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Abstract: In this paper, we present an approach that gives a formal and an approximate 
solution for a special class of transcendental equations. This solution is in the form of an 
infinite series generated by a Taylor reversion process. To showcase this technique, we 
have chosen the transcendental equation that describes the energy levels of a particle 
moving in a symmetrical finite square well potential in quantum mechanics. The cases for 
very deep, very shallow, and the intermediate-sized wells are discussed separately. Our 
results, when compared with the numerical findings, show the validity of our approach and 
its potential future application to other similar physics and engineering problems. 
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1. Introduction 
Solving transcendental equations is a problem 

commonly encountered in a broad spectrum of 
physics and engineering applications [1-3]. 
These equations are traditionally solved using 
graphical or numerical methods because of the 
difficulty in obtaining an exact and explicit 
algebraic expression of solutions to such 
equations [4]. Even though solutions can be 
found with great precision and minimum error, 
these approaches have some drawbacks because 
the dependence on the physical parameters of the 
problem is lost completely. For a better 
understanding of the mathematical and physical 
aspects of the problems under examination, 
many systematic approaches other than the 
graphical or numerical methods have been 
presented to preserve the relation between the 
physical parameters of the problem. Several 
analytic approximations for the solutions of 
these transcendental equations have been 
obtained. Some approaches employ algebraic 
functions to approximate the various functions in 
the transcendental equation and therefore change 

the equation into an algebraic equation. In 
contrast, others use the Padé approximation to 
transform the equation into a rational one [5-16]. 
The primary objective of this study is to use a 
novel approach to obtain formal and analytical 
approximate solutions for such equations. To 
accomplish this, we have chosen the 
transcendental equation associated with the 
bound state of a particle moving in a 
symmetrical square well potential in quantum 
mechanics [5-14]. This problem was an 
elementary academic problem. It became very 
important after theoretical and experimental 
advances in the surface physics of thin metallic 
films [15]. In this paper, we show the 
dependence of the bound energies on the well 
potential parameters in the extreme cases of a 
shallow well and a deep well, in addition to the 
intermediate size well, using a formal 
mathematical approach based on an infinite 
series solution generated by a Taylor reversion 
process.  
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2. Mathematical Background 
Our approach is closely related to the general 

problem of finding the root of the equation f(x) = 
0. For that, we use the Taylor reversion process.  

Let us assume that x0 is an initial guess 
solution in close proximity to an exact solution, 
characterized by the condition: 

f(x0) = ɛ with│ɛ│<< 1  

and ݂′(ݔ) = ቂௗ
ௗ௫

ቃ
௫బ

with│݂′(ݔ)│>> 1 . 

This condition is established to facilitate rapid 
convergence in the Taylor expansion and 
reversion. 

Let ݔ be the exact root of the above 
equation, i.e. ݂(ݔ) = 0. 

Let δ be the difference ߜ = ݔ −   whereݔ
│δ│<< 1. 

By expanding the expression ݂(ݔ) = 0 in 
the Taylor power series in δ, we get [16-17]:  

(ݔ)݂ = ݔ)݂ + (ߜ = (ݔ)݂ + ∑ ܽߜஶ
ୀଵ = ߝ +

∑ ܽߜஶ
ୀଵ = ܽ ݁ݎℎ݁ݓ 0 = ଵ

!
ቂௗ

ௗ௫ቃ௫బ
         (1) 

Inverting the above expansion using the 
Taylor reversion process, we get [16-17]: 

δ = ∑ b୧(−ε)୧ஶ
୧ୀଵ            (2) 

where the coefficients {bi} are known in terms of 
the coefficients {ai} [16-17]:  

bଵ = aଵ
ିଵ

bଶ = −aଵ
ିଷaଶ

bଷ = aଵ
ିହ(2aଶ

ଶ−aଵaଷ)
 bସ = aଵ

ି(5aଵaଶaଷ − aଵ
ଶaସ − 5aଶ

ଷ)

bହ = aଵ
ିଽ ቆ

6aଵ
ଶaଶaସ + 3aଵ

ଶaଷ
ଶ

+14aଶ
ସ−aଵ

ଷaହ − 21aଵaଶ
ଶaଷ

ቇ

b = aଵ
ିଵଵ

⎝

⎜
⎛

7aଵ
ଷaଶaହ + 7aଵ

ଷaଷaସ
+84aଵaଶ

ଷaଷ
−aଵ

ସa − 28aଵ
ଶaଶaଷ

ଶ

−42aଶ
ହ − 28aଵ

ଶaଶ
ଶa ସ⎠

⎟
⎞

b = ⋯ ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

        (3) 

The above infinite series converges because 
│ɛ│<< 1 and │a1│>> 1.  

