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Abstract: An analytical solution is possible for the Schrödinger equation for two particles 
interacting via a step-like potential and confined in a harmonic trap. This model is assumed 
to be very close to the real case of two confined Rydberg-dressed atoms. In this 
contribution, we thoroughly examine the validity of this approximation to describe the 
realistic situation. We analyze in detail the impact of the dimensionality on the spatial 
correlation of the system. The impact of the dimensionality on the dynamics of the system 
under a quench scenario is also investigated. 
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1. Introduction 

Matter is a huge and intricate assembly of 
some “fundamental” constituents, within which 
the individuality of these elements often appears 
to be lost. Understanding how finite micro 
elements lead to the macroscopic structure is of 
paramount importance in both nuclear and 
condensed matter physics. It aims not only to the 
comprehension of the constituents’ structure but 
also to the elucidation of the correlations and the 
interplay among constituents. On the other hand, 
experiments involving confined cold few 
particles are nowadays very accessible and are 
becoming a matter of routine. In fact, a number 
of system parameters, such as the confinement 
potential and the particle-particle interaction 
features, can be controlled on demand [1, 2]. 
This way, it is possible to verify experimentally 
the validity of a number of quantum simplified 
models studied in the past and explore 
fundamental physics concepts. It is also true that 

more efforts are necessary in order to devise new 
“toy” models targeting a detailed comprehension 
of the features of the interaction at different 
levels of approximation as well as different 
dimensionalities (1D, 2D, and 3D). An exact 
solution for the Schrödinger equation established 
in the case of different and sometimes 
complicated potentials, can be found in the 
literature (see, for example, Refs. [3-7]). Most of 
these solutions are given for the case of a single 
particle system. The situation becomes quite 
complicated when considering the case of two 
particles as a first step on the path towards the 
description of cold, confined few-body systems 
[8-10]. The difficulty resides in the consideration 
of both confinement potential characteristics and 
a realistic interaction potential. The hard-core 
interaction is the most simplified interaction 
scheme, and in this case, it is possible to achieve 
a quasi-exact solution for the two-particle 



Article  Chia and Grar 

 208

system. A theoretical study encompassing the 
three dimensionalities and a delta-like interaction 
for a system of two particles was developed in 
the seminal work of Busch et al. [11, 12]. In that 
work, a quasi-exact solution is derived under the 
assumption of a contact interaction (an s-wave 
for bosons and a p-wave for fermions). In order 
to take into account a certain interaction range, a 
Gaussian-like potential can be considered, which 
also allows for a quasi-analytical solution [13, 
14]. These interaction models, however, ignore 
the long-range nature of the interaction for 
dipolar atoms or the Rydberg-dressed interaction 
behaving like 1/ݎ଺ and which can be very 
important either fundamentally or 
experimentally [15, 16]. An analytical solution 
for this interaction is still to be found. 
Nevertheless, a simplification of this interaction 
as a step function was proposed by Kościk et al. 
[17]. This approach enables a quasi-exact 
solution in one and two dimensions and allows 
for a detailed investigation of the system's 
various features. These quasi-solvable models 
are of extreme importance for advances in cold 
confined few-particle systems. It can be 
considered as a set of models to be validated 
experimentally as well as an exact basis to 
construct the solution for few-body systems 
exploiting different strategies, such as 
variational, ab initio, or interacting 
configurations [8-10]. The aim of the present 
study is to conduct a comparative analysis of the 
quasi-exact solvable model of Kościk et al. in 
the three dimensionalities and highlight the most 
important players for the considered interaction. 
We are unavoidably concerned by the analysis of 
the spatial correlations, which provide essential 
insight into the system’s internal structure. We 
focus on the effects of the dimensionality on the 
spatial distribution of the system. The study is 
first established in a static regime and then 
enlarged to a dynamical one. In the dynamical 
regime, we are interested in the influence of the 
dimensionality on the evolution of the 
correlation under different quench scenarios. 
However, before proceeding with the details of 
the study, we establish the validity of using a 
step-function potential as a substitute for the 
more realistic Rydberg interaction is appropriate. 
To this end, we apply perturbation theory to 
identify potential discrepancies between results 
obtained using the approximate step function and 
those derived from the original long-range 
potential. The paper is organized as follows: In 

the second section, we review the key theoretical 
framework and provide the essential formulas 
and energy spectra relevant to the subsequent 
analysis. The third section presents a 
perturbative treatment of the system under the 
step-function potential and illustrates the 
convergence of its results toward those of the 
realistic interaction model. The fourth section is 
devoted to analyzing the energy spectra 
associated with the relative motion in the two-
particle system for various interaction ranges, 
emphasizing the role of dimensionality. In this 
section, we also examine the relative radial 
spatial correlation and investigate the interplay 
between the centrifugal barrier, interaction 
range, and interaction strength in one, two, and 
three dimensions. In the fifth section, we present 
a time-dependent analysis of the system, 
focusing on the effects of dimensionality and 
sudden parameter changes (quench scenarios) on 
the evolution of spatial correlations. The main 
findings are summarized in the concluding 
section. 

2. Theoretical Background 
The different models aim to establish an 

analytical solution for the following Schrödinger 
equation for a system of two identical spinless 
quantum particles, having a mass ݉ and trapped 
in an external potential: 

ቀ∑ ିℏమ

ଶ௠
ଶ
௜ୀଵ ∇௜

ଶ + ௘௫௧ݒ + ቁݒ ଵሬሬሬ⃗ݎ)߰ , ଶሬሬሬ⃗ݎ ) = ଵሬሬሬ⃗ݎ)߰ܧ , ଶሬሬሬ⃗ݎ ),  
(1) 

where ݒ௘௫௧ is the confining potential, ݒ is the 
interaction potential depending on the particles’ 
separation, and ݎపሬሬ⃗  is the vector position for each 
particle. To simplify the calculation, the particles 
are assumed to be point-like (structureless), and 
the confining potential is taken to be harmonic. 
The constraints imposed on the harmonic 
potential in different spatial directions determine 
the motion of the particles and thus define the 
dimensionality of the problem [18-20]. The same 
confining potential is imposed on both particles, 
and the equation becomes: 

