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Abstract: Entanglement has been one of the dominant aspects distinguishing quantum 
theory from its classical counterpart. Indeed, entanglement has played a central role in 
recent developments in quantum technology, such as quantum computing, key distribution, 
etc. In order to use entanglement in these situations, a particular form is often needed, 
namely the maximal case. Various techniques have been used to manipulate entangled 
states, especially between distant parties. Generating long-distance entanglement from 
multiple shorter states has been studied, and it has been shown that there exists a class of 
states that can achieve optimal entanglement resources. In this paper, the particular class of 
states that yields the weakest link is numerically examined. The findings reveal that the 
range of this class is limited but substantial. 
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1. Introduction 

Ever since the birth of quantum theory, 
ongoing debates about its precise nature have led 
to different interpretations of the theory, 
including the orthodox Copenhagen 
interpretation and Everett's many-worlds idea. It 
was John Bell's brilliant paper in 1964 [1] that 
provided a method where nonlocality implied in 
quantum theory may be rigorously tested. 
Indeed, various experiments validated the 
soundness of quantum theory, highlighting a 
strong and unique aspect not present in classical 
counterparts. This fueled fruitful research in 
studying quantum entanglement and nonlocality 
as a testable scientific property of quantum 
foundations [2-5]. With the introduction of 
quantum computers in the 1980s, entanglement 
has been studied extensively. As a result, various 
practical applications have been introduced and 
realized experimentally [6, 7].  

While entanglement exhibits nonlocality, 
which contracts relativity in a direct way, 

signaling is not allowed. This strange situation 
implies that objects such as photons or electrons 
are able to communicate faster than light [8, 9], 
while observers such as Alice and Bob are not 
allowed to do the same [10-13].  

This is vividly demonstrated through the 
process of quantum cloning. In [14], it was 
shown that copying an unknown quantum state is 
not allowed. In fact, if it were possible, it would 
also be possible to signal faster than light 
because Bob, who shares an entangled state with 
Alice, can clone many copies at his end and 
would find out about his prepared state.  

Buzek and Hillery [15] showed that while 
perfect cloning is not possible, one can still 
obtain an imperfect copy with fidelity equal to 
2/3. Can superluminal signaling be partially 
allowed with this imperfect cloner? Interestingly, 
it was shown [9] that this optimal fidelity of 2/3 
is exactly the boundary that prohibits faster-than-
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light communication. In [13], it was shown that 
even in the probabilistic cloning machine [16], 
which clones with a fidelity equal to one but 
only probabilistically, it is not possible to signal.  

This paper is organized as follows: In Sec. 2, 
certain techniques of entanglement manipulation 
under local operations—particularly using 
swapping protocols—are reviewed. Then a 
numerical method is applied to reveal the class 
of entanglement that satisfies the optimality 
conditions in Sec. 3. We conclude with brief 
remarks.  

2. Manipulating Entanglement 
Let us consider the following two-qubit 

entangled state:  

|ψ⟩ = a|00⟩ + ܾ|11⟩            (1) 

where a and b are non-negative, real numbers 
and satisfy |ܽ|ଶ + |ܾ|ଶ = 1. It is noted that many 
applications of entanglement often use a 
particular form, namely the maximal case with 
ܽ = ܾ = ଵ

√ଶ
. If the qubits A and B are delivered 

to two distant parties, Alice and Bob, it is 
desirable for each party to convert the non-
maximal to maximal entanglement without 
bringing the qubits together. Although it is not 
possible to convert non-maximal into maximally 
entangled states with certainty, Alice and Bob 
could still obtain a   ܽ = ܾ = ଵ

√ଶ
 case, but with 

less than 1 probability, such that the average 

entanglement does not exceed the original non-
maximal state.  

It has been shown [17,18] that the state |ψ⟩ 
in Eq. (1) can be converted into the following 
maximal state: 

|⟩ = ଵ
√ଶ

(|00⟩ + |11⟩)           (2) 

with probability |ܾ|ଶ . How much entanglement 
is lost during this conversion? Figure 1 shows 
the comparison of the average entanglement 
between |ψ⟩ in Eq. (1) and the converted state 
in Eq. (2). Indeed, it can be seen that except in 
the case where |ܾ|ଶ = 1/2.  (the coefficients in 
Eq. (1) assumed to be ordered), which is the 
maximal case and no conversion is needed, a 
certain amount of entanglement is lost during the 
process of conversion into the maximally 
entangled qubits as in Eq. (2).  