Therefore, the exact formal solution is 
expressed as 

xത = x + ∑ b୧(−ε)୧ஶ
୧ୀଵ                   (4) 

If the infinite series is truncated at the order 
N, one gets an approximate solution of the form:  

xത ≈ x + ∑ b୧(-ε)୧
୧ୀଵ                    (5) 

The desired precision of the approximate 
solution is closely correlated to the order N. 

In the subsequent section, this formal 
mathematical approach will be utilized to solve a 
specific class of transcendental equations 
encountered by scientists and engineers. We've 
chosen a couple of these equations, which can be 
found in many areas of physics in various forms, 
such as the study of the bound energy levels of a 
particle moving inside a symmetrical finite 
square well potential in quantum mechanics [5,8-
14].  

3. The Finite Square Well Potential  
The symmetrical finite square well potential 

in quantum mechanics of depth V0 and length a is 
defined as: 

(ݔ)ܸ = ൝
0 for |x| < ୟ

ଶ

ܸ for |x| ≥ ୟ
ଶ
 
                 (6) 

 
FIG. 1. Symmetrical finite square well potential. 

Solving the time-independent Schrödinger 
equation and making use of the symmetry of the 
potential, we get two solutions of definite parity: 
one odd and the other even. The transcendental 
equations associated with these two solutions 
are, respectively, for the odd-parity solutions and 
even-parity solutions [5, 8-12]: 

൞
ቚ݊݅ݏ ୶

ଶ
ቚ = ௫

௫బ
 

݊ܽݐ ௫
ଶ

< 0 
 

 and ൞
ቚܿݏ ௫

ଶ
ቚ = ௫

௫బ
 

݊ܽݐ ௫
ଶ

> 0 
 

 where x =

ටଶమா
ℏమ   and ݔ = ටଶమబ

ℏమ             (7) 

m is the mass of the particle, and E is its energy. 

An exact and explicit algebraic expression of 
solutions to these equations is impossible to 
obtain. Only graphical or numerical solutions are 
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possible [4-6]. The graph in Fig. 2 shows the 
graphical solutions of these two transcendental 
equations. By studying these solutions, we noted 
the following:  

 The first ground energy level is associated 
with an even parity state. 

 If x = 2nπ, i. e. V = ସ୬మమℏమ

ଶ୫ୟమ  then:  

The last bound energy is associated with the 
even parity state and it is at the edge of the well 
and the total number of the solutions (bound 
energy levels) is equal to N = 2n + 1.  

 If x = (2n + 1)π,
i. e. V = (ଶ୬ାଵ)మమℏమ

ଶ୫ୟమ  then: 

The last bound energy is associated with the 
odd parity state and it is at the edge of the well 
and the total number of the solutions (bound 
energy levels) is equal to N = 2n + 2. 

 If 2nπ < x < (2n + 1)π, i. e. ସమℏమ

ଶ୫ୟమ < V <
(ଶ୬ାଵ)మమℏమ

ଶ୫ୟమ  then:  

The last bound energy is associated with the 
even parity state and the total number of the 

solutions (bound energy levels) is equal to N = 
2n + 1: n+1 even and n odd states. 

The energy levels are associated with i = 1, 2, 
… N. 

 If (2n + 1)π < x < (2n + 2)π,
i. e. (ଶ୬ାଵ)మమℏమ

ଶ୫ୟమ < V < (ଶ୬ାଶ)మమℏమ

ଶ୫ୟమ  then: 

The last bound energy is associated with the 
odd parity state and the total number of the 
solutions (bound energy levels) is equal to N = 
2(n+1): (n+1) even and (n+1) odd states. 

The energy levels are associated with i = 1, 2, 
… N. 

 If x < π, only one solution is found 
corresponding to the ground energy; it is an 
even parity solution. No odd solutions are 
available. 

 If ݔ ≪ 1, one unique solution close to x0 is 
found. 

 If ݔ ≫ 1, many solutions are found; they are 
close to 2nfor the odd parity solutions and 
(2n+1)for the even parity solutions. 

  
FIG. 2. Graphical even and odd solutions. 

We’ll use the preceding mathematical 
formalism to try to solve the aforementioned 
transcendental equations. The first case is when 
x0 is extremely small, corresponding to a shallow 
well; the second case is when x0 is very large, 
corresponding to a deep well; and the third case 
study is the intermediate case between the 
previous two. 