ቆቀ∑ ିℏమ

ଶ௠
ଶ
௜ୀଵ ∇௜

ଶ + ଵ
ଶ

݉߱ଶݎ௜
ଶቁ + ଵሬሬሬ⃗ݎ|)ݒ −

ଶሬሬሬ⃗ݎ |)ቇ ଵሬሬሬ⃗ݎ)߰ , ଶሬሬሬ⃗ݎ ) = ଵሬሬሬ⃗ݎ)߰ܧ , ଶሬሬሬ⃗ݎ ).  (2) 

For this quadratic potential, it is possible to 
single out the center-of-mass contribution to the 
motion from the relative one. The equation then 
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becomes: 

ቆିℏమ

ଶெ
∇ோሬ⃗

ଶ + ଵ
ଶ

ଶܴଶ߱ܯ + ିℏమ

ଶఓ
∇௥⃗

ଶ + ଵ
ଶ

ଶݎଶ߱ߤ +

ቇ(ݎ)ݒ ߰൫ ሬܴ⃗ , ൯ݎ⃗ = ൫߰ܧ ሬܴ⃗ ,  ൯,  (3)ݎ⃗

where ܯ = ߤ ,2݉ = ݉/2 (the reduced mass), 
ܴ = ଵሬሬሬ⃗ݎ| + ଶሬሬሬ⃗ݎ |/2, and ݎ = ଵሬሬሬ⃗ݎ| − ଶሬሬሬ⃗ݎ |. The wave 
function can be written in a separable form as: 

߰൫ ሬܴ⃗ , ൯ݎ⃗ = ߯൫ ሬܴ⃗ ൯߮(⃗ݎ).  (4) 

Consequently, we can separate the center-of-
mass motion from the relative one as: 

ቀିℏమ

ଶெ
∇ோሬ⃗

ଶ + ଵ
ଶ

ଶܴଶ߱ܯ − ௖ቁܧ ߯൫ ሬܴ⃗ ൯ = 0,  (5) 

ቀିℏమ

ଶఓ
∇௥⃗

ଶ + ଵ
ଶ

ଶݎଶ߱ߤ + (ݎ)ݒ − ௥ቁܧ (ݎ⃗)߮ = 0,  (6) 

with ܧ = ௖ܧ +  ௥. The first equation is just anܧ
equation for a harmonic oscillator with known 
solutions. The difficulty resides in finding a 
solution for the second equation, where handling 
a realistic interaction can be quite challenging. It 
is important to note that the symmetry of the 
total wave function depends only on the relative 
part of the wave function since the center-of-
mass part is symmetric by construction. 
Operating the adequate changes in the 
appropriate coordinate system [21], we can 
express Eq. (6) for three dimensions (1D, 2D, 
and 3D), respectively, as: 

ቀିௗమ

ௗ௥మ + ଵ
ସ

ଶݎ + (ݎ)ݒ − ௥ቁܧ (ݎ)݂ = 0,  (7) 

ቀିௗమ

ௗ௥మ + ௟మିଵ/ସ
௥మ + ଵ

ସ
ଶݎ + (ݎ)ݒ − ௥ቁܧ (ݎ)݂ = 0,  (8) 

ቀିௗమ

ௗ௥మ + ௟(௟ାଵ)
௥మ + ଵ

ସ
ଶݎ + (ݎ)ݒ − ௥ቁܧ (ݎ)݂ = 0.  (9) 

Here, the energy, the position, and the 
angular momentum quantum number ݈ are 

expressed in ℏ߱, ට ℏ
௠ఠ

, and √ℏ݉߱ units, 

respectively. The second term in Eqs. (8) and (9) 
represents the centrifugal potential. The last two 
equations are just the relative-radial part of the 
Schrödinger equation. Notice that we can shift 
from Eq. (8) to Eq. (9) by operating the 
following change: 

݈ଶ஽ → ݈ଷ஽ + 1/2.  (10) 

This means that it is possible to find the 
solution for the 3D case by solving the equation 

for the 2D case, provided that the appropriate 
relation between the angular momentum 
quantum numbers is respected [17]. It is clear 
from the equations that the centrifugal effect is 
completely absent in 1D (Eq. 7) and is increasing 
when passing from 2D to 3D [Eqs. (8) and (9)]. 
It is also important to recall that the total wave 
function is defined by the quantum number ݊ in 
1D, by ݊ and ݈ in 2D, and by ݊, ݈, and ݉ in 3D. 
This wave function is symmetric for even ݊ in 
1D and even ݈ for 2D and 3D; it is antisymmetric 
for odd ݊ in 1D and odd ݈ for 2D and 3D. A 
symmetric total wave function defines a bosonic 
state, whereas an antisymmetric total wave 
function defines a fermionic one. 

Solving Eqs. (7), (8), and (9) relies on the 
form considered for the interaction potential. For 
our study, we are interested in the long-range 
nature of the interaction. This is the case for the 
interaction between two non-symmetric neutral 
charged distributions. Such interactions involve 
multipolar excitations, particularly when atoms 
are excited to high principal quantum numbers, 
known as Rydberg states [22]. The potential for 
this interaction can be approximated to the first 
order as composed of a short-ranged part, to 
which we add a van der Waals long-ranged 
interaction. This last one is the main contribution 
to the multipolar excitations. In this case, the 
interaction potential can be given as [17, 23]: 

(ݎ)ݒ = ௚

ଵାቀ ೝ
ೃ೎

ቁ
ల,  (11) 

where ݃ is the strength and ܴ௖ is the range of the 
potential (see Fig. 1). We will call this potential 
the Rydberg interaction in the following 
sections. It is not yet possible to find an exact 
solution to the Eqs. (7), (8), and (9) with this 
realistic interaction along with the harmonic 
confinement. Nevertheless, a quasi-exact 
solution is achieved for an interaction potential 
defined as a step function [17]. This 
approximation mimics the previous expression 
quite fairly for the short-range part and then falls 
abruptly to zero. It is given as: 

(ݔ)ݒ = ቄݒ଴  ݔ ݎݑ݋݌ ≤ ܽ
ݔ 0 > ܽ,   (12) 

where we can relate ݒ଴ and ܽ to the strength and 
the range (݃ and ܴ஼), respectively (Fig. 1) [17]. 
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FIG. 1. Comparison between the realistic Rydberg interaction, the step function, and the difference between 

these two potentials. ݒ଴ is set to 5, and the range is equal to one. The difference is considered as a perturbation 
(see Sec. 3).  

