
 
Volume 18, Number 2, 2025. pp. 225-240 

Corresponding Author:  Chandra Bahadur Khadka                        Email: chandrabahadur9988@gmail.com 

Jordan Journal of Physics 
 
ARTICLE 
  
Geometrical Interpretation of Lorentz Transformation Equations in 

Two and Three Dimensions of Space 
 
 

Chandra Bahadur Khadka 
 

Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu-
44600, Nepal. 

 
Doi: https://doi.org/10.47011/18.2.11 
Received on: 15/01/2024;        Accepted on: 20/02/2024 
 
Abstract: This study introduces a new method to interpret the mathematical formulation of 
the Lorentz transformation by extending relative motion between inertial frames to two- 
and three-dimensional space. Here, the space-time coordinate transformations along X-, Y-, 
and Z-directions are formulated by developing the relation between Cartesian and polar 
coordinates. Based on this modified theory, the correct transformation equations along X-, 
Y-, and Z-directions are formulated as: ݔᇱ = ቀ1ݔ − ݐݒ ඥݔଶ + ଶݕ + ⁄ଶݖ ቁ ඥ1 − ଶݒ ܿଶ⁄ൗ , ᇱݕ =

ቀ1ݕ − ݐݒ ඥݔଶ + ଶݕ + ⁄ଶݖ ቁ ඥ1 − ଶݒ ܿଶ⁄ൗ   and ݖᇱ = ൫1ݖ − ݐݒ ඥݔଶ + ଶݕ + ⁄ଶݖ ൯ ඥ1 − ଶݒ ܿଶ⁄ൗ , 
where (ݔ, ,ݕ ,ݖ ᇱݔ) and (ݐ , ,ᇱݕ ᇱݖ ,  ᇱ) denote the space-time coordinates measured in theݐ
stationary and moving frames of reference, respectively. Using these modified 
transformation equations, the invariance of space-time interval and relativity of 
simultaneity have been studied extensively. In this charming topic of relativistic mechanics, 
our specific purpose is not to enter into the merits of the existing one-dimensional Lorentz 
transformation, but rather to propose a brief and carefully reasoned mathematical derivation 
demonstrating how the Lorentz transformation can be extended to two- or three-
dimensional space. 

Keywords: Frame of reference, Lorentz transformation, Relativistic mechanics, Special 
relativity. 

 
 

1. Introduction 
Based on the relativistic concept of space-

time, Lorentz [1] introduced the transformation 
equations under which the velocity of light in a 
vacuum remains constant and independent of the 
relative motion of the source and observer. A 
form of the Lorentz transformation, very close to 
its modern version, was recorded in 1905 by 
Poincaré [2]. Einstein derived the correct 
transformation formula of coordinates based on 
the postulate of constant speed of light [3, 4]. 
These are given as: 

ᇱݔ = ௫ି௩௧
ඥଵି௩మ ௖మ⁄

ᇱݕ , = ᇱݖ ,ݕ = z 

ᇱݐ  =
௧ିೣೡ

೎మ

ඥଵି௩మ ௖మ⁄
             (1) 

Derivations of the Lorentz transformation, 
including the above version of coordinate 
transformation, namely Eq. (1), are presented in 
several excellent textbooks [5, 6], including the 
famous “The Feynman Lectures on Physics” [7]. 
For many years, researchers have focused on the 
theoretical studies of the Lorentz transformation 
to propagate the relativistic mechanics in several 
different directions. In Ref. [8], the authors 
derived the Lorentz transformation equations by 
changing the synchronization of clocks in an 
inertial coordinate system. Such space-time 
coordinate transformation equations were further 
extended to incorporate the one-way speed of 
light in free space by Selleri [9, 10]. Lee et al. 
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[11] presented a derivation of the Lorentz 
transformation by invoking the principle of 
relativity alone, without resorting to an a priori 
assumption of the existence of a universal 
limiting velocity. Levy [12] derived the Lorentz 
transformation from a simple thought experiment 
by using the vector formula from elementary 
geometry. In Ref. [13], a mathematical analysis 
describing the concepts of the time dilation 
phenomenon in the realm of relativistic 
mechanics was presented. In Ref. [14], the 
authors explained the Lorentz transformation in 
terms of changes in the wave characteristics of 
matter as it transitions between inertial frames. 
Moreover, Pagano et al. [15] discussed different 
roles of the Lorentz transformation in classical 
wave propagation theories and relativistic 
mechanics. Also, there are numerous papers 
showing the paradoxes of special relativity 
developed by some contemporary independent 
scholars [16]. In Ref. [17], new mathematical 
formalisms of the special theory of relativity 
were developed. Research was also conducted on 
the practical aspects of relativistic mechanics 
[18]. In articles [19, 20], it has been 
demonstrated that the length, breadth, and height 
of a cuboid appear to be shortened to the 
observer when there is simultaneous relative 
motion between the cuboid and the observer in 
the three dimensions of space. The author in the 
works [21, 22] introduces the concept of 
multidimensional temporal coordinates in the 
theory of relativity. Additionally, the author in 
work [23] demonstrates the variation of mass in 
a gravitational field using the equation ܧ = ݉ܿଶ. 
In work [24], the matrix representation of 
Lorentz transformation equations between 
inertial frames of reference moving in three-
dimensional space has been developed. The 
article [25] provides a reformulation of the main 
equations of linear momentum, force, and kinetic 
energy in the context of special relativity. 
Reference [26] contributes significantly to 
special relativity by formulating a three-
dimensional form of the Lorentz transformation. 
There are many publications on special relativity 
with important theoretical results, but all such 
publications are connected with Lorentz 
transformation equations derived from one-
dimensional motion between inertial frames. 
Lorentz transformation equations extended to 
accommodate motion in all three spatial 
dimensions have yet to be thoroughly 
investigated. 

This paper addresses that gap by exploring 
new space-time concepts in relativistic 
mechanics through the introduction of relative 
motion between inertial frames in two- and 
three-dimensional space. The modified Lorentz 
transformation equations along the 

 X-, Y-, and Z-directions, replacing those in 
Eq. (1), are given by: 

′ݔ =
௫ቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

ඥଵି௩మ ௖మ⁄
′ݕ   , =

௬ቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

ඥଵି௩మ ௖మ⁄
,    

′ݖ =
௭ቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

ඥଵି௩మ ௖మ⁄
            (2) 

The time transformation equation is given by: 

′ݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ඥଵି௩మ ௖మ⁄
            (3) 

where ݔ′, ,′ݕ ,′ݖ  denote space-time coordinates ′ݐ
measured in the moving frame, and ݔ, ,ݕ ,ݖ  ݐ
denote space-time coordinates measured in the 
initial frame. 