3.1 Shallow Well 

This extreme case is labeled as such when: 

 x ≪ 1, i. e. V ≪ ℏమ

ଶ୫ୟమ            (8) 

We attempt to find solutions to the equation: 
୶

ቚୡ୭ୱ౮
మቚ

= x             (9) 

by expanding the left-hand side of the above 
equation in the Taylor series around x = 0 [6-12]: 

x = x + ଵ
଼

xଷ + ହ
ଷ଼ସ

xହ + ଵ
ସ଼

x + ⋯          (10) 

and using the Taylor reversion process. Hence, 
we get [16-17]:  

x = x- ଵ
଼

x
ଷ + ଵଷ

ଷ଼ସ
x

ହ- ହସଵ
ସ଼

x
 + ⋯        (11)  
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Despite the fact that this infinite series is a 
solution valid for extremely small values of x0, 
we shall show in Appendix A that it is equally 
valid for all x0 values ranging from 0.00 to 1.00. 
This is due to the fact that the series in question 
converges rapidly. We do this by truncating the 
infinite series solution (11) to a specific order 
and comparing the approximate solution to the 
numerical finding. 

The approximate solution to the 
transcendental equation up to the first four terms 
is 

x ≈ x- ଵ
଼

x
ଷ + ଵଷ

ଷ଼ସ
x

ହ- ହସଵ
ସ଼

x
         (12) 

Table 1 in Appendix A displays our 
approximate solution xapp from Eq. (12), the 
numerical solution xnum, and the related relative 
percentage error for various values of x0 between 
0.00 and 1.00. The table clearly demonstrates 
that our solution in Eq. (12) up to four terms 
agrees well with the graphical and numerical 
results. The relative error is quite small, ranging 
between 0.00% and slightly less than 0.50%.  

As a result, we can confidently assert that our 
method for small x0 is accurate to within 0.50% 
relative error for all x0 values between 0.00 and 
1.00.  

The corresponding ground energy for the 
shallow well is then 

ܧ = ܸ ቂ1 − ଵ
ସ

ݔ
ଶ + ଵ

ଵଶ
ݔ

ସ − ଶଷ
ଶ

ݔ
 + ⋯ ቃ       (13) 

This represents the sole energy level, 
situated near the shallow well's edge and away 
from the well's bottom. Its calculated relative 
error up to four terms in Eq. (13) is extremely 
acceptable, and it is  ∆


= 2 ∆୶

୶
< 1.00% . 

3.2 Deep Well 
This other extreme case is present when:  

x ≫ 1, i. e. V ≫ ℏమ

ଶ୫ୟమ          (14) 

We try to discover even and odd parity 
solutions to Eq. (7) in the same way we did in 
the preceding case: 

3.2.1 Even Parity Solution:  
The transcendental equation is: 

ቚେ୭ୱ౮
మቚ

୶
= ଵ

୶బ
 with tan ୶

ଶ
< 0         (15)  

and 

୶
ଶ

= ቀn + ଵ
ଶ
ቁ π-δ with 0 ≤ δ ≪ 1 and n integer  

        (16) 

Equations (15) and (16) can be transformed 
into: 
ୱ୧୬(ஔ)
ିଶஔ

= ε with λ = (2n + 1)π and ε = ଵ
୶బ

    (17) 

By expanding the left-hand side of Eq. (17) in 
the Taylor series around δ = 0, we get [16-17]: 

ε = ஔ


+ ଶஔమ

మ - (మ-ଶସ)ஔయ

య - (మ-ଶସ)ஔర

ଷర …        (18)  

and using the Taylor reversion process, we get 
[16-17]: 

ߜ  = ߝߣ  − ଶ ߝߣ2 + ߣ4 ቀ1 + ఒ మ

ଶସ
ቁ ଷ ߝ −

ߣ8 ቀ1 + ఒ మ


ቁ ସ ߝ + ⋯          (19) 

The solution to the even parity transcendental 
Eq. (7), expressed in the form of an infinite 
series, is then:  

ଶାଵݔ = ߣ − ߝߣ2 + ଶ ߝߣ4 − ߣ8 ቀ1 + ఒ మ

ଶସ
ቁ ଷ ߝ +

ߣ16 ቀ1 + ఒ మ


ቁ ସ ߝ + ⋯         (20) 

The corresponding even parity-bound energy 
levels for the deep well are: 

