwidth, resonance frequency, and minimum of S;; as functions of D for different SRRs.
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5. Conclusions

In conclusion, increasing C, D, and h leads to an
increase in the resonant frequency and
bandwidth, and, in some cases, to the appearance
of additional resonant modes for the four types
of SRR. The resonant frequency, the bandwidth,
and the minimum value of S;; increase with
increasing C and D for all types of SRR, and
there may be some cases of stability in some
types of SRR. The SSRR cell consistently
achieved a negative refractive index and
excellent impedance matching throughout
several simulations. This shows that the
metamaterials have strong characteristics,
making them suitable designs. Other cell forms,
such as CSRR, often fared poorly. Wider strips
enhance the negative refractive index but may
add undesirable features, such as dispersion. The
optimal spacing between strips resulted in a

negative refractive index and perfect impedance
Zerr = Zy for SSRR, HSRR, and OSRR cells,
whereas CSRR designs suffered at wider
separations. For varying strip widths and
dielectric constants, all SRR forms obtained a
negative refractive index and excellent
impedance matching. However, the performance
of the CSRR design was marginally lower.
Larger side lengths (¢ = 22mm) resulted in
improved negative refractive index values for
both strip width and strip separation changes.
The work emphasizes the need to improve SRR
cell design characteristics, particularly the outer
radius, to achieve both a negative refractive
index and optimal impedance matching for
metamaterial applications.
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