With the above motivation, the remainder of 
the paper is organized as follows. Section 2 
outlines the complete mathematical derivation of 
space-time coordinate transformations between 
two inertial frames moving with uniform 
velocity in the two-dimensional XY-plane. 
Section 3.1 formulates the Lorentz 
transformation equations in terms of radius 
vectors ݀ and ݀ᇱ  in three − dimensinal space, 
while Section 3.2 presents the relationship 
between polar and Cartesian coordinates for both 
the stationary and moving frames. Section 3.3 
derives the Lorentz transformation equations 
along the X-, Y-, and Z- axes in three-
dimensional space. Section 3.4 verifies the 
invariance of the space-time interval, expressed 
by the equation ݔଶ + ଶݕ + ଶݖ − ܿଶݐଶ = ᇱଶݔ +
ᇱଶݕ + ᇱଶݖ − ܿଶݐᇱଶ . Section 3.5 presents the 
analysis of the relativity of simultaneity. Finally, 
Section 4 delineates the concluding remarks on 
the present study.  

2. Two-Dimensional Transformation 
Equations 

2.1 Geometrical Calculations 

Let us consider two inertial reference frames, 
S and Sᇱ. The reference frame Sᇱ moves with a 
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constant velocity ݒ relative to S in the two-
dimensional XY-plane, as shown in Fig. 1. At 
ݐ = ᇱݐ = 0, when the two frames are 
superimposed, a photon of light leaves the origin 
of both frames and travels with velocity ܿ. When 

the photon reaches a point P, let its space-time 
coordinates as measured in frames S and Sᇱ be 
,ݔ) ,ݕ ݖ = 0, ,ᇱݔ) and (ݐ ,ᇱݕ ᇱݖ = 0,  ,(ᇱݐ
respectively. 

  
FIG. 1. Motion between two inertial frames in two-dimensional space. 

The time taken by the photon to reach P from 
the observer O is: 

ݐ = ை௉
௖

= ௥
௖
  

or 

ݎ  =   (4)                      ݐܿ
Similarly, the time taken by the photon to 

reach P from the observer Oᇱ is:  

ᇱݐ = ୓ᇲ௉
௖

= ௥ᇲ

௖
  

or 

ᇱݎ  =  ᇱ             (5)ݐ ܿ

Draw PMᇱ and PM perpendicular to the Xᇱ- 
and X-axis, respectively. From Fig. 1, in the 
triangles OPM and OᇱPMᇱ: 
(I) Angle OPM = Angle OᇱPMᇱ (Same angle) 
(II) Angle OMP = Angle OᇱMᇱP (Right angle) 
(III) Angle POM = Angle POᇱMᇱ (Remaining 

angle)  

Therefore, angle POM = angle POᇱMᇱ= ϕ. 

In the right-angled triangle OPM: 

sinϕ = ௉ெ
௉ை

= ௬
௥
  

or 

ݕ  =  sinϕ             (6)ݎ

From Eqs. (4) and (6) we get: 
ݕ =  sinϕ             (7)ݐܿ

and cosϕ = ெை
௉ை

= ௫
௥
  

or 

ݔ  =  cosϕ            (8)ݎ

From Eqs. (4) and (8) we get: 
ݔ =  cosϕ             (9)ݐܿ

also, ܱܲଶ = ଶܯܱ +   ଶܲܯ
or 

ଶݎ  = ଶݔ +   ଶݕ
or 

ݎ = ඥݔଶ +  ଶ                 (10)ݕ

which is the radius vector in the S frame of 
reference.  

Similarly, in the right-angled triangle OᇱPMᇱ, 

sinϕ = ௉୑ᇲ

௉ைᇲ = ௬ᇲ

௥ᇲ   



Article  Chandra Khadka 

 228

or 

ᇱݕ  = rᇱsinϕ           (11) 

From Eqs (5) and (11) we get: 
yᇱ = ܿtᇱsinϕ           (12) 

and cosϕ = ୑ᇲ୓ᇲ

௉୓ᇲ = ௫ᇲ

௥ᇲ  

or 

ᇱݔ  = rᇱcosϕ                 (13) 

From Eqs. (5) and (13) we get: 
ᇱݔ = ܿtᇱcosϕ           (14) 

also, Oᇱܲଶ = OᇱMᇱଶ + Mᇱܲଶ  
or 

  rᇱଶ = ᇱଶݔ +   ᇱଶݕ
Or 

 rᇱ = ටݔᇱଶ +  ᇱଶ          (15)ݕ

which is the radius vector in the Sᇱ frame of 
reference. 

2.2 Relativistic Transformation Equations 

The following relation can be easily written 
based on Fig. 1: 
Oᇱܲ = ܱܲ − ܱOᇱ  
or 

ᇱݎ  = ݎ −  ݐݒ

This is the Galilean transformation equation 
in terms of radius vector from frame S to Sᇱ, 
since there is no Lorentz factor (α). Therefore, 
the above transformation equation on relativistic 
mechanics is given by: 

ᇱݎ = ݎ)ߙ −  (16)           (ݐݒ

Multiplying both sides of Eq. (16) by sinϕ, 
we get: 

ᇱsinϕݎ = sinϕݎ)ߙ −   (sinϕݐݒ

Using Eq. (11), we get: 

yᇱ = sinϕݎ)ߙ −  sinϕ)         (17)ݐݒ

From Eq. (6) we get: 

ᇱݕ = ݕ)ߙ −  sinϕ)                (18)ݐݒ

Again, multiplying both sides of Eq. (16) by 
cosϕ, we get: 

ᇱcosϕݎ = cosϕݎ)ߙ −   (cosϕݐݒ

Using Eq. (13), we get: 

ᇱݔ = cosϕݎ)ߙ −  cosϕ)         (19)ݐݒ

From Eq. (8) we get: 

ᇱݔ = ݔ)ߙ −  cosϕ)          (20)ݐݒ

Therefore, Eqs. (18) and (20) are the required 
Lorentz transformation equations along the Y- 
and X-axes when there is relative motion along 
both axes simultaneously.  

Similarly, the following relation can be easily 
written based on Fig. 1: 
Oܲ = Oᇱܲ + ܱOᇱ  
or 

ݎ  = ᇱݎ +  tᇱݒ

This is the inverse Galilean transformation 
equation in terms of radius vector from frame  Sᇱ 
to S, since there is no Lorentz factor (α). 
Therefore, the above inverse transformation 
equation on relativistic mechanics is given by: 

ݎ = ᇱݎ)ߙ +  ᇱ)          (21)ݐݒ

Multiplying both sides of Eq. (21) by sinϕ, 
we get: 

߶݊݅ݏݎ = ߶݊݅ݏᇱݎ )ߙ +   (߶݊݅ݏᇱݐ ݒ

Using Eqs. (6) and (11), we get: 

ݕ = ᇱݕ)ߙ +  tᇱsinϕ)          (22)ݒ

Again, multiplying both sides of Eq. (21) by 
cosϕ, we get: 

߶ݏ݋ܿݎ = ߶ݏ݋ᇱܿݎ)ߙ +   (߶ݏ݋ᇱܿݐݒ

Using Eqs. (8) and (13), we get: 

ݔ = ᇱݔ )ߙ +  (23)          (߶ݏ݋ᇱܿݐ ݒ

Therefore, Eqs. (22) and (23) are the required 
inverse Lorentz transformation equations along 
the Y- and X-axes when there is relative motion 
along both axes simultaneously. 

