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Abstract: Introducing FEM-CMFD (Finite Element Method for Calculating Magnetic 
Field Distribution), a new program designed for calculating the magnetic field distribution 
for axially symmetric complex magnetic systems, such as magnetic lenses. The program 
operates by reading user-inputted magnetic system data presented in a two-dimensional 
graph. Utilizing the finite element method, it calculates the axial magnetic field distribution 
for various coil excitations accommodating up to approximately 10 000 intersection nodes. 
Keywords: Electron magnetic lens, Finite element method, Magnetic field distribution. 
 

 
Introduction 

The history of electron microscopy started 
with the development of electron optics. In 1926, 
Busch excogitated the charged particle 
trajectories in axially symmetric magnetic and 
electric fields in 1926. He laid the foundation of 
geometrical electron optics, and he proved that 
such fields could act as particle lenses. Around 
the same time, de Broglie presented the principle 
of electron waves [1]. A wavelength in addition 
to a frequency was associated scientifically with 
the charged particles, and this point presented 
the beginning of electron optics. These 
breakthroughs paved the way for the realization 
of an electron microscope [2]. The electron lens, 
a crucial component of electron microscopes, is 
also a fundamental part of various electro-optical 
devices [3]. There are three primary types of 
lenses: electrostatic lenses, permanent magnetic 
lenses, and electromagnetic lenses. Among 
these, electromagnetic lenses are commonly 
preferred due to factors such as ease of 
manufacturing, simplicity of use, high precision 
results, and cost-effectiveness. It should be 

mentioned that various abuses in electron lenses 
can occur during manufacturing, such as 
"aberrations" caused by the lens structure's 
failure to focus all the charged particles emitted 
from any point on the "object's plane" into one 
point on the "image Gaussian plane". Thus, the 
resulting image may be either "askew" or 
"obscured". Therefore, there is an urgent need to 
control the charged particles’ behavior by using 
an equivalent optical tool [4]. When this accurate 
tool is unavailable, it becomes necessary to 
create many lenses until achieving the desired 
properties of the designed lens through trial and 
error, involving significant efforts and costs. 
Various simulators, software program 
collections, and mathematical models, in 
conjunction with Computer-Aided Design 
(CAD) tools, are employed for this purpose. 

The CAD of an optical system usually 
proceeds via three steps. The first step is to 
compute the magnetic or electric fields from the 
initial or boundary conditions, while the second 
step is to compute the representative electron 
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trajectories from calculations of the magnetic 
fields. The third step involves calculating both 
aberration values and imaging properties from 
the computed trajectories [5]. CAD tools 
employed for both electrostatic and 
electromagnetic lenses are software application 
packages developed to help users in designing 
symmetric and asymmetric lenses, including 
"single, double, and multipolepiece lenses" used 
in electron microscopy (EM) within the field of 
electron optics (EO). CAD proves to be a 
powerful tool for designers of electron optical 
systems, allowing them to test a lot of different 
designs without the need for physical 
manufacturing [6]. 

Literature Review 
In the literature, various software packages 

and simulators have been employed for 
electrostatic lens simulations. Some notable 
examples include SPOC software [7], G-Optk 
simulation software [8], EOD program [9], CPO 
programs [10], Focus software [11], SIMION 
software [12,13], EOS Simulator [14], MEBS 
software [15], Omni Trak software [16]. These 
tools offer users the flexibility to choose an 
appropriate mathematical model, either by 
selecting an equipped electrostatic field model or 
by choosing from available models within the 
software, such as the Glaser model [17], Grivet 
Lenz model [18], Gaussian model [18], 
Spherical model [19], Exponential model [19], 
and others. Electrostatic lens programs play a 
vital role in all designing processes. Utilizing 
confirmed software tools not only ensures 
improved output for designers but also 
contributes to a significant reduction in time, a 
crucial factor in electrostatic lens simulation. 
This efficiency leads to reduced effort and costs, 
further emphasizing the benefits of evolutionary 
software tools in the field [20]. 

In 2013, Hasan et al. wrote a new software 
for electromagnetic lenses known as 
"CADTEL". This software is designed to operate 
on various PC systems, offering the capability to 
obtain and integrate two distinct procedures [21]. 
Additionally, in 2016, simulators referred to as 
"FWHMs" were employed to estimate multi-
wavelengths and polarization-insensitive lenses 
based on the dielectric met surfaces with the met 
particles [22]. 

