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Abstract: In our earlier studies, samarium-modified bismuth layer-structured ferroelectrics 
(BLSF), namely SmxBi3-x TiNbO9 (SBTN); (x=0, 0.2, 0.4, 0.6. 0.8, and 1.0), prepared by 
solid-state reaction method, have shown broad dielectric relaxations. Among all the 
compositions, Bi2.6Sm0.4TiNbO9 (BST-0.4) has shown a lower tolerance factor, high 
remnant polarization (Pr) value, and low stretching factor. In addition, the compound has 
shown interesting broad dielectric relaxation and non-Debye nature. The specific reasons 
for the broad relaxation remain unclear. To gain more insights, we synthesized multi rare 
earth ion substituted compounds, namely, Bi2.6La0.2Sm0.2TiNbO9 (sample A) and 
Bi2.6La0.2Gd0.2TiNbO9 (sample B), using the conventional solid-state reaction method. A 
single impedance spectroscopic approach alone may not be sufficient to explain the 
asymmetric or non-Debye behavior, therefore Lorentzian, Gaussian, and Voigt fitting were 
adopted in the present investigation. From the analysis, the Voigt profile (Vf and Vʹf) is 
found to be a valuable alternative tool to understand the broad impedance non-Debye 
relaxations. Finally, results were corroborated by dc-conductivity data. 

Keywords: BLSF, Modulus spectroscopy, Relaxation, Defect-mechanism, Gaussian, 
Lorentz and Voigt fitting, Dc conductivity. 

 
 

Introduction 
Advanced spectroscopic relaxation studies 

require the intensity and magnitude of the 
response function. The peaks observed in the 
spectrum provide insights into the different 
relaxation species present within the 
composition. A recent report states that the 
Gaussian–Lorentzian sum/product functions play 
a role in the analysis of x-ray photoelectron 
spectroscopy [1-3]. In addition, the Voigt 
function and its derived parameters have shown 
accurate results in mathematical expansion 
relations [4]. Our recent report on the Voigt 
analysis on impedance spectroscopic peaks gives 

information about the interaction or competitive 
interaction of both long-range and short-range 
ordering [5]. It is a known fact that the simple 
broad impedance spectroscopic peak explains 
only the fundamental description of single or 
multiple ion relaxation (non-Debye) phenomena. 
However, to explore the complete picture of 
relaxation, an advanced mathematical approach 
is necessary. It has been reported in the literature 
that the broadening of the spectroscopic peaks 
can be described either by Gaussian or 
Lorentzian fitting [6, 7].  
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It is pointed out that more or less bell-shaped 
frequency response curves (shown in Fig. 1) 
theoretically can be fitted with Lorentzian L(x) 
and Gaussian G(x) curves. If the experimental 
curves fit with the Voigt profile, then one can 
propose a criterion based on the peak value and 
FWHM. The same criterion is applicable to 
advanced spectroscopic data. Moreover, the 
FWHM of the Voigt profile along with its 
parameters has a low signal-to-noise ratio [8, 9]. 

The Voigt function is considered particularly 
significant for representing the symmetric 
features of any respond peak profile due to its 
theoretical importance and practical suitability 
for fitting into peaks of experimental data [5-7, 
10]. It is a known fact that the impedance 
spectroscopic plots show relaxation peaks in the 
radio frequency region, corresponding to the 
different relaxing species that are present in the 
composition. Generally, the dielectric relaxation 
peaks give information about the competitive 
interaction of both long-range and short-range 
ordering that are present in the sample. The same 
information can be extracted from the specified 
peak shape and its width [11]. Spectroscopic 
peaks are generally described either by Gaussian 
or Lorentzian fitting [6, 12]. The former explains 
the single relaxation, and the latter describes 
multiple relaxation phenomena. In addition, it 
provides information about the instrumental 
limitations.  