ଶାଵܧ = ఒమℏమ

ଶమ ቂ1 − ߝ4 + ଶߝ12 − 32 ቀ1 +
ఒమ

ସ଼
ቁ ଷߝ + 128(1 + ହఒమ

ଽ
ସߝ( … ቃ        (21) 

3.2.2 Odd Parity Solution:  

The transcendental equation is:  

ቚୱ୧୬౮
మቚ

୶
= ଵ

୶బ
 with tan ୶

ଶ
< 0         (22)   

and 
௫
ଶ

= ߨ݊ − ߬ with 0 ≤ ߬ ≪ 1 and n integer   (23)  

 Equations (22) and (23) can be transformed 
into: 
ୱ୧୬(ఛ)
ఊିଶ

= ߛ with ߝ = and ε ߨ2݊ = ଵ
୶బ

        (24)  

By analogy to the even parity case, the 
solutions to the odd parity transcendental 
equation are: 

ଶݔ = ߛ − ߝߛ2 + ଶ ߝߛ4 − ߛ8 ቀ1 + ఊ మ

ଶସ
ቁ ଷ ߝ +

ߛ16 ቀ1 + ఊ మ


ቁ ସ ߝ + ⋯         (25)  

The corresponding odd parity-bound energy 
levels for the deep well are then:  
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ଶܧ = ఊమℏమ

ଶమ ቂ1 − ߝ4 + ଶߝ12 − 32 ቀ1 + ఊమ

ସ଼
ቁ ଷߝ +

128(1 + ହఊమ

ଽ
ସߝ( … ቃ          (26) 

Both parity-bound energy levels can be 
combined into one expression with μ = nπ 

ܧ  = ܧ
ஶ ቂ1 − ߝ4 + ଶߝ12 − 32 ቀ1 + ఓమ

ସ଼
ቁ ଷߝ +

128(1 + ହఓమ

ଽ
ସߝ( … ቃ          (27)  

where ܧ
ஶ = మగమℏమ

ଶమ  is the energy levels of the 
infinite square well potential.  

When x0 >> 1, the bound energy levels of a 
deep potential well are very near to those of an 
infinite well, as shown by Eq. (27). Their level 
differences are also close, particularly at the 
lower levels. 

Depending on the order n, both even and odd 
parity solutions of the transcendental Eq. (7) can 
be merged into a single solution as: 

ݔ = ߩ  − ߝߩ2 + ଶߝߩ4 − ߩ8 ቀ1 + ఘమ

ଶସ
ቁ ଷߝ +

1)ߩ16 + ఘమ


ସߝ( …          (28) 

where ρ = (2n+1)π for even parity solutions and 
ρ = 2nπ for odd parity solutions. 

Despite the fact that this infinite series is a 
solution valid for extremely large x0, we shall 
show in Appendix B that it is equally valid for x0 
values between 10.00 and 100.00. This is due to 
the fact that the series in question converges 
relatively quickly. We do this by truncating the 
infinite series solution (28) to a specific order 
and comparing the approximate solution to the 
numerical finding. 

The approximate solution to the 
transcendental equation up to the first five terms 
is: 

ݔ ≈ ߩ − ߝߩ2 + ଶߝߩ4 − ߩ8 ቀ1 + ఘమ

ଶସ
ቁ ଷߝ +

ߩ16 ቀ1 + ఘమ


ቁ  ସ          (29)ߝ

Tables 2 and 3 in Appendix B display 
separately the approximate even and odd parity 
solutions from Eq. (29), the corresponding 
numerical solutions, and their relative percentage 
errors for various values of x0 ranging from 
10.00 to 100.00. Both tables show that our 
approximate solutions up to only five terms in 
the infinite series solution are in good agreement 
with the graphical and numerical findings. The 

relative errors are considerably smaller than 
1.00%, with the exception of a few displayed in 
bold, where the relative error ranges between 
1.00% and 1.25%. As a result, we can 
confidently assert that our method is correct 
within a tolerable relative error for all values of 
x0 ≥10.00. 

3.3 Intermediate Size Well 

The previous approaches that we have 
presented do not address the intermediate case 
where 1.00 ≤ ݔ ≤ 10.00. They are simply 
inapplicable in this range. Depending on x0, there 
are four distinct solutions at most: two even 
solutions x1, x3 and two odd solutions x2, x4.  