Optimization through analysis has garnered 
significant attention since the middle of the 

previous century. Various concepts have been 
explored in the realm analysis methodology, 
including the impact of pole piece saturation on 
the focal characteristics of the target lens [23] 
and the influence of axial magnetic field 
distribution on the asymmetry of the objective 
lens in high-voltage electron microscopy [24]. 
The first methodology is called the 
"examination/analysis methodology" and 
depends on the experimentation that includes 
three categories known as "H1 programs" for 
magnetic scalar potential together with using and 
understanding of the Laplace conditions [25] and 
"H2 and H3 programs" for magnetic vector 
potential, addressing the conditions of Poisson 
[26]. The second methodology is the "H4 
programs" for the "union/synthesis method". The 
researchers usually use the Visual Basic 
language to write their proposed programs. In 
2018, Kadhem et al. used the finite element 
method with the aid of Munro programs to study 
asymmetrical magnetic lenses in conjunction 
with the Electron Optical Design (EOD) 
software [27]. Similarly, in 2018, Van Tilborg et 
al. employed MHD simulations for experiments, 
demonstrating the effectiveness of a discharge 
capillary in dynamic plasma lenses for 
concentrating 100 MeV LPA beams [28]. In 
2109, Shiltsev et al. reworked the FMA and DA 
plots for illustrative instances of 7 TeV protons 
flux without affecting the concentrating optics 
displays in HL- LHC optics, Version 1.0 [29]. 

In 2019, Alabdullah et al. introduced a new 
development design that they called Focal 
Length Measurement (FLM), which employs 
analytical measurement procedures to assess the 
properties of electrostatic lenses. The FLM 
method was specifically tested by calculating the 
focal lengths of electrostatic immersion lenses. 
The FLM method enables the users and the 
researchers to obtain the data for different 
applications. Besides, the FLM method can be 
used for calculating the focal lengths of new 
designs of the immersion electrostatic lenses for 
electron microscopes, as evidenced by high-
accuracy results obtained from electron 
microscope experiments. Additionally, most of 
the categories of electrostatic lenses could be 
analyzed with some simple modifications of the 
FLM method [30]. In the context of this work, a 
modern program has been written for fast and 
accurate analytical calculations. This program is 
designed to calculate the axial magnetic field 
distribution of magnetic lenses using the finite 
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element method. This kind of program can be 
also successfully applied to electron gun designs 
and any new design of electron magnetic lenses 
[31]. 

The Finite Element Method (FEM) 

The Finite Element Method (FEM) is a 
numerical technique employed to solve problems 
related to boundary value potentials. It was 
introduced by Munro in 1971 to find solutions to 
magnetic field problems in electron lenses in 
electron optics [32]. In this method, the lens is 
divided into a mesh consisting of numerous 
small quadrilaterals known as finite elements, 
facilitating analysis. Each quadrilateral is further 
subdivided into double triangular finite elements, 
and this sub-division is accomplished in two 
separate ways [33]. 

The triangular shape is the most elementary type 
of element, leading to the widespread use of 
triangular mesh grids rather than rectangular 
meshes. This allows the evaluation of the 
potential value for each mesh point. The 
potential value is assumed to change linearly 
over each triangular finite element. 
Consequently, the potential equation for a 
symmetric magnetic electron lens can be 
expressed as: 

  

ܨ = ∬ ଵ
ଶ

∙ ߤ ∙ ൤ቀడ௏
డ௭

ቁ
ଶ

+ ቀడ௏
డ௥

ቁ
ଶ

൨ ∙ 2 ∙ ߨ ∙ ݎ ∙ ݖ݀ ∙    ݎ݀
(1) 

where ߤ is the permeability at any point, and ܸ is 
the scalar potential. 