The Voigt function (V(x)) is defined as the 
convolution between Lorentzian (L(x)) and 
Gaussian function (G(x)), expressed as 
(V(x) = G(x) ⨁ L(x))            (1)  

The Voigt function can interpret the data in 
twofold: (i) graphical point of view, (ii) 
numerical point of view. Ida et al [7] pointed out 
that the Gaussian width and the parameter (a) 
give an asymptotic explanation for dielectric 
relaxation data. Here, the parameter (a) is 
defined as the ratio of Lorentzian and Gaussian 
full width at half maxima (FWHM). Many 
researchers adopted Voigt fitting to resolve the 
overlapping line shapes of different modes of 
Raman spectra [13-15].  

To explore the distinctive characteristics and 
gain deeper insights into non-Debye type, 
multivalent rare-earth ion-doped materials, 
namely, Bi2.6La0.2Sm0.2TiNbO9 (sample A) and 
Bi2.6La0.2Gd0.2TiNbO9 (sample B) were prepared. 
In addition, intergrowth of A and B (sample C) 

and solid-solution of A and B (sample D) were 
synthesized. This investigation focuses on 
studying the true line intensity and shape of 
spectroscopic data, considering instrumental 
distortion, by means of Lorentzian and Gaussian 
functions. Combined analyses of this nature, 
especially in the context of BLSF, are limited in 
the existing literature.  

In the present study, the real and imaginary 
parts of the modulus (complimentary to 
dielectric data) are calculated by using the 
following equations:  

ᇱܯ = ఌᇲ

ቀఌᇲమାఌᇲᇲమቁ
             (1) 

ᇱᇱܯ = ఌᇲᇲ

ቀఌᇲమାఌᇲᇲమቁ
            (2)  

Where ߝᇱ ܽ݊݀ ߳" represent real and imaginary 
part of permittivity, respectively. The complex 
modulus response function (M*) can be 
described as the combination of both real and 
imaginary parts of the modulus, i.e., M* = M’+ 
iM” = jCo Z*. Here, Z* represents the complex 
impedance function. The obtained imaginary 
part of modulus data (M”) is plotted against 
frequency. The data is fitted with Gaussian, 
Lorentzian, and the Voigt functions for all the 
samples. Finally, the results are corroborated by 
the ac-conductivity data.  

Experimental Methods 
Bi2.6Sm0.4TiNbO9 (BST-0.4), 

Bi2.6Sm0.2La0.2TiNbO9 (BSLT, sample A), 
Bi2.6Gd0.2La0.2TiNbO9 (BGLT, sample B), single 
phase ceramics were prepared by the solid-state 
route. In addition, intergrowth (x BSLT - (1-x) 
BGLT, where x = 0.49, sample C) and solid 
solution (BSLT – BGLT, sample D) ceramics 
were prepared. Detailed synthesis and the lattice 
parameters were described elsewhere [11, 16]. 
The impedance measurements were made by 
Hewlett-Packard (HP4192A) impedance 
analyzer. 

Results and Discussions 
The Lorentz and Voigt equations are given in 

the following expressions:  

ܻ = ܻ + ( 

௪×ටഏ
మ

) × ݔ݁ ቀିଶ((௫ି௫)
ௐ

ቁ
ଶ
  

(Gaussian) (3)  
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ܻ = ܻ + (2 × 
గ

) × ቀ ௪
(ସ×(௫ି௫)మାௐమ)ቁ    

(Lorentz) (4)    

ܻ = ܻ + ቀ×ଶ×୪୬(ଶ)×௪ಽ 
గభ.ఱ×௪ಸమ ቁ × ∫

ୣ୶୮൫ି௧మ൯

൬ඥ୪୬(ଶ)×౭ై
౭ృ

൰
మ +

ቀඥ4 × ln(2) × (௫ି௫)
௪ಸି௧

 ቁ
ଶ

                 (Voigt) (5)  

Here, Y0 is the offset value, A is the area 
under the curve, W is the width of the curve, and 
Xc is the center of the peak position. The 
Gaussian and Lorentzian parameters, wG and wL, 
are related to the FWHM of Gaussian (Ѓୋ), 
Lorentzian (Ѓ), and [17]. The peak area, width, 
and peak position were also obtained by fitting 
the Voigt function, using Eq. (5). More 
information on the analysis is provided in our 
earlier paper [5].  