Entanglement swapping is a protocol [19] 
that connects multiple short-distance 
entanglements into a longer one (Fig. 2). For 
instance, given the following two states,  

|⟩ଵଶ = ଵ
√ଶ

(|00⟩ + |11⟩)ଵଶ           (3) 

|⟩ଷସ = ଵ
√ଶ

(|00⟩ + |11⟩)ଷସ           (4) 

One can make a measurement onto qubits 2 
and 3 on the following basis: 

ห±ൿଶଷ = ଵ
√ଶ

(|00⟩ ± |11⟩)ଶଷ           (5) 

ห±ൿଶଷ = ଵ
√ଶ

(|00⟩ ± |11⟩)ଶଷ           (6) 

 
FIG. 1. Comparison between the average entanglement of a generally entangled state (ܵ = −|ܽ|ଶ logଶ |ܽ|ଶ −

|ܾ|ଶ logଶ |ܾ|ଶ
 ) with a straight line and the concentrated state ܵ௫ = 2|ܾ|ଶ with a dotted line.  
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FIG. 2. Entanglement swapping generates a long-distance correlation between qubits 1 and 4 by making 

measurements onto 2 and 3.  

After measurement, the outcome for qubits 1 
and 4 is one of the four states, ห±ൿଵସ, ห±ൿଵସ. 
However, this ideal scenario may not always be 
the case. That is, the states may not be as 
maximally entangled as in Eqs. (3) and (4). In 
such a case, one can use the entanglement 
swapping together with the concentration 
method discussed in Eq. (1). Let us consider the 
following non-maximal entangled states: 

|A⟩ଵଶ = √ଵ|00⟩ଵଶ + √ଶ|11⟩ଵଶ          (7) 

|B⟩ଷସ = ඥଵ|00⟩ଷସ + ඥଶ|11⟩ଷସ          (8) 

where ଵ + ଶ = 1  and ଵ + ଶ = 1 . In 
particular, it is assumed that both states have 
ordered Schmidt coefficients (i.e., non-negative 
and real) and the amount of entanglement of 
|A⟩ଵଶ in Eq. (7) is less than |B⟩ଷସ in Eq. (8), i.e.: 

ଵ ≥ ଵ ≥ ଶ 
≥ ଶ            (9) 

The Bell measurement with basis 
ቄห±ൿ , ห±ൿ ቅ  onto qubits 2 and 3 yields the 
entangled qubits, which are also non-maximal 
between 1 and 4 as follows:  

|C⟩ଵସ = √ଶ
భభାమమ

൫ඥଵଵ|00⟩ଵସ +

ඥଶଶ|11⟩ଵସ൯          (10) 

|D⟩ଵସ = √ଶ
భమାమభ

൫ඥଵଶ|00⟩ଵସ +

ඥଶଵ|11⟩ଵସ൯          (11) 
In [18], simple diagrams of visualizing the 

concentration process have been introduced. For 

instance, one can draw a diagram of the 
coefficients ଵଵ and ଶଶ, as well as  ଵଶ and 
ଶଵ  (Fig. 3). It can be seen that when the 
following conditions, which result from Eq. (9),  

ଵଵ ≥ ଶଶ           (12) 

ଵଶ ≥ ଶଵ           (13) 

are met, the average entanglement in fact 
reduces to the entanglement of |A⟩ଵଶ [20, 21], 

ܵ௫ = 2ଶ           (14) 

That is, the entanglement between |A⟩ଵଶ and 
|B⟩ଷସ  weakens. It can be seen that this is the 
optimal result because if not, one can use the 
above swapping method to increase 
entanglement with only local operation and 
classical communications (LOCC). Why is that? 

Suppose Alice and Bob are sharing qubits 3 
and 4 initially at a long distance (Fig. 4). Alice 
would bring in extra entangled qubits 1 and 2, 
which have higher entanglement than 3 and 4, 
and perform Bell measurements at her end on 
qubits 2 and 3, which would create a new 
entangled state between 1 and 4. If Alice and 
Bob could end up with an entanglement larger 
than the weaker link, this newly formed 
entanglement between 1 and 4 would have a 
higher entanglement than the initially shared 
state. Since entanglement cannot increase under 
LOCC, this scheme is not possible. Therefore, 
the Eq. (14) outcome, namely the weaker 
entanglement, is optimal.  
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FIG. 3. Concentration process from (i) to (ii) simplifies when ଵ ≥ ଵ ≥ ଶ 

≥ ଶ. 

 
FIG. 4. If the weaker links were not optimal, this would imply that Alice could bring in the extra entangled pair 1 

and 2, which has a higher entanglement than 3 and 4. Alice could perform Bell measurements and obtain a 
higher entanglement between 1 and 4 without bringing qubits together with Bob. 
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3. Numerical Results 
While the optimal result is obtained for two 

non-maximal qubits, i.e., 2-level, states, this 
protocol does not always work for more 
generalized cases, such as two 3-level states or 
three 2-level states, etc. In [22], this optimality is 
obtained for certain states, or the weakest link 
for the average entanglement is achieved. Let us 

consider the following M-chained n-level states 
(Fig. 5), 

|ൿ
 

=  ∑ ඥ,|ିଵ
ୀ ⟩ଶିଵ|⟩ଶ        (15) 

where k=1,...,M and ∑ ,
ିଵ
ୀ = 1 . That is, 

there are 2M states and the Bell measurement is 
made at each joint, 2 and 3, 4 and 5, ..., etc., 
which will create a long-distance entanglement 
between states 1 and 2M.  