 Equation (1) must now be minimized at each 
mesh point numerically. The contribution of ∆f 
from each single finite element according to the 
equation (1) becomes: 

∆݂ = గ∙ఓ∙௥°
ସ௔

ቂ൫∑ ܾ௜ ∙ ௜ܸ
ଷ
௜ୀଵ ൯ଶ

+ ൫∑ ܿ௜
ଷ
௜ୀଵ ∙ ௜ܸ൯ଶቃ  (2) 

where ݎ° is the value of r at a center point 
(centroid) of element, a is the area of the 
element, ܾ௜ = ௝ݎ − ௞, ܿ௜ݎ = ௞ݖ −  ௝ , and ௜ܸ is theݖ
scalar potential at each triangular mesh point. 
From this last relation, it is easy to set up the 
nodal equation for each mesh point. The set of 
all the nodal equations obtained can be solved by 
a matrix method to get the vector potential value 
for each nodal point. 

Mesh Generation 

To employ the FEM for magnetic electron 
lenses, the first step involves specifying the 
boundaries and positions of magnetic materials 
and coils using a coarse mesh. The identification 
of the lens geometry doesn't rely on the fine 
mesh lines generated between coarse mesh lines 
in both radial and axial directions [35]. 

The operator responsible for generating the 
fine mesh needs to balance memory 
requirements for the entire program and the 
computation time to keep them manageable. This 
is achieved by using a variable mesh size with a 
concentrated distribution of mesh points around 
critical areas of the lens, such as the polepiece, 
and a sparse mesh in other parts of the magnetic 
lens. 

A well-suited mesh distribution ensures 
accurate calculations of the field distribution, 
which can be verified by computing the degree 
of coincidence between the field integral and the 
designed lens excitation. Therefore, the accuracy 
of the finite element calculations strongly 
depends on the compatible choice of meshes, 
which is largely influenced by the experience of 
the operator [36]. 

Evaluating the Percentage Errors in Finite 
Elements Calculation 

The numerical method is used to determine 
the accuracy of computing the axial flux density. 
From Ampere's law for a coil with N turns 
carrying current (I), it is well known that [37]: 

∮ ܪ ∙ ݈݀ =  (3)             ܫܰ

where H is the magnetic field, that it is related to 
the flux density B, which is given by the relation: 

ܤ = °ߤ ∙ ௥ߤ ∙  (4)             ܪ

where (ߤ° ∙  .௥) is the permeability of materialߤ

In a finite element program, the flux density 
is supposed to be zero at the boundaries of the 
lens. Thus, by combining Eqs. (3) and (4) the 
following formula can be obtained: 

∫ ܤ ∙ ݖ݀ = °ߤ ∙ ௥ߤ ∙ ௭మܫܰ
௭భ

           (5) 

where z1 and z2 are the coordinates of the start 
and end of the axis, respectively. Therefore, the 
numerical integration over the length of the 
optical axis produces a means of calculating the 
output excitation (NI)out. This output excitation 
value will be compared with the input excitation 
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(NI)in, which is identified in the input data, and 
then the percentage error of finite element 
calculation can be calculated from the following 
equation: 

%ݎ݋ݎݎܧ = ቚ100 ∙ ቀ1 − (ேூ)೚ೠ೟
(ேூ)೔೙

ቁቚ          (6) 

Analysis of the Magnetic Lenses 
The use of the computer in the design of 

magnetic electron lenses and understanding their 
properties is discussed here, the process 
commonly referred to as computer-aided design 
(CAD) of an electron optical system. This 
process typically involves three steps. The first 
step is calculating the electric or magnetic field 
based on initial boundary conditions. The second 
step is the evaluation of representative electron 
trajectories based on the calculated magnetic 
fields. The third step is the calculation of both 
image properties and aberration values derived 
from the computed trajectories [5]. 

Magnetic Field Calculations 
 In the first step,  which involves finding the 

distribution of the electromagnetic potential or 
field for a specific geometry of coil, magnetic 
material, and insulator,  three numerical methods 
are commonly employed to solve the boundary 
problems in electron optics. These methods are 
the boundary element method (BEM), the finite 
difference method (FDM), and the finite element 
method (FEM) [38-40]. BEM is suitable for 
solving linear problems that do not require 
partitioning of the entire space. It is applied to 
calculate the field of electron guns in electron 
microscopy. This method focuses on applying 
the potential only on the material boundaries. 
FDM is relatively easy to program, but it can be 
challenging to handle complex designs of 
electron lenses, especially in the presence of 
magnetic material saturation. Therefore, it is 
typically used for designs involving electrostatic 
lenses. FEM is highly favorable in electron 
optics as it can handle complex lens geometries 
effectively. It is particularly useful for 
addressing the saturation of magnetic materials. 
The versatility of FEM makes it a preferred 
choice for various electron optics applications 
[41]. 