The first even solution  xଵ < π is always 
present regardless of x0. The first odd solution x2 
exists in the interval ߨ ≤ ଶݔ < ݔ if ߨ2 ≥  .ߨ
The second even solution x3 exists in the interval 
ߨ2 ≤ ଷݔ < ݔ if ߨ3 ≥  Lastly, the second .ߨ2
odd solution x4 exists in the interval 3ߨ ≤ ସݔ <
ݔ if ߨ4 ≥  .ߨ3

We attempt to solve the transcendental Eq. 
(7) by making use of the periodicity and the 
linearity of its terms. We also use the 
translational property to associate any solution 
 ௦ in any interval with a known solution ܺே inݔ
the deep well case. 
௫ೞ
௫బ

= ௫ಿ
బ

           (30) 

where:  

ܵ = ݏ2 + 1 , ܰ = 2݊ + 1 for even solutions   

and ܵ = ,  ݏ2 ܰ = 2݊ for odd solutions.  

ேݔ = ௦ݔ + (ܰ −  (31)          ߨ(ܵ
௫ೞ
௫బ

= ௫ೞା(ேିௌ)గ
బ

           (32) 

Making use of Eqs. (16) and (23) and 
combining both parities in one expression, we 
get: 

∆= ௌగି௫ೄ
ଶ

           (33) 

Finally, using Eqs. (17), (24), (32), and (33), 
we get:  
௫ೞ
௫బ

=  (34)           ∆݊݅ݏ

By expanding the right-hand side of Eq. (34) 
in the Taylor series around ∆= 0, we get: 
௫ೞ
௫బ

= ∆ − ଵ


∆ଷ +  ଵ
ଵଶ

∆ହ − ଵ
ହସ

∆ …        (35)  
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Combining Eqs. (33) and (35) and using the 
Taylor reversion process, we get [16-17]: 

ௌݔ = ௌగ
(௫బାଶ)

ݔ − (ௌగ)య

ଷ(௫బାଶ)ర ݔ − (ௌగ)ఱ

(௫బାଶ)ళ ݔ9) −

ݔ(2 − (ௌగ)ళ

ଶହଶ(௫బାଶ)భబ ݔ225)
ଶ − ݔ108 +

ݔ(4 …           (36)  

This infinite series converges very fast 
because 1.00 ≤ ݔ ≤ 10.00.  

Let us now investigate the validity of this 
approach in the intermediate case: 1.00 ≤ ݔ ≤
10.00. For this, we truncate the infinite series 
solution (36) to only four terms and get 
approximate solutions that we compare to the 
numerical ones.  

The approximate solution to the 
transcendental Eq. (7) up to the first four terms is 
then: 

ௌݔ ≈ ௌగ
(௫బାଶ)

ݔ − (ௌగ)య

ଷ(௫బାଶ)ర ݔ − (ௌగ)ఱ

(௫బାଶ)ళ ݔ9) −

ݔ(2 − (ௌగ)ళ

ଶହଶ(௫బାଶ)భబ ݔ225)
ଶ − ݔ108 +    ݔ(4

(37)  

 Tables 4 and 5 in Appendix C display the 
approximate solutions from Eq. (37) for even 
parity (S = 1, 3) and odd parity (S = 2, 4), the 
numerical solutions and their corresponding 
relative percentage errors for various values of x0 
from 1.00 to 10.00.  

Both tables indicate that our approximate 
infinite series solutions (37) are in agreement 
with the graphical and numerical findings. The 
relative errors are generally less than 1.00%, 
except for a few displayed in bold, where the 
relative error ranges between 1.00% and 1.50%. 
As a result, we can assert that our method is 
valid, for all the intermediate values of ݔ 
between 1.00 and 10.00 are within an acceptable 
relative error.  

It is worth mentioning that there was no 
constraint or condition on the index S in our 
approach that led to a formal and exact solution 
in the intermediate situation in the form of an 
infinite series. As a result, we believe that the 
method is appropriate for both small and large 
cases. 

 Table 6 in Appendix D displays the 
approximate solutions xapp using Eq. (37), the 
numerical solutions xnum, and the relative 
percentage errors ∆௫

௫
 for various values of x0 

between 0.00 and 1.00. It demonstrates that our 
solutions accord well with the graphical and 
numerical results. The relative errors are quite 
small, slightly less than 0.60%, and are 
comparable to those found in the first shallow 
well case. 

As a result, we can say that our method is 
accurate to within 0.60% relative error for all 
values of x0 between 0.00 and 1.00. 