This simplification is justified by the fact that 
the main contribution to the realistic potential 
comes from the flat part. In the case of this 
approximation, it is possible to establish a quasi-
exact solution by reducing the 1D equation [Eq. 
(7)] to a Weber form, while the 2D and 3D 
relative-radial equations [Eqs. (8) and (9)] are 
transformed into Kummer-type differential 
equations. The solution is expressed as a 
function of the confluent hypergeometric 
function of the first kind in the region [0, ܽ], and 
as a function of the Tricomi function elsewhere 
[17, 24-26]. In order to guarantee a physical 
behavior of the whole solution, a condition for 
the continuity of the two functions and their 
derivatives is imposed at ݎ = ܽ, leading to 
transcendental equations. Solving these 
equations quantizes the energy, which allows for 
the retrieval of the energy spectrum with 
different combinations of strength ݒ଴ and range 

ܽ. Figs. 2 and 3 display representative energy 
spectra obtained from this model. Fig. 2 shows 
the energy versus the interaction strength for 
different values of the range in the case of 1D, 
whereas Fig. 3 is the same illustration for the 2D 
and 3D cases. These figures are mostly the same 
as the ones illustrated in [17, 27] and are 
reproduced here just to clarify and justify some 
of the results developed in subsequent sections. 
It is worth signaling the fermionization limits in 
1D calculations where the bosons’ energy levels 
are converging to the fermions’ ones. This is 
known as the bosons-fermions mapping or the 
Tonks-Girardeau limit [28]. The results for the 
3D case are similar to the 2D case but are shifted 
to higher energy levels. This result derives 
straightforwardly from the relation given by Eq. 
(10). This remark will be used to expect or 
justify some of the following results. 

 
FIG. 2. (a) Energy spectrum in one dimension versus ݒ଴ with increasing values of ݊ (݊ = 0, 1 ... 8, bottom to 

top). Even values of ݊ correspond to bosons (black), while odd values represent fermions (red). The value of the 
range ܽ is indicated in each panel. 
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FIG. 3. Energy spectrum for the fundamental state (n = 0) versus ݒ଴ with increasing values of the angular 

momentum quantum number ݈ = 0, 1, 2, 3, 4 (from bottom to top) in three (red) and two (black) dimensions. 
The value of the range ܽ is indicated in each panel. 

These results are only possible for a harmonic 
trap and a step-like potential interaction, where 
an analytical solution is possible. Plenty of other 
complicated trap shapes, along with different 
interactions, are possible. However, only 
numerical approaches in these cases are used to 
investigate the system of two trapped particles 
[29]. 

3. Perturbation Treatment  
Before proceeding to the main topic of this 

contribution, namely, the study of the impact of 
the dimensionality on some properties of the 
studied system, we first aim to assess the 
accuracy of approximating the Rydberg 
interaction with a step-function potential. We are 
interested in discrepancies between these two 
results by employing adequate tools in order to 
ameliorate the initial model. To this end, we 
employ perturbation theory to compare the 
following: 
1. The analytical results for a step-like potential; 
2. The numerical results for the exact 

formulation of the potential [Eq.(11)]; 
3. The results of the perturbation treatment of a 

step-like potential. 

We have to clarify here that in the reference 
[17], both the numerical (Rydberg interaction) 
and analytical (step potential) results for the 
energy spectra are plotted on the same graphs, 
showing a discrepancy between these two 
results, a discrepancy that becomes more 
apparent for important ranges and in two 
dimensions. Similarly, in Ref. [30], an 
approximate value of the threshold interaction 

strength is calculated analytically for the step 
potential and compared to the numerical results 
for the Rydberg interaction. This is done in one 
dimension, and a tiny discrepancy is found 
between the two results. In our calculation, we 
are not only concerned with reporting the 
existing discrepancy but also try to bridge the 
gap between the two situations (numerical 
solution for the exact potential and the analytical 
solution for the step-like potential) for the cases 
of 3D, 2D, and 1D, using the perturbation tool. 
This calculation is important from two 
perspectives. First, reaching an agreement 
between the two results would confirm the 
adequacy of the step function as a replacement 
of the realistic Rydberg potential, as it confirms 
that the missing part is just a perturbation. 
Second, it would enable the construction of a 
more accurate wave function basis if a 
description of few-particle systems is targeted. 

To start with, the exact potential is written as: 

(ݎ)ݒ = ௚

ଵାቀ ೝ
ೃ೎

ቁ
ల = (ݎ)௦ݒ − (ݎ)௦ݒ + ௚

ଵାቀ ೝ
ೃ೎

ቁ
ల =

(ݎ)௦ݒ + ௣௘௥௧ݒ ,  (13) 

where ݒ௣௘௥௧(ݎ) = ௚

ଵାቀ ೝ
ೃ೎

ቁ
ల −  is (ݎ)௦ݒ and (ݎ)௦ݒ

the step function defined in Eq. (12). This way, it 
is possible to write the exact potential as a step 
function for which we already know the 
solutions and an extra quantity ݒ௣௘௥௧  that we 
assume to be a perturbation. A plot for this 
potential for the case where the step is equal to 5 
and the range of the potential is equal to 1, is 
illustrated in Fig. 1. The Numerov approach [31] 
is used to obtain the numerical results for the 
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exact potential (the Rydberg potential). In our 
case, the goal is to demonstrate that the 
perturbative approach applied to the step 
potential can reproduce the numerical results 
with high fidelity, thereby validating the 
approximation and enhancing our model’s 
predictive power. Let us mention that we use a 
forward and inward integration method, and we 
impose the continuity of the wave function and 
its derivative at the turning points [31] to ensure 
the stability of the Numerov calculation. The 
perturbation correction is assumed to be of the 
first order for the eigenvalues and the 
eigenvectors. 