The axial flux density distribution B(z) is 
needed for estimating the optical properties. In 
free space regions, it is well known that ܤ =  ܪ°ߤ
and ܪ =  ௠. From these relation, it can beߔ∇
found that [42]:  

(ݖ)ܤ = ௠ߔ°ߤ
ᇱ  (7)            (ݖ)

where ߔ௠
ᇱ  is the derivative of the magnetic (ݖ)

potential ߔ௠(ݖ) on the optical axis with respect 
to z. Then, the axial flux density distribution B(z) 
can be calculated by numerical differentiation of 
 using the cubic spline curve. Once (ݖ)௠ߔ
calculated, the axial flux density distribution 
B(z) can be graphically represented. 

      The paraxial rays r(z) can also be calculated 
by solving the paraxial ray equation for the 
magnetic lens using the following relation:  

(ݖ)"ݎ + ௘
଼௠௏

(ݖ)ݎ(ݖ)ଶܤ = 0           (8) 

where (e/m) is the (charge/mass) ratio of the 
particle (absolute value) and ܸ is the beam 
voltage. Equation (8) can be solved numerically 
using a fourth-order Runge-Kutta formula. After 
evaluating the axial flux density B(z), its axial 
derivative B'(z) can be also calculated by 
numerical differentiation using a cubic spline 
curve. The aberration coefficients can be 
calculated by computing suitable integrals. For 
example, the formulae for calculating the 
spherical aberration coefficient Cs and the 
chromatic aberration coefficient Cc, related to the 
image plane zi are:  

௦ܥ = ௘
ଵଶ଼௠௏

ଵ
௥ᇲర(௭೔)

∫ ቀ ଷ௘
௠௏

ଶݎଶܤ + ଶݎଶ′ܤ8 −௭೔
௭°

ଶቁ′ݎଶܤ8  (9)            ݖଶ݀ݎ

௜ܥ = ௘
଼௠௏

ଵ
௥ᇲమ(௭೔)

∫ ௟೔ݖଶ݀ݎଶܤ
௟°

         (10) 

where r(z) is the paraxial ray that begins from 
the axis at the object plane zo and crosses the axis 
again at the image plane zi and the integrals are 
computed from z0 to zi. The integrals can be also 
calculated numerically using Simpson's rule. 
Similarly, this formulae can also be used to 
calculate the primary field aberrations (coma, 
astigmatism, field curvature, distortion, and the 
chromatic field aberrations). The comprehensive 
aberration formulas are extensively documented 
in existing literature  [43-45]. 

Now, it is necessary to calculate the potential 
distributions at all the mesh points of a given 
design. Since the analysis region contains coil 
windings, the magnetic vector potential (A) 
should be used as well. It is defined in such a 
way that the magnetic flux density (B) is given 
by (ܤ = ∇ ×  The distribution of (A) can be .(ܣ
calculated by minimizing the following 
variational functional: 
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ܨ = ∭ ቀ ଵ
ଶఓ

(∇ × (ܣ ∙ (∇ × (ܣ − ܬ ∙ ቁܣ ܸ݀    (11) 

where J is the current density (a specific value 
inside the coil windings and zero value outside 
the coil windings) and ܸ݀ represents a small 
element of volume. In cylindrical coordinates 
(z,r,θ), the vector potential (A) has three known 
components (Az, Ar, Aθ). When the lens is of a 
rotationally symmetric type, however, the field 
can be indicated by a vector potential that has 
only a θ component (Aθ), and then, in terms of 
(Aθ) Eq. (11) can be written as  

ܨ = ∬ ൜ ଵ
ଶఓ

൤ቀడ஺ഇ
డ௭

ቁ
ଶ

+ ቀడ஺ഇ
డ௭

+ ஺ഇ
௥

ቁ
ଶ

൨ −

ఏൠܣఏܬ  (12)          ݎ݀ ݖ݀ ݎߨ2

After computing the vector potential (Aθ) at 
each mesh point, the magnetic flux distribution 
can be calculated by plotting the contours of the 
value (ߖ =  ߖ ఏ). Physically, the quantityܣݎߨ2
(z,r) at any point (z, r) will represent the total 
magnetic flux (in webers) enclosed within a 
coaxial circle of radius r centered at the point 
under consideration.  