Tables 7 and 8 in Appendix E display 
separately the approximate solutions for even 
parity (S = 1, 3) and odd parity (S = 2, 4), the 
numerical solutions, and their corresponding 
relative percentage errors for various values of x0 
from 10.00 to 100.00. Our approximate 
solutions, up to four terms in the infinite series 
solutions (36), are in accord with the graphical 
and numerical findings. The relative errors are 
generally less than 1%, as expected in both 
Tables, with the exception of a handful of values 
displayed in bold, where the relative error ranges 
between 1.00% and 1.50%. As a result, we can 
claim that our method is valid within a tolerable 
relative error for all values ݔ ≥ 10.00. 

4. Conclusion 
Transcendental equations are associated with 

many problems in physics and engineering. We 
have selected the problem of the finite square 
well in quantum mechanics due to the renewed 
interest by scientists and engineers after the 
recent advances in nanomaterials and electronic 
devices. The transcendental equation associated 
with this quantum mechanical problem is solved 
in the form of a fast-converging infinite series as 
shown in Eq. (36).  

Our findings reveal that our method provides 
a thorough knowledge of the bound energy 
levels' dependency on physical factors of a well, 
such as size and depth, i.e.: 

E = E(x) ≡ E(V, a) = ℏమ୶
మ

ଶ୫ୟమ  .  

By truncating the infinite series to a 
predetermined sequence, the process of 
approximating and controlling the accuracy of 
the findings has been made simpler. For all 
values of the dimensionless parameter x0, the 
truncated component of Eq. (36) up to only four 
terms is a good and valid approximation solution 
to the transcendental equation. The relative error 
associated with this approximate solution and the 
numerical one is very small, less than 1.00% for 
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most values of x0, with the exception of a few 
cases where it is under 1.50% which is 
considered acceptable. 

Finally, the relative error associated with the 
bound energy levels; ∆


= 2 ∆୶

୶
, calculated with 

the use of the approximate solution (37) is also 
very small, less than 2.00% for most values of x0 
with the exception of a few cases where it is 
slightly less than 3.00%. This is a satisfactory 
result in our judgment.  

We believe that the approach presented in this 
paper is a good alternative to other methods, 
such as the algebraic approximation scheme. It 
can be generalized and used to solve a similar 
class of transcendental equations.  
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Appendix A 
TABLE 1. The approximate roots xapp of the equation ቚcos ୶

ଶ
ቚ = ୶

୶బ
 , the numerical roots xnum, and the associated 

relative errors for small values of x0  between 0.10 and 1.00 
 

   x0          xapp             xnum
            % R.E   x0         xapp               xnum

          % R.E 
0.10   0.099874     0.099875     0.000037  0.60   0.575303     0.575344     0.006979 
0.15   0.149580     0.149581     0.000216  0.65   0.619024     0.619105     0.013019 
0.20   0.199010     0.199011     0.000159  0.70   0.661847     0.662002     0.023263 
0.25   0.248078     0.248079     0.000088  0.75   0.703732     0.704012     0.039741 
0.30   0.296704     0.296705     0.000101  0.80   0.744631     0.741190     0.464278 
0.35   0.344810     0.344811     0.000034  0.85   0.784491     0.785312     0.104426 
0.40   0.392327     0.392329     0.000399  0.90   0.823250     0.824584     0.161763 
0.45   0.439190     0.439193     0.000635  0.95   0.860825     0.862935     0.244509 
0.50   0.485341     0.485349     0.001602  1.00   0.897113     0.900367     0.361328 
0.55   0.530728     0.530747     0.003540  ......     --------     --------        -------- 

 
Appendix B 

       
  
   x0   xapp-even    xnum-even

*
             % R.E-even xapp-odd                  xnum-odd

*
             % R.E-odd  

 
10.00  2.607701  2.612880 0.198189 5.157054 5.191480 0.663118
 7.587645 7.674930 1.137263 9.837463 9.812590 0.253484 
 
40.00 2.991829 2.991860 0.001024 5.982704 5.982910 0.003442 

8.971661 8.972310 0.007228 11.95773 11.95910 0.011434 
14.93994 14.94230 0.015737 17.91734 17.92050 0.017632 
20.88893 20.89210 0.015131 23.85377 23.85480 0.004295 
26.81088 26.80550 0.020073 29.75928 29.73940 0.066868  
32.69802 32.64790 0.153526 35.62612 35.51380 0.316276  
38.54261 38.28660 0.668677   --------                   --------    --------  

 
70.00 3.054295 3.054300 0.000137 6.108412 6.108440 0.000453 

9.162169 9.162250 0.000879 12.21538 12.21560 0.001748 
15.26788 15.26820 0.002080 18.31947 18.32000 0.002857  
21.36998 21.37070 0.003331 24.41923 24.42000 0.003127   

TABLE 2. The approximate even roots xapp-even, 
numerical even roots xnum-even, and the associated 
relative errors % R.E for various values of  
0ݔ ≥ 10. 