The Voigt profile is defined as the 
convolution of the Gaussian and Lorentzian 
functions with FWHM values of Γୋ and Γ, and 
can be expressed as 

௩݂(ݔ: Γୋ, Γ) =

ቀ ଶ
ృ 

ቁ ቀ୪୬ ଶ


ቁ
ଵ/ଶ

K ቂ2 (ln2)ଵ/ଶ. ୶
ృ

, (ln2)ଵ/ଶ ృ
ై

ቃ 
(6) 

Where the Voigt function K(x,y) defined as 
௬
గ ∫ ݔ݁ ቂ (ି௧)మ

௬మା(௫ି௧)మቃஶ
ିஶ  .ݐ݀

The variable shape of the Voigt function 
K(x,y) is specified by a single parameter (y) and 
the defined parameter ߩ ≡ ై

ైାృ
. It should be 

remembered that the pre-requisite condition is 
Γୋ + Γ = 1. 

 
FIG. 1. Gaussian, Lorentzian, and Voigt fittings for (a) BST-0.4, (b) sample A, (c) sample B, (d) sample C, and 

(e) sample D. 

Fig. 1 shows the variation of the imaginary 
part of the modulus with the frequency obtained 
at 450oC for all the samples, namely 
Bi2.6Sm0.4TiNbO9 (BST-0.4), sample A, sample 
B, sample C, and sample D. The data is fitted up 
to the specified region, namely in the lower 
frequency range. The solid line represents the 
experimental data. The dotted and scattered lines 
represent theoretical data of Voigt, Lorentzian, 
and Gaussian fittings. The parameter values 
obtained from the fitting data (Fig. 1) are 
summarized in Table 1. Based on Fig.1, Voigt 

fitting is found to be the best fitting, compared to 
Lorentzian and Gaussian fittings. From the plot, 
a tentative conclusion is drawn that frequency 
determines the discrimination of the continuous 
(broad) peak and the augment. These types of 
curves explain the experimental data which are 
fitted by the Voigt profile. Based on the above 
consideration, Poppe and Wifers [18] defined the 
Voigt profile as: 

௩݂(ݔ: Γୋ, Γ) = ௩݂(ݔ: 1 − ,ߩ  (ߩ

௩݂(ݔ: Γୋ, Γ) = ቂ ଵ
ైାృ

ቃ ߩ ቂ ୶
ైାృ

;  ቃ          (7)ߩ

100 1000 10000 100000
0.0

8.0x10-4

1.6x10-3

2.4x10-3

 experimental data
 Lorentz Fit
 Gauss Fit
 Voigt FitM''

FREQUENCY(Hz)

Sample-De

100 1000 10000 100000
0.0

2.0x10-2

4.0x10-2

6.0x10-2

 experimental data
 Lorentz Fit
 Gauss Fit
 Voigt Fit

FREQUENCY(Hz)

d

M''

Sample-C

100 1000 10000 100000
0.0

8.0x10-4

1.6x10-3

2.4x10-3

FREQUENCY(Hz)

 experimental data
 Lorentz Fit
 Gauss Fit
 Voigt Fit

M''

Sample-Bc

100 1000 10000 100000
0.0

1.0x10-3

2.0x10-3

3.0x10-3

M''

FREQUENCY(Hz)

 experimental data
 Lorentz Fit
 Gauss Fit
 Voigt Fit

Sample-Ab

100 1000 10000 100000
0.0

8.0x10-4

1.6x10-3

2.4x10-3

FREQUENCY(Hz)

M''
 Experimental data
 Lorentz Fit
 Gauss Fit
 Voigt Fit

BST-0.4a



Article  Abdul Basheer et al. 