2.3 Determination of the Lorentz Factor  

From Eq. (16) we have: 
ᇱݎ = ݎ)ߙ −   (ݐݒ

Substituting the value of t from Eq. (4), we 
get: 

ᇱݎ = ߙ ቀݎ − ݒ ௥
௖
ቁ  

or 

ᇱݎ  = ݎߙ ቀ1 − ௩
௖
ቁ          (24) 
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From Eq. (21) we have: 
r = rᇱ)ߙ +   (tᇱݒ

Substituting the value of tᇱ from Eq. (5), we 
get: 

r = ߙ ቀrᇱ + ݒ ୰ᇲ

௖
ቁ  

or 

 r = rᇱߙ ቀ1 + ୴
௖
ቁ          (25) 

Putting the value of rᇱ from Eq. (24), we get: 

r = ݎଶߙ ቀ1 − ௩
௖
ቁ ቀ1 + ୴

௖
ቁ  

or 

 1 = ଶߙ ቀ1 − ௩మ

௖మቁ 

or 

ଶߙ  = ଵ

ଵିೡమ

೎మ
 

or 

ߙ  = ଵ

ටଵିೡమ

೎మ

           (26) 

This is the required value of the Lorentz 
factor. 

2.4 The Relativistic Transformation Equations of 
Spatial Coordinates Along Radius Vector 

From the transformation Eq. (16), we have: 
rᇱ = ݎ)ߙ −   (ݐݒ

Putting the value of α from Eq. (26), we have: 

rᇱ = ௥ି௩௧

ටଵିೡమ

೎మ

           (27) 

Putting the value of rᇱ and r from Eqs. (10) 
and (15), we get: 

ටݔᇱଶ + ᇱଶݕ = ඥ௫మା௬మି௩௧

ටଵିೡమ

೎మ

         (28) 

This is the Lorentz transformation equation 
that converts the space measurement noted in 
frame S into those in frame Sᇱ when the relative 
motion between inertial frames is in the two-
dimensional XY-plane. 

From Eq. (21) we get: 
r = rᇱ)ߙ +   (tᇱݒ

Putting the value of α from Eq. (26), we have: 

r = ୰ᇲା௩୲ᇲ

ටଵିೡమ

೎మ

           (29) 

Putting the value of rᇱ and r from Eqs. (10) 
and (15), we get: 

ඥݔଶ + ଶݕ =
ට௫ᇲమା୷ᇲమା௩୲ᇲ

ටଵିೡమ

೎మ

         (30) 

This is the inverse Lorentz transformation, 
converting the space measurement noted in 
frame Sᇱ into those in frame S when the relative 
motion between inertial frames is in the two-
dimensional XY-plane. 

2.5 The Relativistic Transformation Equations of 
Spatial Coordinates Along the Y-Axis 

From Eq. (18): 
ᇱݕ = ݕ)ߙ −   (sinϕݐݒ

Putting the value of α from Eq. (26), we have: 

yᇱ = ௬ି௩௧ୱ୧୬ம

ටଵିೡమ

೎మ

           (31) 

Substituting the value of sinϕ from Eq. (6), 
we get: 

yᇱ =
௬ିೡ೟೤

ೝ

ටଵିೡమ

೎మ

  

or 

 yᇱ =
௬ቀଵି ೡ೟

ೝ ቁ

ටଵିೡమ

೎మ

 

or 

 yᇱ =
௬ቌଵି ೡ೟

ටೣమశ೤మ
ቍ

ටଵିೡమ

೎మ

          (32) 

 Equation (32) converts the space 
measurement of the Y-axis noted in frame S into 
those in frame Sᇱ when the relative motion 
between inertial frames is in the two-
dimensional XY-plane. 

From Eq. (22) we get: 
ݕ = yᇱ)ߙ +   (tᇱsinϕݒ

Putting the value of α from Eq. (26), we have: 

y = ୷ᇲା௩୲ᇲୱ୧୬ம

ටଵିೡమ

೎మ

           (33) 
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Substituting the value of sinϕ from Eq. (11), 
we get: 

ݕ =
୷ᇲା ೡ౪ᇲ౯ᇲ

౨ᇲ

ටଵିೡమ

೎మ

  

or 

ݕ  =
୷ᇲ൬ଵା ೡ౪ᇲ

౨ᇲ ൰

ටଵିೡమ

೎మ

 

or 

ݕ  = yᇱ

ቌଵା ೡ౪ᇲ

ට౮ᇲమశ౯ᇲమ
ቍ

ටଵିೡమ

೎మ

          (34) 

This is the inverse Lorentz transformation for 
the Y-axis, which converts the space 
measurement of the Y-axis noted in frame Sᇱ 
into those in frame S when the relative motion 
between inertial frames is in the two-
dimensional XY-plane. 

2.6 The Relativistic Transformation Equations of 
Spatial Coordinates Along the X-Axis 

From Eq. (20), we have: 
ᇱݔ = ݔ)ߙ −   (cosϕݐݒ

Putting the value of α from Eq. (26), we have: 

ᇱݔ = ௫ି௩௧ୡ୭ୱம

ටଵିೡమ

೎మ

           (35) 

Substituting the value of cosϕ from Eq. (8), 
we get: 

ᇱݔ =
௫ି ೡ೟ೣ

ೝ

ටଵିೡమ

೎మ

  

or 

ᇱݔ  =
௫ቀଵି ೡ೟

ೝ ቁ

ටଵିೡమ

೎మ

                 (36) 

or 

ᇱݔ  =
௫ቌଵି ೡ೟

ටೣమశ೤మ
ቍ

ටଵିೡమ

೎మ

          (37) 

 Equation (37) converts the space 
measurement of the X-axis noted in frame S into 
those in frame Sᇱ when the relative motion 
between the inertial frames is in the two-
dimensional XY-plane. 

From Eq. (23), the inverse transformation is: 
ݔ = ᇱݔ )ߙ +   (tᇱcosϕ ݒ

Putting the value of α from Eq. (26), we have: 

ݔ =  ௫ᇲା௩ ୲ᇲୡ୭ୱம

ටଵିೡమ

೎మ

           (38) 

Substituting the value of cosϕ from Eq. (13), 
we get: 

= ݔ
௫ᇲାೡ౪ᇲೣᇲ

౨ᇲ

ටଵିೡమ

೎మ

 

or 

ݔ  =
௫ᇲ൬ଵା ೡ౪ᇲ

౨ᇲ ൰

ටଵିೡమ

೎మ

 

or 

ݔ  = ᇱݔ

ቌଵା ೡ౪ᇲ

ටೣᇲమశ೤ᇲమ
ቍ

ටଵିೡమ

೎మ

          (39) 

This is the inverse Lorentz transformation for 
the X-axis, which converts the space 
measurement of the X-axis noted in frame Sᇱ 
into those in frame S when the relative motion 
between the inertial frames is in the two-
dimensional XY-plane. 