3.1 Eigenvalues 

The comparison of the eigenvalues (energies) 
versus ݒ଴ for one dimension and different ranges 
is presented in Fig. 4. It is clear from this figure 
that the correction to the first order is sufficient 
to reach a fair agreement with the numerical 
results. Higher energy levels are less affected by 
the interaction according to their range, and are 
thus already too close to the numerical results. 
Conversely, the low levels are more affected by 
the interaction, making the correction for these 
levels quite important. This correction 
demonstrates an energy level for fermionization, 

which is higher than the one without the 
correction. In the same manner as previously, we 
extend the perturbation calculation to the radial 
part of the Schrödinger equation for 2D [Eq. 
(8)]. The perturbation potential is the same as 
before. The only difference is the centrifugal 
term making a logarithmic mapping and a 
transformation of the radial solution necessary 
for the densification of the points around zero for 
the wave function and for recovering the 
Numerov shape of the equation, respectively 
[31]. The comparison of the spectra versus ݒ଴ 
and for different ranges ܽ is illustrated in Fig. 5. 
The correction to the first order for both 
intermediate and large ranges is making the 
agreement with the numerical solution more 
satisfactory, especially for the repulsive regime 
 where the curves are ,(଴ positiveݒ)
indistinguishable. In the attractive regime (ݒ଴ 
negative), the corrected results for the lower 
levels are more satisfactory. The results for the 
3D are quite similar to those of 2D (not shown 
here for brevity), as the only difference between 
the two cases is an addition in orbital momentum 
quantum number, which shifts the entire energy 
spectrum to higher values. 

 
FIG. 4. Comparison of the energy versus ݒ଴ for bosons and fermions (columns) at two ranges: a=1 and a=1.25 

(rows from the top to the bottom, respectively) in one dimension. In each panel, the calculation for the step 
function (step pot), perturbation correction (pert), and the numerical results (num) are compared.  
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FIG. 5. Comparison of the energy versus ݒ଴ in two dimensions for l = 0, 1, 2, 3, and 4 (from bottom to top) for 
two ranges: a = 1 and a = 1.25. Even and odd values of ݈ are for bosons and fermions, respectively. Each panel 
shows results for the step-function (step pot), perturbation correction (pert), and the numerical results (num).

3.2 Eigenvectors 

After showing the perturbation treatment 
results for the eigenvalues, we move now to the 
illustration of the eigenvectors using the same 
strategy. In Fig. 6, we compare the ground-state 
wave functions obtained via three methods 
(numerical, perturbation, and the step potential). 
The comparison is illustrated for different values 
of the strength ݒ଴ and the range ܽ. The three 
calculations (numerical, perturbation, and the 
step potential) coincide in the attractive regime 
 and for ܽ = 1. In the case of the (଴ negativeݒ)
repulsive regime (ݒ଴ positive) and for the same 
value of ܽ, the perturbation treatment 
deteriorates, whereas the results for the step 

potential are closer to the numerical ones. This is 
because the neighbouring states are degenerated 
(fermionization limit), and, consequently, the 
energy singularity affects the perturbation 
treatment. We can notice that the situation is 
worse in 1D. When doing the same calculation 
for ܽ = 1.5, the perturbation treatment starts to 
deteriorate even in the attractive regime, while 
the step-function potential provides a better 
approximation to the numerically obtained wave 
functions. The same calculations for the first 
excited state (Fig. 6) are quite similar, although 
the perturbation treatment describes the 
numerical results for the attractive regime and 
for ܽ = 1 better. 

 
FIG. 6. Ground-state wave function in 1D, 2D, and 3D for the indicated value of the strength ݒ଴ and the range ܽ. 

Each panel compares the results obtained using the step-function potential (dashed red), the first-order 
perturbation correction (dashed green), and the full numerical solution (solid black). The three curves are 

indistinguishable for ݒ଴ = -5 and ܽ = 1 in 3D, though the top of the curves does not appear in order not to change 
the scale. 



Article  Chia and Grar 

 214

To sum up, we can say that the perturbation 
treatment allowed us to establish a better 
convergence of the analytical results toward the 
numerical ones for the energy spectra, whether 
for the intermediate or important values of the 
interaction range. However, the perturbation 
treatment does not yield a noticeable 
improvement for the eigenvectors of our 
problem. The results are sensitive to the range of 
the interaction as well as to the degeneracy of the 
energy levels occurring in the repulsive regime, 
especially in 1D. Consequently, the perturbation 
treatment is failing to establish a more accurate 
wave function basis to describe few-body 
problems. We have to notice, however, that, for 
small ranges, the three calculations are almost 

indistinguishable across all dimensionalities in 
the attractive regime, whether for the 
eigenvectors or the eigenvalues. The 
perturbation treatment result is even better for 
the first excited state in the attractive regime. 
This is setting some considerations for which it 
is possible to assert that the step potential results 
and/or (“or” for the case of the first excited 
level) the corrected ones are giving mainly the 
exact energies as well as the exact wave 
functions. Consequently, in the region where 
these considerations are fulfilled, it is possible to 
ascertain that we can establish an almost exact 
analytical wave function basis for describing 
few-body problems, with higher levels being 
almost insensitive to the interaction. 

 
FIG. 7. First excited state wave function in 1D, 2D, and 3D for the indicated value of the strength ݒ଴ and range 
ܽ. In each panel, the results from the step-function (dashed red), perturbation correction (dashed green), and the 

numerical results (solid black) are compared. 