TABLE 3. The approximate odd roots xapp-odd 
the numerical odd roots xnum-odd, and the 
associated relative errors % R.E for various 
of  0ݔ ≥ 10. 
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27.46704 27.46790 0.003129 30.51321 30.51380 0.001902 
33.55759 33.55760 0.000021 36.59997 42.67120 0.016100  
39.64019 39.63680 0.008575 42.67807 39.63680 0.008575  
45.71341 45.70110 0.026941 48.44848 48.72560 0.568723  
51.77578 51.74330 0.062785 54.44605 54.75240 0.559514 
57.82587 57.74990 0.131562 60.42296 60.73120 0.507541 
63.40295 63.68770 0.447093 66.37692 66.59940 0.334050 
69.34458 69.38120 0.052780   --------                     --------   -------- 

                     
100.00 3.079982 3.079980 0.000077 6.159903 6.159910 0.000111 

9.239700 9.239720 0.000212 12.31931 12.31940 0.000713 
15.39867 15.39880 0.000803 18.47773 18.47790 0.000914  
21.55641 21.55660 0.000862 24.63466 24.63490 0.000959  
27.71241 27.71270 0.001018 30.78961 30.79000 0.001253  
33.86619 33.86650 0.000912 36.94208 36.94230 0.000579   
40.01723 40.01730 0.000155 43.09158 43.09130 0.000658  
46.16506 46.46420 0.643803 49.11477 49.23590 0.246010   
52.30916 52.30620 0.005673 55.23678 55.37490 0.249423 
58.44905 58.44190 0.012248 61.35266 61.50690 0.250754 
64.40810 64.56960 0.250112 67.46175 67.62960 0.248185 
70.51353 70.68650 0.244697 73.56335 73.73980 0.239280 
76.30917 76.78870 0.624478 79.65679 79.83240 0.219968 
81.87445 82.86950 1.200737 85.74138 85.89800 0.182322 
87.84142 88.91520 1.207641 91.81646 91.91590 0.108185    
93.78742 94.88990 1.161843 97.88132 97.80880 0.074151 

 
Appendix C 

                   
   
  x0     xapp-even   xnum-even

*
              % R.E-even     xapp-odd xnum-odd

*
                % R.E-odd  

1.00  0.900818 0.900367 0.050197    .............      .............     .............     
2.00 1.478516 1.478170 0.023438    .............      .............     .............     
3.00 1.829821 1.829710 0.006092    .............      .............     .............     
4.00 2.059766 2.059730 0.001761 3.822111 3.790990 0.820929 
5.00 2.221032 2.221020 0.000544 4.259376 4.250690 0.204346 
6.00 2.340245 2.340240 0.000255 4.560597 4.557730 0.062919 
7.00 2.431953 2.431950 0.000161 4.780971     4.779890     0.022627     

6.867949 6.782760 1.255976  .............     .............     .............     
8.00 2.504707 2.504710 0.000112  4.949600 4.949150     0.009092     

7.218779 7.190610 0.391750  .............     .............     .............     
9.00 2.563847 2.563850 0.000100  5.083088 5.082890         0.003896         

7.478727 7.467540 0.149815  .............     .............     .............      
10.00 2.612880 2.612890 0.000375 5.191574 5.191480 0.001816 

7.679898 7.674930 0.064731 9.956769 9.812590 1.469336 
 
 
 
 

TABLE 4. The approximate roots xapp-odd, 
the associated numerical roots xnum-odd

*, 
and the relative errors % R.E for 
various values of   1.00 ≤ ݔ ≤ 10.00 

TABLE 5. The approximate roots xapp-even, 
the associated numerical roots xnum-

even
*, and the relative errors % R.E for 

various values of   1.00 ≤ ݔ ≤ 10.00 
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Appendix D 
TABLE 6. The approximate first roots xapp, the associated numerical roots xnum

*, and the relative errors % R.E 
for various values of   0 ≤ ݔ ≤ 1.00. 