The radius vector in frame S can be written 
from Eq. (15) as follows: 

ᇱݎ = ටݔᇱଶ +   ᇱଶݕ

Substituting the values of ݔ and ݕ from Eqs. 
(32) and (37), we get: 

ᇱݎ =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ⃓

ଶݔ

⎣
⎢
⎢
⎢
⎡ቌଵି ೡ೟

ටೣమశ౯మ
ቍ

ටଵିೡమ

೎మ

⎦
⎥
⎥
⎥
⎤

ଶ

+ ଶݕ

⎣
⎢
⎢
⎢
⎡ቌଵି ೡ౪

ට౮మశ౯మ
ቍ

ටଵିೡమ

೎మ

⎦
⎥
⎥
⎥
⎤

ଶ

  

or 

ᇱݎ  =
ቌଵି ೡ౪

ටೣమశ౯మ
ቍ

ටଵିೡమ

೎మ

ඥxଶ +  ݕ

or 

ᇱݎ  =
௥ቀଵି ೡ౪

ೝ ቁ

ටଵିೡమ

೎మ
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or 

ᇱݎ  = ௥ି௩௧

ටଵିೡమ

೎మ

           (40) 

This process of calculation clearly reveals 
that the derived transformation equations along 
the X- and Y-axes generate exactly the same 
transformation equations for the radius vector as 
given in Eq. (27). Hence, all proposed 
transformation equations are entirely accurate.  

2.7 The Transformation Equations for Time 
Coordinate in Two-Dimensional Space 

From Eq. (40), we have: 

ᇱݎ = ௥ି௩௧

ටଵିೡమ

೎మ

  

Putting the value of t from Eq. (4), we get: 

ᇱݎ =
௥ିೡೝ

೎

ටଵିೡమ

೎మ

  

Since ݎ = ඥݔଶ +  ଶ from Eq. (10), then theݕ
above equation reduces to: 

ᇱݎ =
௥ି

ೡටೣమశ೤మ

೎

ටଵିೡమ

೎మ

  

Putting the value of r and ݎᇱ from Eqs. (4) 
and (5), we get: 

ᇱݐܿ =
௖௧ି 

ೡටೣమశ೤మ

೎

ටଵିೡమ

೎మ

  

or 

ᇱݐ  =
௧ି 

ೡටೣమశ೤మ

೎మ

ටଵିೡమ

೎మ

                 (41) 

This is the required expression of time 
coordinates transformation from frame S to ܵᇱ 
when there is the relative motion along the X- 
and Y-axis simultaneously.  

Case I: If the motion between the inertial frames 
is one-dimensional along the Y-axis, then 
ݔ = ᇱݔ = 0, and Eq. (41) reduces to: 

ᇱݐ =
௧ି 

ೡටబమశ೤మ

೎మ

ටଵିೡమ

೎మ

  

or 

ᇱݐ  =
௧ି ೡ೤

೎మ

ටଵିೡమ

೎మ

           (42) 

This is the ordinary transformation equation 
of time for the one-dimensional relative motion 
along the Y-axis. 

Case II: If motion between inertial frames is one-
dimensional along the X-axis, then ݕ = ᇱݕ =
0, and Eq. (41) reduces to: 

ᇱݐ =
௧ି ೡ

ඥೣమశబమ

೎మ

ටଵିೡమ

೎మ

  

or 

ᇱݐ  =
௧ି ೡೣ

೎మ

ටଵିೡమ

೎మ

           (43) 

This is the ordinary transformation equation 
of time for the one-dimensional relative motion 
along the X-axis. 

Rewriting Eq. (29) for the inverse Lorentz 
transformation equation of time: 

r = ୰ᇲା௩୲ᇲ

ටଵିೡమ

೎మ

  

Putting the value of tᇱ from Eq. (5), we get: 

r =
୰ᇲା ೡ౨ᇲ

೎

ටଵିೡమ

೎మ

  

Since rᇱ = ටݔᇱଶ +  ᇱଶ from Eq. (15), thenݕ
the above equation reduces to: 

r =
௥ᇲା 

ೡටೣᇲమశ೤ᇲమ

೎

ටଵିೡమ

೎మ

  

Putting the value of r and ݎᇱ from Eqs. (4) 
and (5), we get: 

ct =
௖௧ᇲା 

ೡටೣᇲమశ೤ᇲమ

೎

ටଵିೡమ

೎మ

  

or 

ݐ  =
௧ᇲା 

ೡටೣᇲమశ೤ᇲమ

೎మ

ටଵିೡమ

೎మ

          (44) 

This is the required expression of time 
coordinates transformation from frame ܵᇱ to S, 
called the inverse Lorentz transformation, when 
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there is the relative motion along the X- and Y-
axes simultaneously. All time transformation 
scenarios between two inertial frames moving 
relative to each other in two-dimensional space 
are outlined in Eqs. (41), (42), (43), and (44). In 
two-dimensional motion, space coordinate 

transformation equations along the X-axis are 
displayed in Eqs. (37) and (39), while 
transformation equations along the Y-axis are 
displayed in Eqs. (32) and (34). These 
transformation equations between inertial frames 
are thoroughly discussed in Table 1. 

TABLE 1. Space coordinates transformation equations. 

S.N. Direction of motion Value of Y and X 
coordinates 

Space Coordinates 
Along the Y-axis Along the X-axis 

1 Along both Y and X-
directions 

From Eqs. (6) and 
(8), 

ݕ =  sinϕݎ
ݔ =  cosϕݎ

From Eq. (17), 
ᇱݕ = ௥ୱ୧୬மି௩௧ୱ୧୬ம

ටଵିೡమ

೎మ

  
From Eq. (19), 

ᇱݔ = ௥௖௢௦மି௩௧௖௢௦ம

ටଵିೡమ

೎మ

  

2 
Along the Y-axis only 

ϕ =
ߨ
2

 

 
ݕ = sinݎ

ߨ
2

=  ݎ

ݔ = cosݎ
ߨ
2

= 0 
 

ᇱݕ =
௥ୱ୧୬ഏ

మି௩௧ୱ୧୬ഏ
మ

ටଵିೡమ

೎మ

  

ᇱݕ = ඥ௫మା௬మି௩௧

ටଵିೡమ

೎మ

  

ᇱݕ = ඥ଴మା௬మି௩௧

ටଵିೡమ

೎మ

  

ᇱݕ = ௬ି௩௧

ටଵିೡమ

೎మ

  

ᇱݔ = ௥௖௢௦଴ି௩௧௖௢௦଴

ටଵିೡమ

೎మ

  

ᇱݔ = 0 

3 Along the X-axis only 
ϕ = 0 

ݕ = sin0ݎ = 0 
ݔ = cos0ݎ =  ݎ

ᇱݕ = ௦௜௡଴ି௩௧௦௜௡଴

ටଵିೡమ

೎మ

  

ᇱݕ = 0 

ᇱݔ = ௥௖௢௦଴ି௩௧௖௢௦଴

ටଵିೡమ

೎మ

  

ᇱݔ = ඥ௫మା௬మି௩௧

ටଵିೡమ

೎మ

  

ᇱݔ = √௫మା଴మି௩௧

ටଵିೡమ

೎మ

  

ᇱݔ = ௫ି௩௧

ටଵିೡమ

೎మ

  

 

From the first row of Table 1, it is obviously 
seen that space-time coordinates take place along 
both the X- and Y-axes when relative motion 
between inertial frames occurs in the two-
dimensional XY-plane. In contrast, the second 
row reveals that space coordinate transformation 
occurs only along the Y-axis when the relative 
motion between frames is one-dimensional along 
the Y-axis. Similarly, the third row demonstrates 
that there is no space coordinate transformation 
along the Y-axis when the relative motion 

between two frames is restricted to the X-axis 
only. 

