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Abstract: In this work, the Wentzel-Kramers-Brillouin (WKB) approximation is applied to 
determine an analytical expression of the form factor of oriented pyramidal ice crystals. 
This study will focus on two special cases of the normal incident of light: flat incidence and 
edge-on incidence. This form factor is calculated using an adequate decomposition of the 
pyramid. Furthermore, the analytical expression of the extinction coefficient is derived for 
these two special cases. Finally, some numerical examples are analyzed to illustrate our 
results. 
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1. Introduction 

Light is one of the main messages used by 
humans to gather information about their 
environment after having interacted with an 
object. The light bears an imprint of this 
interaction that can be decoded to deduce certain 
properties of the object. The reading of this 
information can be done in the most classical 
way thanks to the eye which allows us to 
characterize the intensity, the direction or the 
average spectral distribution of the light. The 
information conveyed by the light is however 
still much richer than what the eye can decode; 
the polarization, the phase and the spectrum are 
magnitudes which are not measured by the eye 
and which are also rich in information. 

The study of the scattering and absorption of 
light by small particles is of great interest in 
various scientific disciplines and many 

applications, such as medical technology, 
geophysics, metrology and radio astronomy [1-
6]. In particular, in the field of photovoltaic 
energy conversion, this study is used to quantify 
the part of light converted into electrical energy 
[7-9]. Nevertheless, the investigation of the 
scattering of light by small particles continues to 
surprise us with new discoveries and exciting 
theoretical and experimental developments, such 
as optical trapping, abnormal light scattering and 
optical tweezers [10]. 

On another side, several studies carried out 
on the direct and indirect observation of the size 
and shape of ice crystals have again underlined 
the irregular nature of these particles [11]. Ice 
crystals in earth's atmosphere generally retain the 
shape of hexagonal columns or plates. However, 
the fluctuations in ambient temperature, pressure 
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and wind speed can cause any degree of 
irregularity [12]. Recent analyses of holograms 
taken from airplanes in cirrus clouds show a 
wide variety of crystal structures [13]. According 
to the classification of ice crystals of Magano 
and Lee [14], these crystals are classified as the 
pyramid, the cup, the solid bullet, the hollow 
bullet, the solid column, the hollow column, the 
capped column and the bullet rosette [12]. Their 
role in the atmosphere is very important directly 
and indirectly. These particles modify the 
radiative balance of the atmosphere and a great 
uncertainty persists as to the value of their 
radiative forcing. It is therefore necessary to 
study them in more detail. 

To study the scattering by a spherical particle, 
three possibilities exist according to the ratio of 
the particle size (ߙ): Rayleigh’s theory which 
studies light scattering by particles of very small 
size (ߙ ≪ 1), the theory of geometrical optics 
which applies to large particles (ߙ ≫ 1) and Mie 
theory which is used for intermediate-size 
particles. In principle, the interaction of the 
particle with incident electromagnetic radiation 
can be determined by solving the Maxwell 
equations with boundary conditions 
corresponding to the shape of the particle; there 
are exact solutions for certain shapes, such as 
spheres, ellipsoids and infinite cylinders [1, 15]. 

For non-spherical particles of very small 
sizes, the Rayleigh’s theory remains valid. For 
particles of intermediate sizes and fairly simple 
shapes, there are theories for various shapes and 
for different sizes. For example, the T-matrix 
theory [16] allows a fairly fast calculation for 
flattened or elongated ellipsoid particles. For 
complex or arbitrary forms, theories begin to be 
elaborated [17], such as the finite-element 
methods [18] and the finite-difference domain 
method [19]. These techniques are very precise, 
but very expensive in terms of calculation time, 
which is their main disadvantage. 

Under such circumstances, the use of 
approximation methods becomes preferable or 
even mandatory. The most widely used 
analytical approximations for practical situations 
are the Rayleigh-Gans (RG) approximation and 
anomalous diffraction (AD) of van de Hulst [1]. 
The Wentzel-Kramers-Brillouin (WKB) 
approximation [20] is a classical approximation, 
which takes the phase shift into account 
correctly, so it does not have restriction on the 
phase shift magnitude, contrary to other 

approximations. The WKB approximation has 
been successfully applied to spheres, spheroids 
and cylinders [20, 6]. Recently, this approach 
has been applied to model the scattering 
properties of hexagonal and prismatic particles 
[10, 21]. 