The components of the flux density (Bz,Br), 
and the total flux density (B) at any given point 
within the lens can be calculated using the 
formula listed below:  

௭ܤ = డ஺ഇ
డ௥

+ ஺ഇ
௥

, ௥ܤ = − డ஺ഇ
డ௭

, ܤ = ඥܤ௭
ଶ + ௥ܤ

ଶ (13) 

The partial derivatives (డ஺ഇ
డ௭

) and (డ஺ഇ
డ௥

) in Eq. 
(13) can be obtained by numerical differentiation 
of the quantities of (ܣఏ) at the mesh point. After 
calculating the values of (B) at each mesh point, 
the contours of (B) can also be plotted. These 
quantities of (B) are very useful for designing 
magnetic lenses, enabling the prevention of 
saturation effects in the magnetic material. The 
saturation effect of axial magnetic fields is 
shown in Fig. 6 for NI = 20 -100 kA-t. This 
figure has been generated using the newly 
developed program referred to as FEM-CMFD. 
This data is important for researchers, aiding in 
the avoidance of undesirable situations related to 
saturation effects. 

The axial flux density distribution B(z) is 
needed for calculating the optical properties. In 
terms of ܣఏ(z,r) this is given mathematically 
from Eq. (13) by: 

(ݖ)ܤ = lim௥→଴ ቀడ஺ഇ
డ௥

+ ஺ഇ
௥

ቁ = lim
௥→଴

ቀଶ஺ഇ
௥

ቁ        (14) 

This value can be computed numerically by 
taking the quantities of (ܣఏ) at the first two off-
axis mesh points in the radial direction. By 
signifying these values (A1 and A2) and their off-
axis distance by r1 and r2, respectively, the axial 
flux density can be given by: 

(ݖ)ܤ = ௥భ
మ஺భି௥భ

య஺మ
௥భ௥మ൫௥మ

మି௥భ
మ൯          (15) 

Determination of Magnetic Field: 
This paper introduces a new program, 

denoted FEM-CMFD, designed for calculating 
the axial magnetic field distribution in axially 
rotating magnetic lenses of any type. The 
program is based on the boundary conditions of 
the finite element method (FEM) and utilizes an 
input method format and computation 
formulation derived from the set of Munro 
programs (M12 and M13) [46]. Developed for 
ease of use, the FEM-CMFD program 
streamlines the input data preparation and output 
data presentation. Both input and output data are 
simplified and can be easily created or edited 
using Microsoft Excel or any text editor. The 
program itself has been coded using Microsoft 
Visual Studio. 

The program interface is illustrated in Fig. 1. 
This interface allows users to open previously 
created data or generate an Excel sheet for input 
data based on the selected numbers of vertical 
and horizontal course meshes, as well as the 
number of sections on the magnetic lens. Upon 
opening the data file (via the "Open Input Data" 
button), the program automatically calculates 
and displays results in the "Messages" section. In 
case of errors in the input data file, relevant 
messages appear in this section, providing 
information about the type of error and 
terminating the calculation process. 
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FIG. 1. interface window of FEM-CMFD program. 

 

Fig. 2 shows a sample data preparation for a 
typical lens. The dataset is identical to the 
method introduced by Munro [46]. The data in 
this figure have been structured in Microsoft 
Excel for simplicity, replacing the older DOS 
editors. This ensures compatibility with any 

program that operates under DOS or Windows, 
offering easy editing. The figure provides 
comprehensive information on FEM data 
preparation for magnetic lenses. Additionally, a 
help file is available and can be accessed via the 
Help button.

 
FIG. 2. Sample data preparation for FEM-CMFD program. 

 

Magnetic Field Calculations of Typical 
Magnetic Lens: 

To test the performance and the accuracy of 
the new program (FEM-CMFD), the 
asymmetrical lens designed by Al-Khaldey [47] 
(shown in Figs. 3 and 4) was used for both 
analytical and practical testing. 

The fine and coarse mesh distributions of the 
Finite Element Method (FEM) and the geometry 
border determinations for the tested lens are 
organized as illustrated in Fig. 4. Subsequently, 
the input data file for the FEM-CMFD program 
is prepared in a manner previously shown in Fig. 
2.  
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FIG. 3. Cross-section of half of the asymmetrical magnetic lens introduced by Al-Khaldey [47] which is used for 

analytical and practical tests of the FEM-CMFD program. 