3. Three-dimensional Transformation 
Equations 
3.1  Relativistic Transformation Equations of 

Spatial Coordinates Along the Radius Vector 

Consider an inertial frame S and another 
inertial frame S' which moves at a constant 
relative velocity ݒ with respect to S in three 
dimensions of space, as shown in Fig. 2. 
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FIG. 2. Motion between inertial frames in three dimensions of space. 

 
Let an event occur at point P, whose space 

and time coordinates are measured in each 
inertial frame. An observer attached to S records 
the location and time of occurrence of this event, 
ascribing a location coordinate ݀ (radius vector 
in frame S) and time ݐ. An observer attached to 
S' specifies the same event by location 
coordinates ݀′ (radius vector in frame S') and 
time ݐ′. Now, the transformation equations that 
relate one observer’s space-time coordinates of 
an event with the other observer’s coordinates of 
the same event must be linear, so the most 
general form they can take is 

݀ᇱ = ܽ݀ +  (45)            ݐܾ

or 

ᇱݐ  = ݂݀ +  (46)                 ݐ݃

Here, the coefficients a, b, f, and g are 
constants that we must determine to obtain the 
exact transformation equations. Suppose the 
event occurs at the origin O' of S' frame at time 
 ᇱ. Obviously, at frame S', this event occurs atݐ
݀ᇱ = 0. Now, from Fig. 2: 
ܱ′ܲ = ܱܲ + ܱܱ′  

or ݀ᇱ = ݀ −  ݐݒ

If an event occurs at origin O', then ݀ᇱ = 0. 
Hence, the above equation reduces to: 
0 = ݀ −   ݐݒ

or 

 ݀ =  ݐݒ
It means that the same event, as seen from S, 

occurs at a distance ݀ =  ,Now .ݐ at time ݐݒ
putting this value in Eq. (45), we get: 

0 = ݐݒܽ +   ݐܾ
or 

 ܾ =  ݒܽ−

Putting the value of ܾ in Eq. (45), we get: 

݀ᇱ = ܽ݀ −   ݐݒܽ

or 

 ݀ᇱ = ܽ(݀ −   (ݐݒ
Therefore, Eqs. (45) and (46) are reduced to: 

݀ᇱ = ܽ(݀ −  (47)          (ݐݒ

or 

ᇱݐ  = ݂݀ +  (48)                 ݐ݃

There remains the task of determining values 
of the coefficients a, f, and g. To do this, let us 
assume that at the time ݐ = 0 a light pulse leaves 
the origin of S, which coincides with the origin 
of S' at that moment. The light pulse propagates 
with speed ܿ in the direction of the moving 
frame and reaches point P at times ݐ and ݐ′, 
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measured from S and S', as shown in Fig. 2. For 
an observer at O, the distance to point P is:  
ܱܲ =   ݐܿ

or 

 ݀ =   ݐܿ
Squaring both sides, we get: 

݀ଶ = ܿଶݐଶ  

or 

 ݀ଶ − ܿଶݐଶ = 0          (49)  

Similarly, for an observer at O', the distance 
to point P is:  
ܱᇱܲ =   ᇱݐܿ
or 

 ݀ᇱ =   ᇱݐܿ
Squaring both sides, we get: 

݀ᇱଶ = ܿଶݐᇱଶ  

or 

݀ᇱଶ − ܿଶݐᇱଶ = 0          (50)  

Now, substituting Eqs. (47) and (48) into Eq. 
(50), we get: 
ܽଶ(݀ − ଶ(ݐݒ − ܿଶ(݂݀ + ଶ(ݐ݃ = 0  

or ܽଶ݀ଶ − 2ܽଶ݀ݐݒ + ܽଶݒଶݐଶ − ܿଶ݂ଶ݀ଶ −
2ܿଶ݂݃݀ݐ − ܿଶ݃ଶݐଶ = 0 

or ݀ଶ(ܽଶ − ܿଶ݂ଶ) − ݒଶܽ)݀ݐ2 + ܿଶ݂݃) +
ଶݒଶ(ܽଶݐ − ܿଶ݃ଶ) = 0 

In order for this equation to agree with Eq. 
(49), we must have: 
ܽଶ − ܿଶ݂ଶ = 1           (51) 
ܽଶݒ + ܿଶ݂݃ = 0          (52) 
ܽଶݒଶ − ܿଶ݃ଶ = −ܿଶ          (53) 

From Eq. (53): 
ܿଶ݃ଶ = ܽଶݒଶ + ܿଶ  

or 

 ݃ଶ = ௔మ௩మା௖మ

௖మ  

or 

 ݃ = ට௔మ௩మା௖మ

௖మ                  (54) 

From Eq. (51): 

ܿଶ݂ଶ = ܽଶ − 1  

or 

 ݂ଶ = ௔మିଵ
௖మ  

or 

 ݂ = ට௔మିଵ
௖మ   (55) 

Using Eqs. (54) and (55) in Eq. (52) we get: 

ܽଶݒ + ܿଶට௔మିଵ
௖మ ට௔మ௩మା௖మ

௖మ = 0  

or, ܽଶݒ + √ܽଶ − 1√ܽଶݒଶ + ܿଶ = 0 

or, ܽଶݒ = −√ܽଶ − 1√ܽଶݒଶ + ܿଶ 

Squaring both sides of the above equation, we 
get: 

ܽସݒଶ = (ܽଶ − 1)(ܽଶݒଶ + ܿଶ)  

or, ܽସݒଶ = ܽସݒଶ + ܽଶܿଶ − ܽଶݒଶ − ܿଶ 

or, ܽଶܿଶ − ܽଶݒଶ = ܿଶ 

or, ܽଶ = ௖మ

௖మି௩మ 

or, ܽ = ଵ

ටଵିೡమ

೎మ

  (56) 