In this work, the WKB approximation is used 
to investigate the scattering of light by square 
pyramidal particles. This study is an extension of 
the work of Ibnchaikh (2016) [10] to other non-
column particles. For this, the analytical 
expression of the form factor for square pyramid 
ice crystal was derived using the WKB method. 
Furthermore, the extinction coefficient is 
calculated in order to illustrate the results. 

2. WKB Approximation 
Consider a particle illuminated by a plane 

wave polarized in the direction e୶ሬሬሬ⃗  and 
propagating along the z-axis (Fig. 1). 

 
FIG. 1. Description of the scattering problem. 

In the literature, the expression of the 
amplitude of light scattering in the WKB 
approximation, in a scalar form, is [20, 22]: 

|f(s⃗, ı⃗)| = ୩మ

ଶ஠
sin(ℵ)|(m − 1)F(θ, φ)|              (1) 

where s⃗ and ı⃗ are the unit vectors along the 
direction of scattering and propagation of light, 
respectively. ℵ is the angle between the 
polarization vector e୶ሬሬሬ⃗  and the unit vector s⃗, θ is 
the scattering angle between s⃗ and ı⃗, φ is the 
azimuth angle, k is the wave vector and m is the 
relative complex refractive index. The quantity 
F(θ, φ) is known as the form factor which 
represents the modification of the scattered 
irradiance due to the finite size of the particle 
and to its deviation from sphericity: 

F(θ, φ) = ∭ exp൫ikr⃗. (ı⃗ − s⃗)൯ exp(ikw)dv୴  (2) 

where r⃗ is the position vector of any point within 
the scattering object, v is the volume of the 
studied particle and: 
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w = ∫ (m(zᇱ) − 1)dzᇱ୸
୸౛

= (m − 1)(z − zୣ)   (3) 

where w is the optical path for a homogenous 
particle which is introduced by the scattering 
object, z is the z-coordinate of the scatter 
element inside the particle and zୣ is the z-
coordinate of the initial position of penetration of 
the object. 

In rectangular coordinates, the form factor 
can be expressed as follows: 

F(θ, φ) = ∭ eି୧୩୶ ୱ୧୬ ஘ ୡ୭ୱ ஦eି୧୩୷ ୱ୧୬ ஘ ୱ୧୬ ஦

e୧୩୸(୫ିୡ୭ୱ ஘)eି୧୩୸౛(୫ିଵ) ൠ୴ dv  

              (4) 

where x, y and z are the components of the 
position of the scattering element inside the 
object. 

By integrating Eq. (4) over z, one obtains: 

F(θ, φ) =
ଵ

୧୩(୫ିୡ୭ୱ ஘) ∙

∬ eି୧୩୶ ୱ୧୬ ஘ ୡ୭ୱ ஦eି୧୩୷ ୱ୧୬ ஘ ୱ୧୬ ஦ G(zୣ, zୱ)dxdy  

              (5) 

with: 

G(zୣ, zୱ) = e୧୩(୫ିୡ୭ୱ ஘)୸౩  eି୧୩(୫ିଵ)୸౛ −
e୧୩(ଵିୡ୭ୱ ஘)୸౛             (6) 

where zୣ and zୱ are the z-coordinates of the 
intersection of the light and the body lateral 
surfaces, as shown in Fig. 2. 

To calculate the integral in Eq. (5) on the 
volume of the particle, it is necessary to 
determine the z-coordinates of the intersection of 
the light and the body lateral surfaces of the 
particle. For this, the pyramidal particle is cut in 
several square slices along its main axis (Fig. 
2(c)). 

 
FIG. 2. Decomposition of the pyramid. 

 
3. Results and Discussion 

Consider a particle of pyramidal shape with 
equilateral faces and a square base oriented in 
the y − z plane and of side length ܽ. The origin 
of the Cartesian coordinate system orthonormal 
R(O, X, Y, Z) coincides with the center of the 
particle (pyramid) and the principal axis of the 
pyramid is oriented along the x-axis. 