4. Spatial Correlations 
The representation of the energy versus ݒ଴ for 

different values of the range is frequently used to 
show the effect of the interaction on the energy 
spectrum. In order to grasp the dimensionality 
effect on the spatial correlation, it would be 
preferable to use an alternative representation: 
energy spectrum versus the range for different 
values of ݒ଴. This alternative is presented in Fig. 
8 for the case of two dimensions. The advantage 
of representing energy versus the range over the 
usually used representation is that it can show 
the critical range at which we can observe the 
onset of any change in the different curves. In 
Fig. 8 and for the attractive regime, one observes 
that the point of inflection in the energy curves 

shifts gradually with increasing values of ݈. It 
becomes evident that the primary parameter 
dictating the critical range, where the inflection 
begins, is the angular quantum number in 
connection with the strength and the range of the 
interaction. This is the case even for the first 
level (݈ = 0), where the onset of the inflection of 
the curve is not zero but a certain finite value 
(see discussion in the following section). For the 
repulsive regime, however, the centrifugal 
potential and the interaction potential act in the 
same direction, producing a monotonic increase 
in energy. The same qualitative behavior is 
observed in three dimensions, although the 
energy levels are shifted to higher values due to 
the increased dimensionality (not shown here for 
clarity).
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FIG. 8. Energy spectrum for the fundamental relative-radial state (݊ = 0) versus the range with increasing values 
of the angular momentum quantum number (݈ = 0, 1, 2, 3, 4 from bottom to top) in two dimensions. Even values 

of ݈ are for bosons, and odd ones are for fermions. The numbers on each panel indicate the value of ݒ଴.

The previous results are to be contrasted with 
the case of 1D in Fig. 9, where the energy is 
represented versus the range for different values 
of ݒ଴. One can find that the onset of the 
inflection is not as gradual for all the levels as 
previously, when comparing bosonic and 
fermionic states. Indeed, for the first bosonic 
state, the inflection starts from zero, whereas for 
the first fermionic state, a certain critical range 
has to be reached in order for the inflection to 
occur. For the higher bosonic and fermionic 
levels, we can observe an evolution that is not as 

straight as in the case for the first levels but 
proceeds via several inflection points and is 
tightly related to the change of the interaction 
strength and range. The understanding of the 
behavior of the first bosonic and fermionic levels 
is quite straightforward and is due to the 
additional repulsion resulting from the fermionic 
statistics. For the repulsive regime, we can 
observe the same tendency to fermionization, 
except that in this case, the limits are not flat but 
continue to increase monotonically with 
increasing value of the range. 

FIG. 9. Energy spectrum in one dimension versus the range with increasing value of ݊ (݊ = 0, 1,..., 8, from 
bottom to top) with even values of ݊ for bosons (black) and odd ones for fermions (red). The numbers on each 

panel indicate the value of ݒ଴ .

We intend to show in this part, by using the 
results of the previous model (analytical solution 
for the step-like potential), the impact of the 
dimensionality on the space correlation of the 
two particles forming our system. By plotting the 
energy of the ground state of the relative part of 
the solution versus the range and for the 
attractive regime (Fig. 10 (a), ݒ଴ = -5, solid 
lines), we observe a threshold behavior 

indicating the onset of binding: the energy 
becomes increasingly negative, signifying the 
formation of a bound state. Notably, this critical 
range, defined as the minimum range at which 
the attraction begins to significantly lower the 
energy, depends on the system's dimensionality. 
Specifically, the critical range is largest in the 
3D case, followed by the 2D case, while in 1D, 
the critical range is effectively zero. The increase 
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in the case of a repulsive regime (Fig. 10 (a), ݒ଴ 
= 5, dashed lines) is more straight with no 
critical range. Interestingly, the energy curves in 
this case converge to a common limiting value 
across all three dimensionalities. The different 
thresholds in the attractive regime are the result 
of the interplay between the centrifugal repulsion 
and the attractive interaction. In the case of 1D, 
the centrifugal potential is absent [Eq. (7)] and, 
consequently, the critical range is null. For the 
3D case, even if we set ݈ = 0 for the ground 
state, we still are left with ݈ = 1/2 in 2D, as 
explained before. Consequently, though the 

centrifugal potential is equal to zero in this case, 
still ݈ଶ஽ = 1/2 appears within the arguments of 
the confluent hypergeometric solution of the 3D 
equation [17] and, consequently, this is affecting 
the solution. Similarly, setting ݈ = 0 in 2D will 
not annihilate the centrifugal potential since in 
this case we are left with the residual term ିଵ/ସ

௥మ  
[Eq. (8)]. It is clear from Fig. 10 (a) that the 
amount of the centrifugal effect is increasing 
gradually from the 1D case to the 3D case, 
passing by the 2D case. 

 
FIG. 10. (a) Comparison of the ground state energy (݊ = 0 for 1D, and ݊ = 0, ݈ = 0 for 2D and 3D) versus the 

range of the interaction for the three dimensionalities. (b) Comparison of the average separation between the two 
particles in the ground state versus the range for the three dimensionalities. Solid curves are for the attractive 

case (ݒ଴ = -5) and the dashed curves are for the repulsive case (ݒ଴ = 5).  

How do these effects impact the spatial or 
pair correlation? To investigate this point, we 
plot the average separation between the two 
particles versus the range of the interaction for 
the three dimensionalities [Fig. 10 (b)]. The 
average separation is defined as ඥ⟨ݔଶ⟩, and the 
average value is calculated using the normalized 
total relative function (the radial part of the wave 
function for 2D and 3D). We plot the average 
separation versus the range for two different 
values of ݒ଴ (ݒ଴ = -5 for the attractive regime 
and ݒ଴ = 5 for the repulsive one). The average 
separation is evaluated across the full spatial 
domain, while the interaction range is defined as 
half the total spatial extent, consistent with 
earlier sections where the range refers to the 
distance from the origin to the edge of the step 
potential (as shown in Fig. 1). This induces a 
factor of 2 between the two quantities. Let us 
first notice the similarity between the curves in  
Figs. 10(a) and 10(b). For the attractive regime 
in 1D, represented by the black solid curve in 
Fig. 10 (b), the average separation for a range 
that is nearly null is 1, consistent with the result 
for the non-interacting harmonic oscillator 