Putting this value in Eq. (51), we get: 
ଵ

ቆටଵିೡమ

೎మቇ
మ − ܿଶ݂ଶ = 1  

or, ௖మ

௖మି௩మ − 1 = ܿଶ݂ଶ 

or, ௩మ

௖మି௩మ = ܿଶ݂ଶ 

or, ݂ଶ = ௩మ

௖మ(௖మି௩మ) 

or, ݂ଶ = ௩మ

௖ర൬ଵିೡమ

೎మ൰
 

or, ݂ = − ௩

௖మටଵିೡమ

೎మ

  (57) 

Using Eqs. (56) and (57) in Eq. (52) we get: 
௩

ቆටଵିೡమ

೎మቇ
మ − ௚௩௖మ

௖మටଵିೡమ

೎మ

= 0  

or, ଵ

ଵିೡమ

೎మ
= ௚

ටଵିೡమ

೎మ

 

or, ݃ = ଵ

ටଵିೡమ

೎మ

  (58) 
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From Eqs. (47) and (56) we get: 

݀ᇱ = ௗି௩௧

ටଵିೡమ

೎మ

  (59) 

Also, putting the values of ݂ and ݃ in Eq. 
(48), we get: 
ᇱݐ = ݂݀ +   ݐ݃

or 

ᇱݐ  = − ௩ௗ

௖మටଵିೡమ

೎మ

+ ௧

ටଵିೡమ

೎మ

 

or 

ᇱݐ  =
௧ିೡ೏

೎మ

ටଵିೡమ

೎మ

  (60) 

Equations (59) and (60) are the Lorentz 
transformation equations in terms of radius 
vectors ݀ and ݀′.  

Putting these values (݀ = ඥݔଶ + ଶݕ +  ଶݖ

and ݀ᇱ = ටݔᇱଶ + ᇱଶݕ +  ᇱଶ ) in Eqs. (59) andݖ
(60), we get: 

ටݔᇱଶ + ᇱଶݕ + ᇱଶݖ = ඥ௫మା௬మା௭మି௩௧

ටଵିೡమ

೎మ

  (61) 

ᇱݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

  (62) 

The inverse transformation equations can be 
obtained by changing the sign of relative 
velocity in the equations and interchanging the 
coordinates. Thus:  

ඥݔଶ + ଶݕ + ଶݖ =
ට௫ᇲమା௬ᇲమା௭ᇲమା௩௧ᇲ

ටଵିೡమ

೎మ

  (63) 

ݐ =
௧ᇲା

ೡටೣᇲమశ೤ᇲమశ೥ᇲమ

೎మ

ටଵିೡమ

೎మ

  (64) 

 Equations (63) and (64) convert the space-time 
measurements made in frame S' into those in 
frame S. When we substitute ݔᇱ = ݔ =
ᇱݕ ݀݊ܽ 0 = ݕ = 0 in the above equations to 
achieve the one-dimensional inverse Lorentz 
transformations, we get: 

ଶݔ√ + 0ଶ + 0ଶ =
ඥ௫ᇲమା଴మା௢మା௩௧ᇲ

ටଵିೡమ

೎మ

  

or 

ݔ  = ௫ᇲା௩௧ᇲ

ටଵିೡమ

೎మ

  

and 

ݐ  =
௧ᇲା

ೡටೣᇲమశబమశబమ

೎మ

ටଵିೡమ

೎మ

=
௧ᇲାೡೣᇲ

೎మ

ටଵିೡమ

೎మ

 

The expression obtained in the above 
equations is in complete agreement with the 
inverse Lorentz transformation equations when 
the relative motion between the inertial frames is 
reduced to a one-dimensional system. Hence, 
derived transformations, Eqs. (61), (62), (63), 
and (64), are completely true.  

3.2 The Transformation between Cartesian and 
Polar Coordinates  

In Fig. 1, let point P have Cartesian 
coordinates (ݔ, ,ݕ ,′ݔ) in frame S, and (ݖ ,′ݕ  in (′ݖ
frame S'. Then the spherical polar coordinates of 
point P are specified (݀, ,ߠ ,ߔ ) and (݀′, ,ߠ ,ߔ ) in 
frame S and S', respectively, where ܱܲ = ݀ and 
ܱᇱܲ = ݀′ are radius vectors of point P measured 
from frames S and S', ߠ is the colatitude i.e., 
angle between OP and Z-axis, and ߔ is the 
longitudinal or azimuthal angle i.e. the angle 
included between YZ plane the plane OPZ, as 
shown in Fig. 2. The transformation between 
Cartesian coordinates and polar coordinates in 
frame S are given by: 
ݔ =  (65)  ߔݏ݋ܿߠ݊݅ݏ݀

ݕ =  (66)  ߔ݊݅ݏߠ݊݅ݏ݀

ݖ =  (67)  ߠݏ݋ܿ݀

Squaring and adding Eqs. (65), (66), and (67), 
we get: 
ଶݔ + ଶݕ + ଶݖ =  ݀ଶ݊݅ݏଶݏ݋ܿߠଶߔ +

݀ଶ݊݅ݏଶ݊݅ݏߠଶߔ + ݀ଶܿݏ݋ଶߠ  
or 

ଶݔ  + ଶݕ + ଶݖ = ݀ଶ݊݅ݏଶݏ݋ܿ)ߠଶߔ + (ߔଶ݊݅ݏ +
݀ଶܿݏ݋ଶߠ 

or 

ଶݔ  + ଶݕ + ଶݖ = ݀ଶ݊݅ݏଶߠ + ݀ଶܿݏ݋ଶߠ 

or 

ଶݔ  + ଶݕ + ଶݖ = ݀ଶ 

or 
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 ݀ = ඥݔଶ + ଶݕ +  ଶ  (68)ݖ

This value of ݀ denotes the radius vector that 
joins the origin O and point P in frame S. 
Similarly, the transformation between Cartesian 
coordinates and polar coordinates in frame S' is 
given by: 
ᇱݔ = ݀ᇱ(69)  ߔݏ݋ܿߠ݊݅ݏ 

ᇱݕ = ݀ᇱ(70)  ߔ݊݅ݏߠ݊݅ݏ 

ᇱݖ = ݀ᇱܿ(71)  ߠݏ݋ 

Squaring and adding Eqs. (69), (70), and (71), 
we get: 

ᇱଶݔ + ᇱଶݕ + ᇱଶݖ = ݀ᇱଶ݊݅ݏଶݏ݋ܿߠଶߔ +
݀ᇱଶ݊݅ݏଶ݊݅ݏߠଶߔ + ݀ᇱଶܿݏ݋ଶߠ  

or 

ᇱଶݔ  + ᇱଶݕ + ᇱଶݖ = ݀ᇱଶ݊݅ݏଶݏ݋ܿ)ߠଶߔ +
(ߔଶ݊݅ݏ + ݀ᇱଶܿݏ݋ଶߠ 

or 

ᇱଶݔ  + ᇱଶݕ + ᇱଶݖ = ݀ᇱଶ݊݅ݏଶߠ + ݀ᇱଶܿݏ݋ଶߠ 
or 

ᇱଶݔ  + ᇱଶݕ + ᇱଶݖ = ݀′ଶ 

or 

 ݀ᇱ = ටݔᇱଶ + ᇱଶݕ +  ᇱଶ  (72)ݖ

This value of ݀ᇱ denotes the radius vector that 
joins the origin O' and point P in frame S'. 