 582

TABLE 1. The parameters constructed based on the Gaussian, Lorentzian, and Voigt functions. 
Temperature 450OC Parameters  YO XC W A REDUCE  χ2 Adj.R-Square Samples Function 

 
BST-0.4 

 

Lorentz -0.09678 4397.09016 59508.27762 9276.64193 2.12266E-8 0.96054 
Gaussian -0.08773 5100.70902 46144.04324 5221.63805 3.58898E-8 0.93921 

Voigt -0.07016 4375.78149 WG WL 3244.28427 2.34264E-8 0.95847 41963.90577 2.5441E-13 

Sample A 

Lorentz -0.06253 42007.98671 435655.75073 44412.16575 1.02546E-9 0.99836 
Gaussian -0.065 45234.78241 339415.51961 28673.45483 4.02225E-9 0.99368 

Voigt -0.0258 45208.37537 WG WL 7656.98659 4.70385E-9 0.99261 254893.22126 1.2893E-11 

Sample B 

Lorentz 0.00261 -171.74573 535.9971 -2.37476 1.11394E-9 0.9949 

Gaussian 0.00254 -6158.83545 2702.20141 

-200735.366 
200735.36692 
200735.366 

200735.36692 

1.01185E-9 0.99537 

Voigt -0.04344 1228.44262 WG WL 553.90439 1.36733E-8 0.93695 11288.10444 6.19819E-13 

Sample C 

Lorentz 0.05286 151.53198 1612.21115 -130.49574 1.11756E-6 0.99729 
Gaussian 0.05045 -808.81791 2426.46534 -216.24611 1.27828E-6 0.99675 

Voigt -0.97014 2978.92071 WG WL 22331.03341 3.91826E-6 0.98949 20526.1362 9.10405E-14 

Sample D 

Lorentz -0.07326 42677.15288 501206.83254 59420.12424 3.80025E-9 0.99287 
Gaussian 0.07119 47368.16242 386212.07628 35565.81212 8.37619E-9 0.98495 

Voigt -0.02973 47327.10101 WG WL 10113.07777 9.28601E-9 0.98332 
   296750.79938 1.11673E-11    
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Fig. 2 shows the variation of the Voigt profile 
as a function of arbitrary values (x). Since the 
Voigt function is the combination of both 
Gaussian and Lorentzian functions, the 
following equation is evident. 

௩݂ = ߩ × Ѓୋ + ߩ × Ѓ            (6) 

From Eq. (6), the Voigt function profile can 
be approximated to the final experimental value, 
and therefore the following equation is more 

suitable for application. Based on the arbitrary 
values of Ѓୋ, Ѓ, the Voigt profile function (  (݂ࢂ
is derived and finally given in the following 
equation [18]. For different ρ values (ρ =
0.3,0.7 & 1.0. ), the variation of the Voigt 
function with different arbitrary ρ values can be 
presented the following equation: 

;࢞)ࢂࢌ  Ѓୋ, Ѓ) = ቂ 
ЃృାЃై

ቃ × ࣋ × ቂ ࢞
ЃృାЃై

ቃ          (7)  

  
FIG. 2. Voigt profile as a function of augment and different ߩ (values Ѓୋ and Ѓ are taken from Table 1). 

By using the above equation ݂ࢂ values were 
calculated for all samples, and the variation of ݂ࢂ 
with x is shown in Fig. 3. From the plot, it is 
observed that ݂ࢂ increases with the arbitrary 
parameter (ρ). The slope values were also found 
to increase with arbitrary values. The theoretical 
Voigt profile can be visualized by giving 
different ߩ values and keeping the condition 
Ѓୋ + Ѓ = 1. The theoretical Voigt profile is 
shown in Fig. 2(a). The Voigt profile calculated 
for other samples for different ρ values is shown 
in Fig. 2(b)-2(f). 

The variation of dc-conductivity with inverse 
temperature is shown in Fig. 3. The activation 
energies calculated from the slopes of the plot 
are depicted in Fig. 3. It has been reported in the 
literature that the oxygen vacancies were created 
due to the loss of bismuth ions at higher 
temperatures. These vacancies accumulated at 
the grain boundaries act as an opposite 
polarizing process. Hence, they may result in 
broad peaks near 450°C in all the samples [11, 
16]. Moreover, the multiple rare-earth ionic 

incorporation at the bismuth site creates more 
vacancies on complex defect dipoles owing to 
the electron hopping process in singly or doubly 
ionized vacancies (Kroger-Vink reaction). The 
proposed defect formula for this compound is 
viewed as 