ground state.  As the range increases, the average 
separation initially decreases, reaching a 
minimum, before gradually increasing and 
saturating. We have to notice here that the 
decrease occurs smoothly without a critical 
range. The 2D and 3D cases (Fig. 10(b), red and 
green solid curves) exhibit a similar trend, but 
with a noticeable critical range after which the 
average separation starts to decrease. The critical 
range and the curve minimum are more 
important for the 3D case than for the 2D one. 
These results show that for the 1D case, the 
average separation starts from a value where 
interaction has no effect, and when increasing 
the range, the system immediately feels 
attraction, and hence it is driven to a closer 
separation. Afterwards, the saturation of the 
average separation occurs because of the 
saturation of the energy for the bonded state 
[Fig. 10(a)]. This means that no energy is 
available to drive the system any closer. The 
same explanation holds for the 2D and 3D cases, 
except that in these cases, the centrifugal effect 
enters into play. This results in a starting average 
separation which is higher and, consequently, a 
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larger range is needed in order for the system to 
overcome the centrifugal repulsion and to feel 
the effect of the attraction. The saturation of the 
average separation in 2D and 3D is also due to 
the saturation of the bonding energy. Once the 
minimum is overcome, the difference in the 
average separation between the three 
dimensionalities stays nearly constant. In Fig. 
10(b), the repulsive regime (ݒ଴ = 5, dashed 
curves) for the three dimensionalities is also 
plotted. In this case, the average separation 
increases gradually for the whole extent of the 
range. The results for 1D, 2D, and 3D converge 
to the same limit. This behavior is replicating the 
behavior of the available energy in the repulsive 
regime. We also find in this case that the average 
separation for the three dimensionalities is 
almost equal to the range of the interaction (bear 
in mind the factor of 2 between the range and the 
average separation, as mentioned before). The 
spatial correlation for the same system is also 
studied for 1D in Ref. [27] using the two-particle 
density profile. The results are shown only for 
the repulsive regime where the inter-particle 
distance increases gradually with the increase of 
the range, as confirmed by our calculation. 
While our method does not resolve the exact 
localization of particles within the trap, we are 
able to quantify the average separation on the 
whole extent of the range for the different 

dimensionalities and for different regimes in a 
very simple manner. This approach clearly 
illustrates the interplay between the interaction 
strength and the centrifugal potential (which 
depends on dimensionality) and their combined 
effect on spatial correlations. 

In Fig. 11, we present the same illustration as 
in Fig. 10 but for the first excited state for the 
three dimensionalities (݊ = 0 for 1D, and ݊ = 0, ݈ 
= 1 for 2D and 3D). The results are quite similar, 
though it is clear that the critical range at which 
we have the onset of the inflection in this case is 
more important, whether for the energy or the 
average separation. This is expected, as these 
excited states are fermionic and thus subject to 
Pauli repulsion. Furthermore, the value of the 
angular momentum quantum number in 2D and 
3D increases the centrifugal potential. As 
expected, the value of energy for a range that is 
null as well as the average separation are more 
important in this case compared to the results for 
the ground state (Fig. 10). Unfortunately, it is not 
possible to extend the plot beyond the range of 
1.25 (the calculation breaks down because of the 
singular behavior of the confluent 
hypergeometric functions beyond the plotted 
region). However, based on the observed trends, 
we can expect the same saturation result in the 
attractive regime.  

 
FIG. 11 (a) Comparison of the first excited state energy (݊ = 1 for 1D; ݊ = 0, ݈ = 1 for 2D and 3D) energy versus 
the range of the interaction for the three dimensionalities. (b) Comparison of the average separation between the 

two particles in the first excited state versus the range for the three dimensionalities. Solid curves are for the 
attractive case (ݒ଴ = -5), and the dashed curves are for the repulsive case (ݒ଴ = 5).  

5. Dynamical Aspects  
There is a growing interest in the study of the 

non-equilibrium evolution of cold, confined few-
particle systems. Recent research in this area has 
led to intriguing findings that deepen our 
understanding of the fundamental dynamics 
governing such systems [30, 32]. In particular, 

the availability of analytical solutions for certain 
prototype models has proven to be highly 
beneficial in exploring key dynamical features. 
Many of these analytical approaches are based 
on the assumption of contact interactions, which 
serve as a reliable approximation in dilute 
systems [33]. 



Article  Chia and Grar 

 218

In what follows, we present some preliminary 
results that can be obtained by using our step-
like potential model to describe a system of two 
confined bosons. The analysis is carried out in a 
simplified framework, aiming to offer qualitative 
insight into the potential dynamical behavior of 
such systems beyond the static properties 
discussed earlier. 

This interaction choice could be a good 
candidate in the case of Rydberg atom systems. 
To our best knowledge, no such investigation 
was carried out before. Only delta-like or 
Gaussian interactions were studied [33, 34]. The 
evolution of the system properties with time 
requires the solution of the time-dependent 
Schrödinger equation. Our goal is to investigate 
the evolution of the system under the initial 
interaction features compared with the change of 
the behavior of the system under a sudden 
change of these same features. This is what is 
known as a quenched interaction. We are 
elaborating these calculations for the three 
dimensionalities. To solve the time-dependent 
Schrödinger equation, we employ the Crank-
Nicolson method together with the tridiagonal 
matrix algorithm, exploiting the built-in 
programs provided by the LAPACK library [35]. 
We consider grid sizes of 0.0002= ݐ߂ and ݔ߂ = 
0.04. We take a space of −30 ≤ ݔ ≤ 30. While 
the time step is fine enough to avoid any 
distortions during time, the step and the extent of 
the space are constrained by computational 
resources. Nevertheless, these are quite 
satisfactory for the present calculations to reach 
convergence. The initial wave function from 
which the evolution of the system starts is 
considered to be the exact analytical ground state 
solution already found by resolving the time-
independent Schrödinger equation for a step 
potential interaction. We focus solely on the 
relative part of the wave function, since the 
center of motion is not affected by the 
interaction [Eq. (4)]. This implies that the initial 
exact ground-state solution we have established 
by resolving the time-independent Schrödinger 
equation, is evolves in time, either in the same 
initial potential or under a suddenly modified 
potential features at t = 0. In the first situation, 
we have just a stationary state, and in the second 
situation, the systems are no longer stationary 
but start to evolve under the new potential. 