  
FIG. 4. The FEM's fine and coarse mesh distributions of the tested lens introduced by Al-Khaldey [47]. 

 

With the aid of the FEM-CMFD program, the 
output axial magnetic field distribution data can 
be either edited or directly plotted. Fig. 5 shows 
the field distribution of the axial magnetic field 

for the tested lens. This representation has been 
generated by the program using the Graph button 
and has been calculated at an excitation of 2000 
A-t.

 
FIG. 5. The axial magnetic field distribution of the tested lens as demonstrated by the program FEM-CMFD, 

which is calculated at an excitation of 2000 A-t. 
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In addition, the FEM-CMFD program can 
export field data to Microsoft Excel, enhancing 
the representation of data. Figure 6 shows the 
magnetic field of the tested lens designed by Al-
Khaldey, calculated using the FEM-CMFD 
program at excitations of 1, 2, 3, 4, 5, 7, 10, 20, 

50, and 100 kA-t. Notably, at excitation values 
of 20, 50, and 100 kA-t, saturation effects 
become evident in the field profile. These effects 
arise from the magnetic field straying from the 
iron circuit of the lens.  

 
FIG. 6. The magnetic field of the tested lens of Al-Khaldey [47] calculated using the FEM-CMFD program at 

excitations of 1, 2, 3, 4, 5, 7, 10, 20, 50, and 100 kA-t. 
 

The variations of the maximum field value 
with the lens excitations are illustrated in Fig. 7. 
The curves in this figure closely resemble the 

magnetization curves of soft iron. This match 
serves as confirmation of the validity of the new 
program. 

 
FIG. 7. The variation of the maximum value of the field with the lens excitations. 

 

Furthermore, an additional comparison for 
the magnetic field calculations has been 
conducted with another magnetic lens (shown in 
Fig. 8), introduced by Zlámal and Lencová [48, 
49]. The computations were performed using 
both the EOD program [50] and the FEM-CMFD 

program to determine the magnetic field at a 
constant excitation of NI=500 A-t. Figure 9 
illustrates a comparison between the axial 
magnetic field profile, showcasing a perfect 
agreement between the two curves, considering 
the errors inherent in numerical calculations. 
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FIG. 8. Cross-section of one-half of the asymmetrical magnetic lens introduced by Zlámal & Lencová [48, 49], 

which is used for testing the new program (FEM-CMFD). 

 
FIG. 9. Comparison between the axial magnetic field due to the second test lens, calculated at NI=500 A-t using 

EOD and FEM-CMFD programs. 
 

The present program is equipped with an 
automatic correction feature to address accepted 
error values set at 10-12. In cases where the 
numerically calculated area value under the field 
curve deviates from the input excitation value, 
the program initiates a recalculation with the 
addition of a correction factor. This process 
continues iteratively until the required accuracy 
is achieved, following Maxwell's fourth 
equation. Seven allowed approximations are 
granted, providing the program the opportunity 
to reach the required accuracy. If, after these 
attempts, the program cannot attain the specified 
accuracy (when comparing the input excitation 
and the area under the curve), it will halt, 
prompting the operator to redesign the meshes in 
the FEM calculations. Errors in programs 
calculating magnetic fields in magnetic lenses 
using FEM often stem from inappropriate mesh 
distribution for a specific design. In such cases, 

the program ceases operation and notifies the 
operator to reevaluate the mesh distribution. The 
error tolerance in our program is set at ϵ = 10-12. 
This comprehensive error-handling mechanism 
ensures the reliability and precision of the 
calculations, promoting accurate results in the 
magnetic field simulations. 