The use of the WKB method for oblique 
incidence presents some difficulties. Thus, this 
approximation will be applied in this work to 
derive the form factor of a pyramidal particle for 

two special cases of normal incidence: flat 
incidence (Fig. 3(a)) and edge-on incidence (Fig. 
3(b)). Therefore, the pyramid is cut into 
infinitely thin slices with thickness ݀ݔ; these 
slices are perpendicular to the symmetric axis of 
the pyramid and are in the form of squares. The 
length of its rib is a(x) = ଷୟ

ସ
− ୟ୶

୦
, with h being 

the height of the pyramid. So, for each slice, we 
can derive its contribution to the form factor. 
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FIG. 3. Slices of the pyramid for flat incidence (a) and edge-on incidence (b). 

 
The z-coordinates for the flat incidence are 

defined from Fig. 3(a): 

zୱ = −zୣ = ୟ(୶)
ଶ

, − ୟ(୶)
ଶ

≤ y ≤ ୟ(୶)
ଶ

         (7) 

and the z-coordinates for the edge-on incidence 
are defined from Fig. 3(b): 

zୱଵ = −zୣଵ = √ଶ
ଶ

a(x) + y, − √ଶ
ଶ

a(x) ≤ y ≤ 0

zୱଶ = −zୣଶ = √ଶ
ଶ

a(x) − y, 0 ≤ y ≤ √ଶ
ଶ

a(x)
ቑ  

        (8) 

3.1 Flat Incidence 

In this first case of incidence, Fig. 3(a) is 
used. Four particular cases are considered for 
which the analytical expression of the integral 
given by Eq. (5) is not defined for a number of 
values of ߠ and ߮, as well as a general case. The 
form factor for the flat incidence is denoted by 
,ߠ)ଵܨ ߮). 

a) Case of ࣂ = ૙ 
After some algebraic manipulations, one 

obtains the form factor: 

Fଵ(0, φ) = ୟమ୦
୧ଶ஡

ቄ ଶ
୧஡

ቂቀଵିୣ౟ಙ

୧஡
ቁ + e୧஡ቃ − 1ቅ         (9) 

where ρ = ka(m − 1). 

b) Case of ࣂ = ࣊ 
In this case, the expression of the form factor 

is given by: 

Fଵ(π, φ) = ୦
୩మ(୫ାଵ) ቄ ଵ

୫
ቀe୧୩ୟ୫ ቀ1 − ଵ

୧୩ୟ୫
ቁ +

ଵ
୧୩ୟ୫

ቁ + eି୧୩ୟ ቀ1 + ଵ
୧୩ୟ

ቁ − ଵ
୧୩ୟ

ቅ       (10) 

c) Case of  ૙ < ࣂ < ࣊, ࣐ = ૙ 

By integration of Eq. (5) over y, the 
contribution of a slice f ଵ(θ, 0) to the form factor 
is given by the following expression: 

f ଵ(θ, 0)dx = ୢ୶
୧୩(୫ିୡ୭ୱ ஘) ቆe୧య

ర୥ ቀଷୟ
ସ

Iା
ᇱ − ୟ

୦
Iି

ᇱ ቁ −

e୧య
ర୥ ቀଷୟ

ସ
Jା

ᇱ − ୟ
୦

Jି
ᇱ ቁቇ           (11) 

with: 

Iା
ᇱ = eି୧୩୶ ୱ୧୬ ஘eି୧ౝ

౞୶         (12) 

Iି
′ = xeି୧୩୶ ୱ୧୬ θeି୧ౝ

౞୶         (13) 

Jା
′ = eି୧୩୶ ୱ୧୬ θeି୧౧

౞୶         (14) 

Jି
ᇱ = xeି୧୩୶ ୱ୧୬ θeି୧౧

౞୶ .         (15) 

Therefore, the contribution from all slices to 
the form factor is expressed as: 

Fଵ(θ, 0) = ∫ f ଵ(θ, 0)dx
య
ర୦

ି౞
ర

 .        (16) 

Integration over ݔ gives: 

Fଵ(θ, 0) = ୟ୦ୣష౟య
రౡ౞ ౩౟౤ ಐ

୧୩(୫ିୡ୭ୱ ஘)
ቊቆୣ౟ౖౝశ

୧୞ౝ
శ − ୣ౟ౖ౧శ

୧୞౧
శ ቇ −

ቆୣ౟ౖౝశିଵ

൫୧୞ౝ
శ൯మ − ୣ౟ౖ౧శିଵ

൫୧୞౧
శ൯మ ቇቋ         (17) 

with: 