5.1 1D Case 

In Figs. 12, 13, and 14, we present different 

quench scenarios, each starting from a different 
initial point. In Fig. 12, the starting point is ݒ଴ = 
-5, and the first panel shows the stationary case. 
This 2D plot illustrates the probability density as 
a function of both average separation and time. 
At each time t, the probability density is 
calculated as ݂(ݎ)݂∗(ݎ), where f(r,t) is the 
normalized temporal (either stationnary or 
quenched) evolution of the wave function f(r,0), 
the properly normalized wave function f(r,0) 
being determined by Eq. (8). This stationary 
evolution reproduces a well-localized probability 
distribution with a nearly constant interparticle 
separation, demonstrating the reliability and 
internal consistency of our computational 
implementation. Only very tiny numerical kinks 
start to develop with time. This is due to the 
known Crank-Nicolson spurious oscillations that 
contaminate the wave function at each time 
iteration without compromising the physical 
results [36]. From this initial state, we perform 
different sudden changes on the strength of the 
potential. We can see that changing ݒ଴ from -5 
to -12 confines the probability density to a 
slightly narrower separation and hence a better 
localization of the system is reached throughout 
the whole time interval. Switching the 
interaction strength from -5 to 0 leads to a 
breathing mode, characterized by regular 
oscillations of the average separation between 
two extreme values. In the case where ݒ଴ is 
switched from -5 to 12, we can witness a high 
fragmentation of the density probability with a 
very poor localization of the system. When we 
change the starting point (Fig. 13) and set ݒ଴ = 5, 
the stationary case gives, as expected, two well-
localized pics of the probability density. 
Switching ݒ଴ from 5 to 0 results in a regular 
pattern with an oscillatory behavior of the 
separation over time. A sudden change of ݒ଴ 
from 5 to -12 leads to significant fragmentation 
of the probability density. Although the resulting 
pattern remains somewhat regular, there is a 
clear tendency for the density to shift toward the 
center, driven by the attractive post-quench 
interaction. Interestingly, when ݒ଴ is changed 
from 5 to 12, the system remains nearly in a 
stationary regime: the separation between the 
particles is largely preserved, indicating that the 
increase in repulsion does not significantly push 
the particles further apart. Let us now investigate 
the particular case where the starting point is ݒ଴ 
= 0 (Fig. 14). Here, we have a well-localized pic 
in the stationary regime. However, setting the 
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change of ݒ଴ from 0 to -12 gives a variation of 
the separation between two extreme positions. 
Changing ݒ଴ from 0 to 12 yields the same result 
as when starting with ݒ଴ = -5. To summarize 
these results at the level of the average 
separation, we present the results for the average 
separation for the different quench scenarios in 
Fig. 15. This figure also includes the average 
separation for the stationary cases (v0 = -5, 0, and 
5, plotted in gray). Additionally, we include the 
intermediate quenches towards ݒ଴ = 5 or -5. Fig. 
15 clearly shows that the already stated 
oscillatory and fragmented behaviors of the 
probability density for different scenarios are 
replicated in the average separation. We can also 
see that we have only a small perturbation of the 
average separation around its initial value when 

we have a transition from attractive to attractive 
or zero to attractive potential [Figs. 15 (a) and 
15(b)] for the transition to the attractive 
potential. We have this same result when the 
system is initiated with a repulsive potential, 
regardless of the nature of the transition operated 
[Fig. 15 (c)]. However, initiating the system 
from an attractive potential and operating a 
transition towards a repulsive potential creates 
an important average separation as well as an 
irregular oscillation of its value. It seems that the 
greater the transition towards an important value 
of the potential, the longer the system takes to 
settle into a nearly constant value (note the 
damping of the oscillations in Fig. 15 (a) for the 
transition to the repulsive potential). 

 
FIG. 12. Time evolution of the probability density for different indicated quench scenarios and one-dimensional 

fundamental state. The initial state is for ݒ଴ = -5, and the range is fixed to 1.  

 
FIG. 13. Time evolution of the probability density profile for different indicated quench scenarios and one-

dimensional fundamental state. The initial state is for ݒ଴ = 5, and the range is fixed to 1.  
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FIG. 14. Time evolution of the probability density profile for different indicated quench scenarios in the one-

dimensional fundamental state. The initial state for ݒ଴ is set to 0, and the range is fixed to 1.  

 
FIG. 15. Evolution of the average separation versus time for the one-dimensional fundamental state. The average 
separation for the stationary states for each fixed potential is shown in black for the corresponding potential and 
in gray for the other two potentials in each panel. Different scenarios of sudden changes in the potential strength 
from the initial value are given in the legend. The range of the interaction is fixed at 1. (a) The initial state is the 

one for ݒ଴ = -5, (b) the initial state is the one for ݒ଴ = 0, and (c) the initial state is one for ݒ଴ = 5. 

5.2. 2D Case 

For the 2D case, the probability density at 
each time t is calculated as ݂(ݎ)݂∗(ݎ), where 
f(r,t) is the normalized temporal (either 
stationnary or quenched) evolution of the wave 
function f(r,0), the properly normalized wave 
function f(r,0) being determined by Eq. (8). To 
elaborate the calculation for this part, we are 
facing the problem of the singularity of the 
centrifugal potential at r = 0 when we set ݈ = 0 
in the Eq. (8). In fact, in this case when setting ݈ 
= 0, we are left with ିଵ/ସ

௥మ  for the centrifugal 
potential. It is not possible to avoid the region 
where 0 = ݎ, as the correlation must be studied in 
the whole space of the trap. To remedy this 
situation, the usual numerical solution is to 
soften the singularity by introducing a small 
constant ߙ in the denominator [37]. We propose 
the following transformation: 

ିଵ/ସ
௥మ  →  ିଵ/ସ

ඥ(௥రାఈ)
  (14) 