ܵ݉.ସ݅ܤଶ.ܾܱܶ݅ܰଽ =
.ଶܱଷ݅ܤ 2ൣܵ݉.ସ݅ܤ.[ ]ଵ/ଶܶ݅ଵ/ଶܾܰଵ/ଶܱଷ൧ 
(BST-0.4)            (8) 

Sm.ଶ La.ଶBiଶ.TiNbOଽ =
BiଶOଷ. 2 Smబ.మ

మ
Laబ.మ

మ
Biబ.ల

మ
 [ ]ଵ/ଶTiଵ/ଶNbଵ/ଶOଷ൨ 

(sample A)            (9) 

ଶ.ܾܱܶ݅ܰଽ݅ܤ .ଶܽܮ.ଶ݀ܩ =
.ଶܱଷ݅ܤ 2 ݀ܩబ.మ

మ
బ.మܽܮ

మ
బ.ల݅ܤ

మ
 [ ]ଵ/ଶܶ݅ଵ/ଶܾܰଵ/ଶܱଷ൨

(sample B)          (10) 

ܵ݉.ଶ ܽܮ.ଶ݅ܤଶ.ܾܱܶ݅ܰଽ +
ଶ.ܾܱܶ݅ܰଽ݅ܤ .ଶܽܮ.ଶ݀ܩ =
ଶܱଷ݅ܤ2 . 2 ܵ݉బ.మ

మ
బ.మ݀ܩ

మ
బ.రܽܮ

మ
భ.మ݅ܤ

మ
[ ].ସ/ଶܾܱܶ݅ܰ൨

(samples C and D)         (11) 
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Based on the defect formula mentioned 
above, fewer defects were seen in samples C and 
D compared to samples A and B. The results are 

consistent with the activation energy values 
depicted in Fig. 3. 

 
FIG. 3. The variation of ߪௗ with 1000/T (K). 

Many researchers have pointed out that 
Gaussian width is more important when 
compared to Lorentzian. However, the ratio 
between Gaussian and Lorentzian is <1. Several 
asymptotic expressions are adapted to analyze 
the data. In this connection, the Voigt profile 
seems to be more valid. In the Voigt profile, the 
parameters ‘a’ and ‘b’ are defined as 

ܽ = ௐಽ
ௐಸ

 and = ௫
ௐಸ

 , where ܹ ܽ݊݀ ீܹ  are 

related to Ѓ and Ѓୋ. 

From the above discussion, one can conclude 
that Voigt parameters a and b can be expressed 
as 
భ/మ()


= Ѓ

Ѓై
= √ln 2 Ѓ

Ѓృ
          (12) 

And Ѓ ≃ Ѓୋ ∀ a ≪ 1 Ѓ ≃ Ѓ ∀ a ≫ 1 

Based on the above equation, a, b, ܾଵ/ଶ(ܽ) 
values are calculated for all the samples shown 
in Fig. 4. 

 
FIG. 4. The variation of a and b values for all the samples. 

The parameters ‘a’ and ‘b’ obtained from the 
fitting can be helpful in understanding the 
relaxation phenomenon. Parameter ‘a’ describes 
the Voigt profile and explanations the relaxation 
phenomenon. The relaxation is attributed to the 

presence of complex defect dipoles, where the 
defects (oxygen vacancies) combine with 
electrons to form complex dipoles. However, 
further studies are needed to speculate on the 
complete Voigt profile and complex defects. 
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Conclusion 
The single impedance spectroscopic approach 

alone may not be sufficient to explain the 
asymmetric or non-Debye behavior. Therefore, a 
complete understanding of the relaxation 
requires an advanced mathematical approach. By 
adopting the complete Voigt profile, several 
conclusions can be drawn:  

(i) Discrimination of the continuous (broad) peak 
and the function representing the augment 
function.  

(ii) Parameters ‘a’ and ‘b’ obtained from the 
fitting may be helpful in understanding the 
relaxation phenomenon.  

(iii) Parameter ‘a’ describes the Voigt profile and 
explains the relaxation phenomenon.  

(iv) The relaxation phenomenon is attributed to 
the presence of complex defect dipoles, 
which is corroborated by the present study.  
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