Z୥
ା = kh sin θ + g         (18) 

Z୯
ା = kh sin θ + q         (19) 

and the parameters used are: μ = ୩ୟ
ଶ

(m − cos θ), 
g = ஡

ଶ
+ μ, q = ஡

ଶ
− μ and ߩ as already defined in 

the case ߠ = 0. 
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d) Case of ૙ < ࣂ < ࣊ and ࣐ = ࣊ 

In this case, the same method is used to 
determine the expression of the form factor; it 
suffices to calculate the integral of Eq. (5) over y 
and x; so: 

Fଵ(θ, π) = ୟ୦ୣష౟భ
రౡ౞ ౩౟౤ ಐ

୧୩(୫ିୡ୭ୱ ஘)
ቊ൬ୣ౟౧

୧୞౧
ష − ୣ౟ౝ

୧୞ౝ
ష൰ −

ቆe୧୯ ୣ౟ౖ౧షିଵ

൫୧୞౧
ష൯మ − e୧୥ ୣ౟ౖౝషିଵ

൫୧୞ౝ
ష൯మ ቇቋ        (20) 

with: 

Z୥
ି = kh sin θ − g         (21) 

Z୯
ି = kh sin θ − q .         (22) 

e) General Case 

In this general case, the values of ߠ and ߮ are 
different from those of the preceding cases. By 
integrating Eq. (5) over ݕ, the expression of the 
contribution of a slice f ଵ(θ, φ) to the form factor 
becomes: 

f ଵ(θ, φ)dx = ୢ୶
୧୩(୫ିୡ୭ୱ ஘)୧୩ ୱ୧୬ ஘ ୱ୧୬ ஦

൫(Iା − Iି) −
(Jା − Jି)൯          (23) 

with: 

Iାି =

eି୧୩୶ ୱ୧୬ ஘ ୡ୭ୱ ஦e୧୩୸౩(ଶ୫ିଵିୡ୭ୱ ஘)eାି୧୩୷౩ ୱ୧୬ ஘ ୱ୧୬ ஦  
      (24) 

Jାି = eି୧୩୶ ୱ୧୬ ஘ ୡ୭ୱ ஦e୧୩୸౩(ୡ୭ୱ ஘ିଵ)eାି୧୩୷౩ ୱ୧୬ ஘ ୱ୧୬ ஦.  
      (25) 

Thus, the contribution from all slices to the 
form factor is expressed as: 

Fଵ(θ, φ) = ∫ f ଵ(θ, φ)dx
య
ర୦

ି౞
ర

 .        (26) 

By introducing the value of zୱ defined in Eq. 
(7) and by integrating with respect to ݔ, the 
previous integral takes the following form: 

Fଵ(θ, φ) = −
౞౗మ

ర
୳୲

eି୧య
రୢ ൜൬ୣ౟ఽశିଵ

୧୅శ − ୣ౟ఽషିଵ
୧୅ష ൰ −

൬ୣ౟ాశିଵ
୧୆శ − ୣ౟ాషିଵ

୧୆ష ൰ൠ         (27) 

with: 

Aାି = d + g ± t          (28) 

Bାି = d + q ± t .         (29) 

The parameters used are:  

d = hk sin θ cos φ         (30) 

t = ୩ୟ
ଶ

sin θ sin φ.         (31) 

3.2 Edge-on Incidence 

In this second case of incidence, the slice of 
the pyramid is divided into two areas by ray 1, 
ray 2 and ray 3 (see Fig. 3(b)). The ray paths zୣ୨ 
and zୱ୨ for each area as well as the function 
G(zୣ, zୱ) (see Eq. (6)) depend on the variables x 
and y. As in the case of flat incidence, there are 
four special cases and a general case to be 
treated. 

a) Case of ࣂ = ૙ 

In this case, the expression of the form factor 
is given by: 

Fଶ(0, φ) = ୟమ୦
୧஡ᇲ ൜ ଶ

୧஡ᇲ ൬ୣ౟ಙᇲିଵ
୧஡ᇲ − 1൰ − 1ൠ       (32) 

where ܨଶ(ߠ, ߮) represents the form factor for 
the edge-on incidence, with ρᇱ = √2ka(m − 1). 