To establish the best choice of the value of ߙ, 
we must check that it is the smallest value that 
reproduces the stationary regime. We found that 
଴ݒ for 0.001=ߙ ≥ 0, and 0.0000001 = ߙ for 
଴ݒ < 0. Using these values for the calculations, 
we reproduce the same quench scenarios for the 
2D case as those shown for 1D in Figs. 16, 17, 
and 18. Comparing the 1D and 2D results, we 
notice that qualitatively the behavior is similar, 
except that the breathing mode seen for the ݒ଴= -
5 to 0 has disappeared (Fig. 16). We notice also 
that the fragmentation for ݒ଴ = -5 to 12 and ݒ଴= 
0 to 12 is less pronounced (Figs. 16 and 18). The 
results for quench scenarios starting from ݒ଴ = 5 
are more affected by numerical errors caused by 
spurious oscillations inherent to the Crank-
Nicolson method (Fig. 17). In this scenario, the 
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fraction of the density probability driven to the 
center when setting ݒ଴ = 5 to -12 is also less 
important. We plot the average separation for 
these different scenarios in Fig. 19. As observed 
previously, only a quench from an attractive or 
null potential to a repulsive one is able to 
noticeably change the spatial correlation between 
the two particles. However, the transition from 

an attractive potential to a repulsive one leads 
obviously to a greater average separation 
compared to the 1D case. It is important to note 
here that some of the results could be just 
numerical artefacts (particularly the 
disappearance of the breathing mode), and the 
singularity of the centrifugal potential should be 
properly dealt with. 

 
FIG. 16 Time evolution of the probability density for different indicated quench scenarios in the two-

dimensional fundamental state. The initial state is ݒ଴ = -5, and the range is fixed at 1.  

 
FIG. 17. Time evolution of the probability density profile for different indicated quench scenarios in the two-

dimensional fundamental state. The initial state is ݒ଴ = 5, and the range is fixed at 1.  
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FIG.18. Time evolution of the probability density profile for different indicated quench scenarios in the two-

dimensional fundamental state. The initial state is ݒ଴ = 0, and the range is fixed at 1.  

 
FIG. 19. Evolution of the average separation versus time for the two-dimensional fundamental state. The 

different scenarios of the sudden change in the potential strength from the initial value are given in the legend. 
The range of interaction is fixed at 1. (a) The initial state is ݒ଴ = -5, (b) the initial state is ݒ଴ = 0, and (c) the 

initial state is ݒ଴ = 5.

5.3. 3D Case 

For the 3D case, the probability density at 
each time t is calculated as ݂(ݎ)݂∗(ݎ), where 
f(r,t) is the normalized temporal (either 
stationary or quenched) evolution of the wave 
function f(r,0). The properly normalized wave 
function f(r,0) is determined by Eq. (9). As we 
have explained before, in the 3D case setting l3D 
= 0 for the fundamental state means l2D = 1/2 [see 
Eq. (10)]. This value of the angular quantum 
number appears in the argument of the confluent 
hypergeometric function, influencing the results 

even if apparently the centrifugal potential is 
reduced to zero. For the sake of brevity, we 
present only the average separation for the 
different quench scenarios in the 3D case (Fig. 
20). Qualitatively, the results are the same as 
before. However, the average separation is 
notably larger when the system undergoes a 
transition from an attractive to a repulsive 
potential [Fig. 20 (a)]. Moreover, transitions 
from a repulsive potential show less sensitivity 
to perturbations compared to the other 
dimensionalities [Fig. 20 (c)]. 



Dimensionality Impact on Two Rydberg Dressed Atoms Confined in a Harmonic Trap 

 223

 
FIG. 20. Evolution of the average separation versus time for the three-dimensional fundamental state. The 

different scenarios of sudden changes in the potential strength from the initial value are given in the legend. The 
range of interaction is fixed at 1. (a) The initial state is ݒ଴ = -5, (b) the initial state is ݒ଴ = 0, and (c) the initial 

state is ݒ଴ = 5. 

6. Conclusion 
The aim of this study is to highlight the 

features that arise in different aspects of a system 
of two Rydberg atoms confined in a harmonic 
trap under different dimensionalities. To conduct 
the study, we use the exact solution provided by 
the Schrödinger equation with a step-like 
potential. To prove the adequacy of this model 
for describing the targeted Rydberg interactions, 
we developed a perturbation treatment of the 
proposed model. The results offer a more 
accurate description of the energy spectra. The 
results for eigenvectors are less satisfactory, 
fundamentally because of the energy degeneracy 
between neighboring levels, which causes the 
mathematical formulation to become singular. 
Far from the region where this degeneracy 
occurs, it is possible to establish acceptable 
results that could be fairly used as a wave 
function basis for few-body systems. Being more 
confident about the used model, we move in the 
second part to the characterization of the spatial 
correlation of the studied system. The results 
shed light on the role played by the interrelation 
between the interaction features and the 
centrifugal potential arising from the considered 
dimensionality, and how this interplay affects 
spatial correlations. In the attractive regime, a 
complex behavior emerges because the 
interaction and centrifugal repulsion act 
antagonistically. In contrast, in the repulsive 
regime, where interaction and centrifugal 
repulsion act in the same direction, the spatial 
correlation is primarily dictated by the 
interaction features. For both regimes, the results 

also demonstrate the impact of the energy 
available to the state, which clearly influences 
the overall trend of spatial correlation. In the 
final part, we investigate the effect of 
dimensionality on the temporal evolution of the 
system under different quench scenarios. Here, 
we also employ the exact solution for the step-
like interaction. This specific interaction must be 
contrasted with delta-like and Gaussian 
interactions, as the step-like interaction is 
spatially extended with a constant strength over 
the considered range, unlike the localized delta 
or Gaussian potentials. Our preliminary results 
illustrate how the density profile evolves and 
reveal how the quench scenario affects the 
probability density distribution and, 
consequently, the spatial correlation of the 
system. 

 
In this study, the quench is applied solely to 

the interaction strength, but it can be easily 
extended to the interaction range as well. 
Gathering extensive data on these dynamical 
aspects while distinguishing numerical artifacts 
could provide important insights into both 
theoretical and technological aspects of cold 
few-particle systems. A deeper investigation 
along these lines could shed more light on 
fundamental aspects related to strongly 
correlated systems and may also offer 
experimental clues on how to monitor system 
correlations. 
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