 
FIG. 5. M-1 Bell measurement at each joint, Alice and Bob can share long-distant entanglement. 

In the previous section, using diagrams in 
Fig. 3, it was explained that when the conditions 
in Eqs. (12) and (13) are met, the average 
entanglement after Bell measurement in fact 
reduces to one of the two states, namely, the 
weaker link. In a similar manner, when the initial 
states are more generalized than the two 2-level 
states, the same result may be obtained. 
However, unlike the two 2-level states, the 
coefficients as in Eq. (15) do not always hold 
when M and n are larger than 2.  

If we assume that the entangled state in the 
first state has the lowest average entanglement, 
then the optimality that may be obtained from 
the state (15) can be written as follows [22]: 

ܵ௫ = ∑ (ଵ,ିଵ − ଵ,) logଶ  

ୀଵ            (16) 

when the following special conditions are met:  

ଵ,భ
ଶ,మ

⋯ெ,ಾ  
≥ ଵ,భଶ,మ ⋯ெ,ಾ  .

   (17) 

given that ଵଶ ⋯ெ ≤ ଵଶ ⋯ ெ.
 where 

ଵଶ ⋯ெ = ଵ݈ெିଵ + ଶ݈ெିଶ + ⋯ + ெ݈
.

. 
In order to get an idea of the range of 
coefficients that satisfy the condition in (17), let 
us consider the case with two 3-level states (i.e., 
M = 2, n = 3) as follows: 

ଵ,ଵଶ,ଵ ≥ ଵ,ଶଶ,ଶ ≥ ଵ,ଷଶ,ଷ     .        (18) 

ଵ,ଵଶ,ଶ ≥ ଵ,ଶଶ,ଷ ≥ ଵ,ଷଶ,ଵ     .        (19) 

ଵ,ଵଶ,ଷ ≥ ଵ,ଶଶ,ଵ ≥ ଵ,ଷଶ,ଶ     .        (20) 

Looking at the conditions as in Eqs. (18) –
(20), one may wonder how many two 3-level 
entangled states could satisfy them. Are they 
really some very special and narrow cases where 
the conditions are met such that the optimality of 
the weakest link is achieved? Or is it relatively 
common for non-maximal states to satisfy them? 
We have numerically analyzed the range of the 
states that satisfy the optimality conditions in 
Eqs. (18) - (20). Figure 6 compares coefficients 
for the states that satisfy the optimality 
conditions with respect to all possible entangled 
states. It can be seen that although the range of 
optimal states as compared to ordinary cases is 
limited, it is still substantial.  

In order to examine more non-trivial cases of 
optimal states, let us consider four 2-level stats, 
i.e., n=2, M=4 case. Figure 7 (top) compares the 
ranges of the optimal case versus all possible 
coefficients of ଵ,ଵand ଶ,ଵ, and Fig. 7 (bottom) 
indicates ଵ,ଶ  and ଶ,ଶ  where ଵ,ଷ = 0.1 , 
ଵ,ସ = 0.05 , ଶ,ଷ = 0.2 , and ଶ,ସ = 0.2 . 
Therefore, unlike the two 2-level states, it is 
more difficult to achieve optimality when 
n,M>2.  
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FIG. 6. For two 3-level states, the coefficients yielding the weakest link, therefore optimal, are compared with all 

possible states with ଵ,ଵand ଶ,ଵ (top), ଵ,ଶ and ଶ,ଶ (middle), and ଵ,ଷ and ଶ,ଷ (bottom). 
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FIG. 7. ଵ,ଵ and ଶ,ଵ (top), and ଵ,ଶ and ଶ,ଶ (bottom) where ଵ,ଷ = 0.1, ଵ,ସ = 0.05, ଶ,ଷ = 0.2, and ଶ,ସ =

0.2.  

4. Conclusions 
We explored the concept of entanglement 

swapping of non-maximal states and conducted 
numerical assessments to understand the creation 
of long-distance entanglement. These findings 
may be useful in realizing various quantum 
technologies. In particular, our analysis showed 
that there exists a limited but substantial amount 
of entangled states that satisfy the optimality 
condition and yield the weakest link. 

Indeed, in the case of two 3-level states, a 
substantial amount of states that satisfy the 
optimality conditions were shown using 
numerical methods. Moreover, four 2-level states 
were considered, and the states that yielded the 

weakest link were shown graphically. While the 
presented work provides a deeper understanding 
of how a long-distance entanglement is created, 
it has limitations in demonstrating whether a Bell 
measurement is indeed the best approach. In our 
future work, we will answer this question in 
fuller detail. Nevertheless, this research, which 
uses a numerical method, is meaningful because 
it demonstrates that computational methods may 
be useful in studying various aspects of 
entanglement. 
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