b) Case of ࣂ = ࣊ 

Similarly here, the expression of the form 
factor is easily calculated: 

Fଶ(π, φ) = − ୦
୩మ(୫ାଵ) ൜ ଵ

୫
൬ୣ౟√మౡ౗ౣିଵ

୧√ଶ୩ୟ୫
− 1൰ −

ୣ౟√మౡ౗ିଵ
୧√ଶ୩ୟ

− 1ൠ .             (33) 

c) Case of ૙ < ࣂ < ࣊ and ࣐ = ૙ 

By the integration of Eq. (5) over y, the 
expression of the contribution of a slice f ଶ(θ, 0) 
to the form factor is given by: 

f ଶ(θ, 0)dx = ୢ୶
୧୩(୫ିୡ୭ୱ ஘) ൫f ଶି(θ, 0) + f ଶା(θ, 0)൯  

      (34) 

where f ଶି(θ, 0) and f ଶା(θ, 0) are respectively 
the contributions of area 1 and area 2 of the slice 
to the form factor, with: 

f ଶ±(θ, 0) = ൫I±
ᇱᇱ − J±

ᇱᇱ൯         (35) 

and 

Iି
ᇱᇱ = Iା

ᇱᇱ = √ଶୟ
୧ଶ୥ᇲ ቀe୧య

ర୥ᇲ
Iଵି

ᇱᇱ − Iଶି
ᇱᇱ ቁ        (36) 

Iଵି
ᇱᇱ = eି୧୩୶ ୱ୧୬ ஘eି୧ౝᇲ

౞ ୶         (37) 

Iଶି
ᇱᇱ = eି୧୩୶ ୱ୧୬ ஘          (38) 

Jି
ᇱᇱ = Jା

ᇱ = √ଶୟ
୧ଶ୯ᇲ ቀe୧య

ర୯ᇲ
Jଵି

ᇱᇱ − Jଶି
ᇱᇱ ቁ        (39) 



Article  Tari et al. 

 532

Jଵି
ᇱᇱ = eି୧୩୶ ୱ୧୬ ஘eି୧౧ᇲ

౞ ୶         (40) 

Jଶି
ᇱᇱ = eି୧୩୶ ୱ୧୬ ஘ .         (41) 

Then, the contribution from all slices to the 
form factor is expressed as: 

Fଶ(θ, 0) = Fଶି(θ, 0) + Fଶା(θ, 0)       (42) 

where Fଶି(θ, 0) and Fଶା(θ, 0) are the 
contributions of area 1 and area 2 to the form 
factor, respectively, with: 

Fଶ±(θ, 0) = ଵ
୧୩(୫ିୡ୭ୱ ஘) ∫ f ଶ±(θ, 0)dx

య
ర୦

ି౞
ర

       (43) 

By performing the last integration, the 
expression of Eq. (42) becomes: 

Fଶ(θ, 0) = √ଶୟ୦ୣష౟య
రౡ౞ ౩౟౤ ಐ

୧୩(୫ିୡ୭ୱ ஘) ൝ ଵ
୧୥ᇲ

ୣ
౟ౖౝᇲ

శ
ିଵ

୧୞ౝᇲ
శ −

ଵ
୧୯ᇲ

ୣ
౟ౖ౧ᇲ

శ
ିଵ

୧୞౧ᇲ
శ + ୣ౟ౡ౞ ౩౟౤ ಐିଵ

୧୩୦ ୱ୧୬ ஘
ቀ ଵ

୧୯ᇲ − ଵ
୧୥ᇲቁൡ       (44) 

where: 

Z୥ᇲ
ା = kh sin θ + gᇱ         (45) 

Z୯ᇲ
ା = kh sin θ + qᇱ.         (46) 

The parameters used are: μᇱ = √ଶ
ଶ

ka(m −

cos θ), gᇱ = ஡ᇲ

ଶ
+ μᇱ, qᇱ = ஡ᇲ

ଶ
− μᇱ and the 

parameter ρ′ as defined above. 

d) Case of ૙ < ࣂ < ࣊ and ࣐ = ࣊ 

The same method used above gives the 
expression of the form factor: 