Conclusions: 
The present work introduces a new program 

for the calculation of the axial magnetic field of 
rotationally symmetric magnetic lenses. Referred 
to as "FEM-CMFD," which stands for "Finite 
Element Method for Calculating Magnetic Field 
Distribution", this program underwent testing by 
comparing its results with those of previously 
published research works. The comparison 
revealed a perfect agreement, accounting for 
errors inherent in numerical computations 
associated with different methods. 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-20 -10 0 10 20

FEM-CMFD

EOD

Z (mm)Z (mm)

BZ (Tesla)

0.085

0.086

0.086

0.087

0.087

-0.6 -0.4 -0.2 0 0.2 0.4 0.6



Article  Alabdullah, Alkattan and Al-Salih 

 560

References: 
[1] Park, M.-J., Kim, D.H., Park, K., Jang, D.Y. 

and Han, D.-Ch., J. Mech. Sci. Technol., 22 
(2008) 1734. 

[2] Bogner, A., Jouneau, P.-H., Thollet, G., 
Basset, D. and Gauthier, C., Micron, 38 
(2007) 390. 

[3] Al-Azawy, A.A.R., Al-Kadumi, A.K.S. and 
Najm, Z.N., J. Kerbala University, 15 (1) 
(2017) 186. 

[4] Paris, G.Y., Nucl. Instrum. Methods, 44 (1) 
(1966) 137. 

[5] Kasper, E., "Magnetic Field Calculation and 
Determination of the Electron Trajectories", 
Magnetic Electron Lenses, Ed. W. Hawkes, 
(Berlin, Springer, 1982) pp 57 – 118. 

[6] Lencovà B., "CAD in Electron Optics", 
Report, Institute of Scientific Instruments of 
the ASCR, Královopolsk 147, Brno, Czech 
Republic, (2007). 

[7] Lencovà B., "Software for Particle Optics 
Computations SPOC", Fleischnerova 15, 
63500 Brno, Czech Republic, (2000). 

[8] Fujita, Sh., Takebe, M. and Shimoyama, H., 
G-Optk, 7th International Conference on 
Charged Particle Optics (CPO-7), Abstract 
for Computer Software Demonstrations, 
Trinity College Junior, Parlour, (2006). 

[9] Lencovà B. and Zlámal J., Microsc. 
Microanal., 13 (3) (2007) 2. 

[10] Müller, H., Uhlemann, S., Hartel, P. and 
Haider, M., Proceeding of CPO-7, Eds. E. 
Munro and J. Rose, Physics Procedia, Vol. 
1No. 1, (2008) pp. 167-178.  

[11] Trubitsyn, A.A., Appl. Phys. (Rus.), 2 
(2008) 56. 

[12] Dahl, D.A., Int. J. Mass Spectrom., 200 
(2000) 3. 

[13] Manura, D., "SIMION ® 8.0 User Manual", 
(Scientific Instrument Service (SIS), Inc., 
issue 172, USA, 2008). 

[14] Huang, T., Hu, Q., Yang, Z., Li, B., Li, J.Q., 
Jin, X.L., Hu, Y.L., Zhu, X.F., Liao, L., Xiao, 
L. and He, G.X., Electron Devices, IEEE 
Transactions, 56 (1) (2009) 140. 

[15] Munro, E., "Munro's Electron Beam 
Software – Software Catalogue", (MEBS Ltd, 
2010). 

[16] Humphries, S., "Three-Dimensional 
Charged-particle Optics and Gun Design", 
(Field Precision LLC, CRC Press, 
Albuquerque, New Mexico U.S.A, 2011). 

[17] Egerton, R.F., "Physical Principles of 
Electron Microscopy", (Springer, USA, 
2005). 

[18] Szilagyi, M., "Electron and Ion Optics", 
(Plenum Press: New York, 1988). 

[19] Hawkes, P.W., "Magnetic Electron Lenses", 
(Springer-Verlag, Berlin, 1982). 

[20] Liebl, H., "Applied Charged Particle 
Optics", Ch.1-4, (Springer, 2008) pp. 1-104. 

[21] Hasan, H.S., Int. Lett. Chem. Phys.Astron., 
4 (2013) 46. 

[22] Arabi, E., Arabi, A., KamaliI, S.M., Horie 
Y., and Farpon, A., Optica, 3 (6) (2016) 628. 

[23] Al-Obaidi, H.N. and Al-Azawy, A.A.R., J. 
Coll. Educ., 1 (2016) 39. 

[24] Ghani, M.K.A., Mohammed, M.A., 
Ibrahim, M.S., Mostafa, S.A. and Ibrahim, 
D.A., J. Theor. Appl. Inf. Technol., 95 (13) 
(2017) 3127. 