3.3 Transformation Equations Along the X-, Y-, 
and Z-Directions 

In the previous section, we derived 
transformation equations along the radius vectors 
݀ and ݀′, as delineated in Eqs. (59) and (60). In 
this section, we further extend these equations to 
discover the new transformation equations along 
each axis.  

Rewriting Eq. (59), we get: 

݀ᇱ = ௗି௩௧

ටଵିೡమ

೎మ

  

Multiplying both sides by ߔݏ݋ܿߠ݊݅ݏ 

݀ᇱߔݏ݋ܿߠ݊݅ݏ = ௗ௦௜௡ఏ௖௢௦ఃି௩௧௦௜௡ఏ௖௢௦ః

ටଵିೡమ

೎మ

  

Using Eqs. (65) and (69), we get: 

ᇱݔ = ௫ି௩௧௦௜௡ఏ௖௢௦ః

ටଵିೡమ

೎మ

  

Putting the value of ߔݏ݋ܿߠ݊݅ݏ from Eq. (65), 
we get: 

ᇱݔ =
௫ିೡ೟ೣ

೏

ටଵିೡమ

೎మ

  

Substituting the value of ݀ from Eq. (68), we 
get: 

ᇱݔ =
௫ି ೡ೟ೣ

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

  (73) 

The inverse Lorentz transformation equation 
along the X-axis can be obtained by 
interchanging the coordinates and replacing ݒ 
with −ݒ in the above equation. 

ݔ =
௫ᇲା ೡೣᇲ೟ᇲ

ටೣᇲమశ೤ᇲమశ೥ᇲమ

ටଵିೡమ

೎మ

  (74) 

Again, rewriting Eq. (17), we get: 

݀ᇱ = ௗି௩௧

ටଵିೡమ

೎మ

  

Multiplying both sides by ߔ݊݅ݏ ߠ݊݅ݏ 

݀ᇱߔ݊݅ݏߠ݊݅ݏ = ௗ௦௜௡ఏ௦௜௡ఃି௩௧௦௜௡ఏ௦௜௡ః

ටଵିೡమ

೎మ

  

Using Eqs. (66) and (70), we get: 

ᇱݕ = ௬ି௩௧௦௜௡ఏ௦௜௡ః

ටଵିೡమ

೎మ

  

Putting the value of ߔ݊݅ݏ ߠ݊݅ݏ from Eq. (66), 
we get: 

ᇱݕ =
௬ିೡ೟೤

೏

ටଵିೡమ

೎మ

  

Substituting the value of ݀ from Eq. (68), we 
get: 

ᇱݕ =
௬ି ೡ೟೤

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

  (75) 

The inverse Lorentz transformation equation 
along the Y-axis can be obtained by 
interchanging the coordinates and replacing ݒ 
with −ݒ in the above equation. 
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ݕ =
௬ᇲା ೡ೤ᇲ೟ᇲ

ටೣᇲమశ೤ᇲమశ೥ᇲమ

ටଵିೡమ

೎మ

  (76) 

Again, rewriting Eq. (59), we get: 

݀ᇱ = ௗି௩௧

ටଵିೡమ

೎మ

  

Multiplying both sides by ܿߠݏ݋ 

݀ᇱܿߠݏ݋ = ௗ௖௢௦ఏି௩௧௖௢௦ఏ

ටଵିೡమ

೎మ

  

Using Eqs. (67) and (71), we get:  

ᇱݖ = ௭ି௩௧௖௢௦ఏ

ටଵିೡమ

೎మ

  

Putting the value of ܿߠݏ݋ from Eq. (67), we 
get: 

ᇱݖ =
௭ିೡ೟೥

೏

ටଵିೡమ

೎మ

  

Substituting the value of ݀ from Eq. (68), we 
get:  

ᇱݖ =
௭ି ೡ೟೥

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

  (77) 

The inverse Lorentz transformation equation 
along the Z-axis can be obtained by 
interchanging the coordinates and replacing ݒ 
with −ݒ in the above equation. 

ݖ =
௭ᇲା ೡ೥ᇲ೟ᇲ

ටೣᇲమశ೤ᇲమశ೥ᇲమ

ටଵିೡమ

೎మ

  (78) 

Equations (73), (75), and (77) are the required 
Lorentz transformation equations along the X-,  
Y-, and Z-directions, while Eqs. (74), (76), and 
(78) are the required inverse Lorentz 
transformation equations along the X-, Y-, and 
Z-directions when the relative motion between 
inertial frames is in three-dimensional space.  
3.4 Invariance of the Space-Time Interval 
Equation 

In this section, we verify the invariance of the 
following space-time interval equation with the 
help of the modified Lorentz transformation 
equations obtained in the previous section.  

ଶݔ + ଶݕ + ଶݖ − ܿଶݐଶ = ᇱଶݔ + ᇱଶݕ + ᇱଶݖ − ܿଶݐᇱଶ  
(79) 

where (ݔ, ,ݕ ,ݖ ,ᇱݔ) and (ݐ ,ᇱݕ ,ᇱݖ  ᇱ) are theݐ
coordinates of the same event as observed by 
two observers in frames S and S', while S' is 
moving with velocity ݒ relative to S.  

Let us consider the expression  

ᇱଶݔ + ᇱଶݕ + ᇱଶݖ − ܿଶݐᇱଶ  

Putting the values of ݔᇱ, ,ᇱݕ ,ᇱݖ  ᇱ fromݐ ݀݊ܽ
Eqs. (73), (75), (77), and (62), respectively, we 
get: 

= ൮
௫ି ೡ೟ೣ

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

+ ൮
௬ି ೡ೟೤

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

+

൮
௬ି ೡ೟೤

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

− ܿଶ ൮
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

൲

ଶ

  

= ଶݔ ൮
ଵି ೡ೟

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

+ ଶݕ ൮
ଵି ೡ೟

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

+

ଶݖ ൮
ଵି ೡ೟

ටೣమశ೤మశ೥మ

ටଵିೡమ

೎మ

൲

ଶ

− ܿଶ ൮
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

൲

ଶ

  

=

௫మቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

మ

ା௬మቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

మ

ା௭మቌଵି ೡ೟

ටೣమశ೤మశ೥మ
ቍ

మ

ି௖మቌ௧ି
ೡටೣమశ೤మశ೥మ

೎మ ቍ

మ

ଵିೡమ

೎మ
  

= ௖మ

௖మି௩మ ቈ(ݔଶ + ଶݕ + (ଶݖ ൬1 − ௩௧
ඥ௫మା௬మା௭మ൰

ଶ
−

ܿଶ ൬ݐ − ௩ඥ௫మା௬మା௭మ

௖మ ൰
ଶ

቉  

= ௖మ

௖మି௩మ ቈ(ݔଶ + ଶݕ + (ଶݖ ൬1 − ௩௧
ඥ௫మା௬మା௭మ൰

ଶ
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ܿଶ ൬ݐ − ௩ඥ௫మା௬మା௭మ
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ଶ