Fଶ(θ, π) = √ଶୟ୦ୣష౟య
రౡ౞ ౩౟౤ ಐ

୧୩(୫ିୡ୭ୱ ஘) ቊ ଵ
୧୥ᇲ

ଵିୣ
ష౟ౖౝᇲ

ష

୧୞ౝᇲ
ష −

ଵ
୧୯

ଵିୣ
ష౟ౖ౧ᇲ

ష

୧୞౧ᇲ
ష + ଵିୣష౟ౡ౞ ౩౟౤ ಐ

୧୩୦ ୱ୧୬ ஘
ቀ ଵ

୧୯ᇲ − ଵ
୧୥ᇲቁቋ       (47) 

with: 

Z୥ᇲ
ି = kh sin θ − gᇱ         (48) 

Z୯ᇲ
ି = kh sin θ − qᇱ.         (49) 

e) General Case 
The contribution from the slice to the form 

factor in this general case can be expressed in a 
simple form: 

f ଶ(θ, φ)dx = ୢ୶
୧୩(୫ିୡ୭ୱ ஘) ൫f ଶି(θ, φ) +

f ଶା(θ, φ)൯          (50) 

with: 

f ଶ±(θ, φ) = ୣ౟య√మ
ఴ ౡ౗(మౣషభషౙ౥౩ ಐ)

∓୧୩(ୱ୧୬ ஘ ୱ୧୬ ஦±(ଶ୫ିଵିୡ୭ୱ ஘))
(Iଵ± −

Iଶ±) − ୣ౟య√మ
ఴ ౡ౗(ౙ౥౩ ಐషభ)

∓୧୩(ୱ୧୬ ஘ ୱ୧୬ ஦±(ୡ୭ୱ ஘ିଵ))
(Jଵ± − Jଶ±)  

           (51) 

Iଵ± = eି୧୩୶൬ୱ୧୬ ஘ ୡ୭ୱ ஦ା√మ౗
మ౞

(ଶ୫ିଵିୡ୭ୱ ஘)൰ ×  

          e∓୧√మ
మ ୩ୟ(୶)(ୱ୧୬ ஘ ୱ୧୬ ஦±(ଶ୫ିଵିୡ୭ୱ ஘))       (52) 

Iଶ± = e
ି୧୩୶ቆୱ୧୬ ஘ ୡ୭ୱ ஦ା√మ౗

మ౞
(ଶ୫ିଵିୡ୭ୱ ஘)ቇ

       (53)  

Jଵ± = eି୧୩୶൬ୱ୧୬ ஘ ୡ୭ୱ ஦ା√మ౗
మ౞

(ୡ୭ୱ ஘ିଵ)൰ ×

e∓୧√మ
మ ୩ୟ(୶)(ୱ୧୬ ஘ ୱ୧୬ ஦±(ୡ୭ୱ ஘ିଵ))         (54) 

Jଶ± = e
ି୧୩୶ቆୱ୧୬ ஘ ୡ୭ୱ ஦ା√మ౗

మ౞
(ୡ୭ୱ ஘ିଵ)ቇ

.       (55) 

The form factor can therefore be written as: 

Fଶ(θ, φ) = Fଶି(θ, φ) + Fଶା(θ, φ)       (56) 

where: 

Fଶ±(θ, φ) = ଵ
୧୩(୫ିୡ୭ୱ ஘) ∫ f ଶ±(θ, φ)dx

య౞
ర

ି౞
ర

       (57) 

After some algebraic manipulations, Eq. (57) 
becomes: 

Fଶ±(θ, φ) = − ୟమ

ଶஜᇲ ቊ ୣ౟య
రౝᇲ

∓൫√ଶ୲±୥ᇲ൯ ∫ (Iଵ± −
య౞
ర

ି౞
ర

Iଶ±)dx − ୣ౟య
ర౧ᇲ

∓൫√ଶ୲±୯ᇲ൯ ∫ (Jଵ± − Jଶ±)dx
య౞
ర

ି౞
ర

ቋ.     (58) 

Finally, by integrating Eq. (58) over the 
variable x, the expression of the form factor for 
each area is given by: 

Fଶ±(θ, φ) = − ୟమ୦
ଶஜᇲ ቊ ୣష౟య

రౚ

∓൫√ଶ୲±୥ᇲ൯
൤ୣ౟൫ౚ∓√మ౪൯ିଵ

୧൫ୢ∓√ଶ୲൯ −

ୣ౟൫ౚశౝᇲ൯ିଵ
୧(ୢା୥ᇲ) ൨ − ୣష౟య

రౚ

∓൫√ଶ୲±୯ᇲ൯
൤ୣ౟൫ౚ∓√మ౪൯ିଵ

୧൫ୢ∓√ଶ୲൯ −

ୣ౟൫ౚశ౧ᇲ൯ିଵ
୧(ୢା୯ᇲ) ൨ቋ                 (59) 

where the parameters ݀ and ݐ have been defined 
in the general case of flat incidence. 