[25] Ogudo, K.A., Nestor, M.J.D., Khalaf, O.I. 
and Kasmaei, D.H., IOT Services and 
Machine-Type Communication in Cellular 
Networks Symmetry, 11 (2019) 593. 

[26] Mohammed, M.A., Ghani, M.K.A., 
Mostafa, S.A. and Ibrahim, D.A., J. Eng. 
Appl. Sci., 12 (2017) 4792. 

[27] Kadim, W.J., Naser, B.A. and Abbas, T.M., 
Int. J. Eng. Technol., 7 (4) (2018) 3591. 

[28] Khalaf, O.I, Abdulsahib, G.M. and Sadik, 
M., J. Eng. Appl. Sci., 13 (2018) 9277. 

[29] Khalaf, O.I. and Sabbar, B.M., Period. Eng. 
Nat. Sci., 7 (3) (2019) 1096. 

[30] Alabdullah, A.I.M., Mostafa, S.A., 
Mohammed, M.A., Mustapha, A., Ramli, 
A.A., Jubair, M.A., Hassan, M.H., Ismail, A. 
and Ibrahim, D.A., Revista Aus., 26 (1) 
(2019) 199. 



Program for Calculating the Axial Magnetic Field Distribution of Magnetic Lenses Using Finite Element Method 

 561

[31] Alabdullah, A.I.M. Ph.D. Thesis, Mosul 
University, Mosul, Iraq, (2013). 

[32] Tahir, K. and Mulvey, T., Inst. Phys. Conf. 
Ser., 119 (12) (1991) 211. 

[33] Munro, E., "Some Technique and 
Applications of the Finite Element Method 
for Solving Magnetic Field Problems", Proc., 
(1976). 

[34] Lencova', B., "On the use of finite element 
method for the computation of electron 
optical elements", Inst. of Sci. Instru. Czech 
Academy of Sci., 147, 61264 Brno, 
Czechoslovakia, (1986a) pp.813-819. 

[35] Lencova', B. and Wisselink, G., Nucl. Instr. 
Meth. in Phys. Res. A, 298 (1-3) (1990) 56. 

[36] Podbrdsky, S. and Krivanek, O.L., J. Optik, 
79 (1988) 177. 

[37] Hill, R. and Smith, K.C.A., Inst. Phys. 
Conf. Ser., 52 (1) (1980) 49. 

[38] Hawkes, P.W. and Kasper, E., "Principles 
of Electron Optics". Part 2, (Academic Press, 
London, Ch.44, 1989) pp. 918 – 933. 

[39] Munro, E., "Computer- Aided Design of 
Electron Lenses by the Finite Element 
Method", In "Image Processing and 
Computer Aided Design in Electron Optics" 
Ed. P.W. Hawkes, (Academic Press, London, 
1973) pp. 284- 323. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[40] Lencova', B., "The impact of electron 
optical simulations on the design in electron 
microscopy", ICEM 13-PARIS, (Optics and 
detection of charged particles, 1994) pp. 145-
148. 

 [41] Lencova', B., Proc. Conf. Elect. 
Microscopy, Slovakia (1995) pp.19-23. 

[42] Orloff, J., "Handbook of Charged Particle 
Optics", QC372.2.D4H36, (Library of 
Congress Cataloging-in-Publication Data, 
Computational Techniques for Design of 
Charged Particle Systems, 1997) pp. 13-17. 

[43] Glaser, W., Magazine for Physics, 80 
(1933) 451.  

[44] Scherzer, O., Magazine for Physics, 101 
(1936) 593. 

[45] Grivet, P., "Electron Optics", 2nd English 
Ed., Part 1, (Pergamon, Oxford, 1972) pp. 
168-170. 

[46] Munro, E., "A Set of Computer Programs 
for Calculating the Properties of Electron 
Lenses", Report, Cambridge University, Eng. 
Dept., CUED/B-ELECT/TR 45, (1975). 

[47] Al-Khaldey, T.J., Ph.D. Thesis, University 
of Mosul, Iraq, (2017). 

[48] http://www.lencova.com/ 

[49] Zlámal, J. and Lencová, B., Nucl. Instrum. 
Meth. A, 645 (1) (2011) 278. 

[50] Lencová, B. and Zlámal, J., Physics Proc, 1 
(1) (2008) 315. 