቉  

= ௖మ

௖మି௩మ ൤(ݔଶ + ଶݕ + (ଶݖ ൬1 − ଶ௩௧
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= ௖మ

௖మି௩మ ቂݔଶ + ଶݕ + ଶݖ − ଶݔඥݐݒ2 + ଶݕ + ଶݖ +

ଶݐଶ−ܿଶݐଶݒ + ଶݔඥݒݐ2 + ଶݕ + ଶݖ −
௩మ൫௫మା௬మା௭మ൯

௖మ ቃ  

= ௖మ

௖మି௩మ ቂݔଶ + ଶݕ + ଶݖ + ଶݐଶ−ܿଶݐଶݒ −
௩మ൫௫మା௬మା௭మ൯

௖మ ቃ  

= ଵ
௖మି௩మ [ܿଶ(ݔଶ + ଶݕ + (ଶݖ + ܿଶݒଶݐଶ−ܿସݐଶ −
ଶݔ)ଶݒ + ଶݕ +   [(ଶݖ

= ଵ
௖మି௩మ ଶݔ)] + ଶݕ + ଶ)(ܿଶݖ − (ଶݒ −
ܿଶݐଶ(ܿଶ −   [(ଶݒ

= ଵ
௖మି௩మ ଶݔ) + ଶݕ + ଶݖ − ܿଶݐଶ)(ܿଶ −   (ଶݒ

= ଶݔ + ଶݕ + ଶݖ − ܿଶݐଶ  (80) 

Thus, we proved that ݔଶ + ଶݕ + ଶݖ − ܿଶݐଶ =
ᇱଶݔ + ᇱଶݕ + ᇱଶݖ − ܿଶݐᇱଶ. Hence, the space-time 
interval equation is invariant under the modified 
Lorentz transformation equations. 

3.5 Relativity of Simultaneity 

One of the important consequences of the 
Lorentz transformation is that simultaneity is 
relative. Consider two events occurring at the 
same time at two different position coordinates, 
,ଵݔ) ,ଵݕ ,ଶݔ) ଵ) andݖ ,ଶݕ  ଶ), in the inertial frameݖ
S. Let ݐଵ

ᇱ  and ݐଶ
ᇱ  be the times at which the two 

events are observed in the frame S', which is 
moving with velocity ݒ.  

Using the Lorentz transformation Eq. (62), 
we get: 

ଵݐ
ᇱ =

௧ି
ೡටೣభమశ೤భమశ೥భమ

೎మ

ටଵିೡమ

೎మ

  

ଶݐ
ᇱ =

௧ି
ೡටೣమమశ೤మమశ೥మమ

೎మ

ටଵିೡమ

೎మ

  

The apparent time interval, i.e., the time 
interval between two events as observed by the 
observer in S', is: 

ଶݐ
ᇱ − ଵݐ

ᇱ =
௧ି

ೡටೣమమశ೤మమశ೥మమ

೎మ

ටଵିೡమ

೎మ

−
௧ି

ೡටೣభమశ೤భమశ೥భమ

೎మ

ටଵିೡమ

೎మ

  

ଶݐ
ᇱ − ଵݐ

ᇱ = ௩

௖మටଵିೡమ

೎మ

ቀඥݔଶ
ଶ + ଶݕ

ଶ + ଶݖ
ଶ −

ඥݔଵ
ଶ + ଵݕ

ଶ + ଵݖ
ଶቁ  (81) 

This indicates that two events which are 
simultaneous in the reference frame S are not 
simultaneous in another frame of reference S' 
moving relative to the first.  
3.6 Time Dilation 

Consider two frames of reference, S and S', 
where the S' frame of reference is moving with 
velocity ݒ in three-dimensional space, as shown 
in Fig. 3.  

Assume two clocks are initially synchronized 
at the origin of two frames of reference. Then 
their origins just cross each other. If two events 

occur at any point ݀ᇱ = ටݔᇱଶ + ᇱଶݕ +  ᇱଶ inݖ
frame S', at times ݐଵ

ᇱ  and ݐଶ
ᇱ , as noted by an 

observer in S' frame, and at times ݐଵ and ݐଶ , as 
noted by an observer in frame S, we clearly have 
time interval between two events in both frames. 
The time interval as measured by an observer in 
S' frame of reference for two successive events 
at point ݀ᇱ is given by ݐ଴ = ଶݐ

ᇱ − ଵݐ
ᇱ . This time 

interval is known as the proper time interval. For 
the relativistic time, consider the inverse Lorentz 
transformation of time from Eq. (64): 

ଵݐ =
௧భ

ᇲ ା
ೡටೣᇲమశ೤ᇲమశ೥ᇲమ

೎మ

ටଵିೡమ

೎మ
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௧మ

ᇲ ା
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೎మ

ටଵିೡమ

೎మ
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ଶݐ − ଵݐ = ௧మ
ᇲ ି௧భ

ᇲ

ටଵିೡమ

೎మ

  

ݐ = ௧బ

ටଵିೡమ

೎మ

  

where ݐ = ଶݐ −  ଵis the time interval betweenݐ
the events as measured by an observer in inertial 
frame S, which is moving relative to the clock. 
This is called the improper or relativistic time.  
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FIG. 3. Frame S' moves with velocity ݒ relative to frame S to show time dilation. 

4. Conclusions 
In this study, we obtained the extended 

version of the Lorentz transformation equations 
in two- and three-dimensional space and further 
demonstrated the advantage of using these 
extended transformations to investigate the 
phenomena of time dilation and the invariance of 
the space-time interval. The modified 
transformation equations involving all X, Y, and 
Z coordinates in three-dimensional space can be 
written from Eqs. (61) and (62) as follows: 

ටݔᇱଶ + ᇱଶݕ + ᇱଶݖ = ඥ௫మା௬మା௭మି௩௧

ටଵିೡమ

೎మ

,  

ᇱݐ =
௧ି

ೡටೣమశ೤మశ೥మ

೎మ

ටଵିೡమ

೎మ

  

The transformation equations developed for 
two- and three-dimensional motion between 
inertial frames are better than those of a one-
dimensional system, and our results relating to 
the mathematical applications of the proposed 
equations are better than those of the existing 
transformation equations. Furthermore, our 
modified transformation formulas can be used to 
analyze the relativity of simultaneity in a more 
efficient and accurate way, as discussed in 
Section 3.5. Finally, the future scope of this 
work includes presenting a mathematical 
interpretation of four-vectors, exploring the 
transformation of momentum, and providing an 
explanation of Minkowski space using the two- 
and three-dimensional Lorentz transformation 
equations.
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