Note that ܨଶା has a singularity at √2ݐ +  ᇱݍ
when ߠ = ߮ = గ

ଶ
. In this case, the recalculation 

of ܨଶା gives the following result: 
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Fଶା ቀ஠
ଶ

, ஠
ଶ

ቁ = ୦
୩మ୫

൝ቈቆ1 + √ଶ
୧୩ୟ

ቀ1 + ଵ
ଶ୫

ቁቇ ൬1 −

eି୧√మ
మ ୩ୟ൰ − 1቉ + ଵିୣ౟√మ

మ ౡ౗(మౣషభ)

୧√ଶ୩ୟ୫(ଶ୫ିଵ)ൡ       (60) 

The analytical expressions of the form factor 
for a pyramidal particle as part of the WKB 
approximation are established; they have been 
obtained for both flat incident light and edge-on 
incidence. Then, the correctness of the analytical 
expressions of the form factor is checked. For 
this, the different double integrals which 
intervene here are calculated numerically using 
Gauss Legendre quadrature method. By taking 
16×16 integration points for this quadrature, the 
results obtained with the analytical expressions 
of the form factor are reproduced numerically. 

For illustration, Fig. 4 and Fig. 5 show the 
behavior of the normalized form factor 
(|F(θ, φ)/F(0,0)|ଶ) as a function of the 
scattering angles θ and φ on a logarithmic scale 
for some values of ka and ୦

ୟ
. In these figures, the 

axis φ = π is an axis of symmetry of the form 
factor; only the values of φ between 0 and π are 
considered. 

The graphs representing the normalized form 
factor in the different cases show that when the 
scattering angle ߠ increases gradually from a 
certain value, the normalized form factor varies 
greatly with the azimuth angle ߮. This is 
manifested by the appearance of a number of 
bumps and dips. Consequently, the azimuth 
angle ߮ plays an important role in the study of 
the scattering of light by non-spherical particles 
unlike the case of spherical particles; this is in 
agreement with the fact that the particle has non-
spherical symmetry. On the other hand, the 
graphs also show the importance of the size 
parameter and the orientation (flat incidence and 
edge-on incidence) of the non-spherical 
particles. Finally, it is noted that the backscatter 
is nearly imperceptible compared to the forward 
scatter. 

 
FIG. 4. Normalized form factor as a function of the scattering angles θ and ߮ for absorbing pyramidal particle 
for flat incident light at a complex refractive index m = 1.311 + 0.31 × 10ି଼i when (ka = 10, h/a = 0.2), 

(ka = 10, h/a = 2), (ka = 6, h/a = 0.2) and (ka = 6, h/a = 2). 
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FIG. 5. Normalized form factor as a function of the scattering angles θ and ߮ for absorbing pyramidal particle 
for edge-on incidence at a complex refractive index m = 1.311 + 0.31 × 10ି଼i when (ka = 10, h/a = 0.2), 

(ka = 10, h/a = 2), (ka = 6, h/a = 0.2) and (ka = 6, h/a = 2). 
 

The form factors obtained here in Figs. 4 and 
5, representing the modification of the scattered 
irradiance due to the finite size of the particle 
and to its deviation from sphericity, are studied 
for two particular cases: flat incidence (Fig. 4) 
and edge-on incidence (Fig. 5). In particular, the 
effects of the scattering angle θ and the azimuth 
angle φ on the form factor observed in this study 
can be used in the progress and development of 
numerous scientific applications, which are 
directly or indirectly linked to the phenomenon 
of light scattering by small particles, such as 
optical information, display and processing 
systems, telecommunications, photonics and 
optoelectronics [23]. Moreover, these results are 
used to deduce the optical properties of particles 
in other scientific disciplines, such as 
geophysics, astronomy, climatology and solar-
energy technologies [17, 24, 25]. 