 
                x0          xapp              xnum

 *         % R.E   x0          xapp            xnum
 *          % R.E 

0.00   0.000000     0.000000     0.000000  0.55   0.530636     0.530747     0.020802 
0.10   0.099897     0.099875     0.022674  0.60   0.575297     0.575344     0.008065 
0.15   0.149575     0.149581     0.003440  0.65   0.619129     0.619105     0.004001 
0.20   0.198952     0.199011     0.029166  0.70   0.662100     0.662002     0.014837 
0.25   0. 247961    0.248079     0.047486  0.75   0.704183     0.704012     0.024301 
0.30   0.296534     0.296705     0.057306  0.80   0.745359     0.741190     0.562504 
0.35   0.344608     0.344811     0.058729  0.85   0.785615     0.785312     0.038675 
0.40   0.392116     0.392329     0.054182  0.90   0.824945     0.824584     0.043812 
0.45   0.438995     0.439193     0.044945  0.95   0.863345     0.862935     0.047585 
0.50   0.485186     0.485349     0.033403  1.00   0.900818     0.900367     0.050197 

 
Appendix E 
TABLE 7. The approximate even roots xapp-even,   TABLE 8. The approximate odd roots xapp-odd, 
the numerical even roots xnum-even, and the associated   the numerical odd roots xnum-odd, and the 
associated 
relative errors % R.E for various values of  ݔ ≥ 10.00 errors % R.E for various values of  ݔ ≥ 10.00 

   
  x0   xapp-even   xnum-even

*
          % R.E-even   xapp-odd                  xnum-odd

*
              % R.E-odd 

 
10.00 2.612880 2.612880 0.064731 5.191574 5.191480 0.001816 

7.679898 7.674930 1.137263 9.956769 9.812590 1.469335 
 
40.00 2.991859 2.991860 0.000005 5.982912 5.982910 0.000047 

8.972312 8.972310 0.000029 11.95912 11.95910 0.000236  
14.94228 14.94230 0.000069 17.92051 17.92050 0.000097  
20.89223 20.89210 0.000639 23.85544 23.85480 0.002705  
26.80760 26.80550 0.007836 29.74540 29.73940 0.020197  
32.66461 32.64790 0.051183 35.55973 35.51380 0.129333  
38.42374 38.28660 0.358205    --------      --------       -------- 
 

70.00 3.054299 3.054300 0.000024 6.108436 6.108440 0.000060 
9.162246 9.162250 0.000041 12.21555 12.21560 0.000339  
15.26819 15.26820 0.000039 18.31996 18.32000 0.000210  
21.37065 21.37070 0.000217 24.42004 24.42000 0.000171   
27.46787 27.46790 0.000098 30.51385 30.51380 0.000196 
33.55767 33.55760 0.000231 36.59897 36.59880 0.000418  
39.63725 39.63680 0.001148 42.67208 39.63680 0.002077   
45.70286 45.70110 0.003866 48.72892 48.72560 0.006822   
51.74947 51.74330 0.011933 54.76360 54.75240 0.020469 
57.77026 57.74990 0.035263 60.76821 60.73120 0.060953 
63.75604 63.68770 0.107318 66.73211 66.59940 0.199277 
69.69453 69.38120 0.451619   --------                     --------    -------- 

 
100.00 3.079983 3.079980 0.000105 6.159909 6.159910 0.000014 

9.239719 9.239720 0.000004 12.31935 12.31940 0.000357 
15.39875 15.39880 0.000273 18.47786 18.47790 0.000201  
21.55660 21.55660 0.000026 24.63491 24.63490 0.000074 
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27.71272 27.71270 0.000102 30.78995 30.79000 0.000133  
33.86652 33.86650 0.000079 36.94234 36.94230 0.000116   
40.01731 40.01730 0.000025 43.09132 43.09130 0.000051  
46.16426 46.46420 0.645524 49.23600 49.23590 0.000208   
52.30640 52.30620 0.000385 55.37530 55.37490 0.000726 
58.44253 58.44190 0.001078 61.50789 61.50690 0.001612 
64.57117 64.56960 0.002434 67.63213 67.62960 0.003741 
70.69050 70.68650 0.005659 73.74598 73.73980 0.008386 
76.30917 76.78870 0.624478 79.84693 79.83240 0.018205 
82.89162 82.86950 0.026696 85.93186 85.89800 0.039424 
88.96715 88.91520 0.058433 91.99694 91.91590 0.088167   
95.02059 94.88990 0.137737 98.03745 97.80880 0.233775 

All numerical values xnum in all the tables are provided by dCode equation solver tool. 
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