3.3 Extinction Efficiency 

The extinction efficiency  Qୣ୶୲ is the 
extinction cross-section divided by the projection 
area of the particle. By using the optical 
theorem, the expression for the extinction 
efficiency is easily found from the forward form 
factor [1, 26]: 
Qୣ୶୲ = ଶ୩

୔
I୫((m − 1)F(0,0))        (61) 

where ܲ is the projected area of the particle on 
the plane perpendicular to the direction of the 
incident wave and the symbol I୫ indicates the 
imaginary part. 

The projected area of the pyramid in the first 
case (flat incidence) is given by: Pଵ = ୟ୦

ଶ
 and in 

the second case (edge-on incidence), it is given 
by: Pଶ = ୟ୦

√ଶ
. Thus, the extinction efficiencies of 

these two cases are given respectively by: 

Qୣ୶୲ଵ = 2Re(1 − ଶ
୧஡

((ଵିୣ౟ಙ)
୧஡

+ e୧஡))       (62) 

Qୣ୶୲ଶ = 2Re(1 − ଶ
୧஡ᇲ (

ቀୣ౟ಙᇲିଵቁ

୧஡ᇲ − 1))       (63) 

where the symbol Re designates the real part. 

Since the parameters ߩ and ߩᇱ do not depend 
on the height h, the expressions of Qୣ୶୲ above 
show that the extinction efficiency also does not 
depend on the height h. 

For real refractive index, the extinction 
efficiencies become: 

Qୣ୶୲ଵ = 2 ൜1 − 2 ୱ୧୬ ஡
஡

+
ୱ୧୬(஡

ଶൗ )మ

(஡
ଶൗ )మ ൠ       (64) 

Qୣ୶୲ଶ =  2{1 −
ୱ୧୬(ಙᇲ

మ )మ

(ಙᇲ
మ )మ }         (65) 
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Fig. 6 shows the variation of the extinction 
efficiency as a function of ka in two cases: flat 
incidence (ܳ௘௫௧ଵ) and edge-on incidence (ܳ௘௫௧ଶ). 
From this figure, it is noticed that the extinction 
efficiency oscillates around the value of 2 as the 
particle size further increases. For large values of 
ka, ܳ௘௫௧ଵ always oscillates around the value 2, 
while ܳ௘௫௧ଶ tends towards this same value 2. 
This extinction limit value corresponds to the 
extinction paradox described in the literature [1]. 
More recently, Berg in 2011 gave a more 

convincing explanation of this limit value 2 [27]. 
The particle intercepts a portion of the incident 
plane wave equal to its geometric section 
௚௘௢ߪ = ܲ. The resulting interaction vibrates the 
particle which re-emits a wave which is nothing 
other than the scattered wave. This scattered 
wave will, for its part, interfere with the incident 
wave in a destructive manner, again removing 
௚௘௢ߪ = ܲ from the incident flux. We therefore 
find ߪ௘௫௧ = ௚௘௢ and finally ܳ௘௫௧ߪ2 = ఙ೐ೣ೟

௉
= 2. 

 
FIG. 6. Variation of the extinction coefficient as a function of the size parameter ݇ܽ for a complex refractive 

index ݉ = 1.311 + 0.31 × 10ି଼݅. 
 

4. Conclusion 
In this work, the WKB method is used to 

study two particular cases of the scattering of 
light by a nonspherical pyramidal particle for 
normal incidence (flat incidence and edge-on 
incidence). The expression of the light scattering 
form factor of this particle is determined 
analytically for the two cases; it depends on the 
relative refractive index, the size parameter and 
the geometry of the particle. Unlike the case of 
spherical particles, the form factor is also 
dependent on the scattering angle  ߠ and the 
azimuth angle ߮. It is also seen that the particles 

that do not have spherical symmetry make the 
calculation of the form factor of light scattered 
by a pyramidal particle much more complicated. 

Finally, the extinction efficiency for a 
pyramidal particle is calculated in the two cases 
of normal incidence according to the parameter 
size of the particle. The value of this coefficient 
tends to 2 when the particle size becomes 
infinite, which is in perfect agreement with other 
works in the literature. 
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