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Abstract: The Klein-Gordon equation with Varshni potential was solved through the 
Nikiforov-Uvarov method. The Greene and Aldrich approximation schemes were 
employed to overcome the centrifugal barrier. The energy eigenvalues were obtained in 
relativistic and non-relativistic regimes, as well as the corresponding normalized wave 
functions. Energy spectra and expectation values of the square of inverse of position 2 ,r 

kinetic energy T   and the square of the momentum 
2

p   for five selected diatomic 
molecules: H2, HCl, TiH, I2 and CO, using their separate spectroscopic parameters were 
computed through Hellmann-Feynman Theorem. Bound-state energy eigenvalues were also 
computed for Varshni potential and the numerical results agree with the already existing 
literature. 

Keywords: Expectation values, Varshni potential, Nikiforov-Uvarov method, Klein-
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1. Introduction 
Relativistic equations, such as Klein-Gordon 

equation (KGE), are very essential in many 
aspects of modern physics and Klein-Gordon 
equation is the most suitably used wave equation 
for the treatment of spinless particles in 
relativistic quantum mechanics. Klein-Gordon 
equation has been studied with some exactly 
solvable potential [1-3]. The relativistic behavior 
of spin-zero particles needs understanding of the 
single-particle spectrum which contains a four-
vector linear momentum operator and a rest mass 
and requires introducing the four-vector potential 

( )V r  and a space time scalar potential ( )S r  
with the configuration ( ) ( )S r V r  or 

( ) ( )S r V r  [2]. ( ) ( ) 2 ( )S r V r V r   gives 
non-relativistic limits of the equation conforming 
exactly to that of the Schrödinger equation (SE) 
[4-7]. Different methods have been employed to 
obtain the solution of the relativistic and non-
relativistic wave equations with interacting 
potential models. These include the factorization 
method [8], Nikiforov-Uvarov functional 
analysis(NUFA) method [9-13], supersymmetry 
quantum mechanics (SUSYQM) [14,15], 
asymptotic iteration method (AIM) [16,17], the 
WKB approximation [18-20], Nikiforov-
Uvarov method (NU) [21-38], formula method 
[39], series expansion method [40-42], among 



Article  Inyang et al. 

 496

others. With the above methods, many authors 
have solved both relativistic and non-relativistic 
wave equations with diverse potentials. For 
instance, Inyang et al. [43] obtained analytical 
solutions of the SE with the Kratzer–screened 
Coulomb potential model to study some 
diatomic molecules. Min-Cang [44] obtained 
relativistic and non-relativistic solutions of the 
inversely quadratic Yukawa potential. Arda and 
Sever [45] obtained the eigensolutions of the SE 
with the class of Yukawa potential via 
SUSYQM. Edet et al. [46] obtained bound-state 
solutions of the SE for the modified Kratzer 
potential plus screened Coulomb potential.  

The Varshni potential is greatly important 
with applications cutting across nuclear physics, 
particle physics and molecular physics and takes 
the form [47]: 

( )
reV r

r






             (1)  

where   and   stand for the potential strength 
and   is the screening parameter which controls 
the shape of the potential-energy curve, as 
shown in Fig. 1, r  stands for the inter-nuclear 
separation. The Varshni potential is a short-range 
repulsive potential energy function that plays an 
important role in both chemical and molecular 
physics [48-52]. This potential is generally used 
to describe bound states of the interaction of 
systems and has been applied in both classical 
and molecular physics. The Varshni potential 
was studied by Lim using the 2-body Kaxiras-
Pandey parameters. The study observed that 
Kaxiras and Pandey used this potential to 
describe the 2-body energy portion of multi-
body condensed matter [53]. The present study 
intends to investigate the relativistic Klein-
Gordon equation with the Varshni-potential 
model in the framework of the NU method for 
bound-state problems and to employ Hellmann-
Feynman theorem to compute expectation values 
for selected diatomic molecules. To the best of 
our knowledge, this is the first time Klein-
Gordon equation is being studied with the 
Varshini-potential model to compute the 
expectation values of some diatomic molecules 
using the NU method. 

It is noted that the exact solution of the Klein-
Gordon equation with Varshni potential in Eq. 
(1) is not possible due to the presence of the 
inverse square term in Eq. (17). Therefore, to 
obtain approximate solutions, a suitable 

approximation scheme is employed. It is found 
that such approximation proposed by Greene and 
Aldrich [54] 

 
2

2 2

1

1 rr e 







            (2) 

is a good approximation to the centrifugal or 
inverse square term which is valid for 1  for 
a short-range potential. The paper is organized as 
follows: In Section 2, the NU method is 
reviewed. In Section 3, the bound-state energy 
eigenvalues and the corresponding wave 
functions are calculated. In Section 4, the results 
are discussed. In Section 5, conclusion is 
presented. 

2. Review of Nikiforov-Uvarov (NU) 
Method 

The NU method was proposed by Nikiforov 
and Uvarov [55] as a suitable method to obtain 
the solution of the second-order differential 
equation via a coordinate transformation

( )s s r of the form:   

   
     

   2 0
s s

s s s
s s

 
  

 
   

 
       (3) 

where ߪ(ݏ), and (ݏ)ߪ are polynomials, at most 
second-degree and ( )s  is a first-degree 
polynomial. The exact solution of Eq. (3) can be 
obtained by using the transformation: 

     s s y s   .           (4) 

This transformation reduces Eq. (3) into a 
hypergeometric-type equation of the form:  

          0s y s s y s y s      .         (5)  

The function ( )s  can be defined as the 
logarithm derivative. 

 
 

 
 

s s
s s

 
 


             (6) 

with ( )s being at most a first-degree 
polynomial. The second part of ( )s being y( )s
in Eq. (5) is the hypergeometric function with its 
polynomial solution given by Rodrigues relation 
as: 
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n

nnl
n

B dy s s s
s ds

 


             (7) 

where nB  is the normalization constant and 

 s  is the weight function which satisfies the 
condition below;  

        s s s s     ,          (8) 

where also:  

     2s s s    .            (9) 

For bound solutions, it is required that: 

 
0

d s
ds


 .          (10) 

The eigenfunctions and eigenvalues can be 
obtained using the definition of the following 
function ( )s  and parameter λ, respectively: 

     

       
2

2

2

s s
s

s s
s k s

 


 
 

 
 




        






      (11) 

and 

 k s     .         (12) 

The value of k  can be obtained by setting the 
discriminant in the square root in Eq. (11) equal 
to zero. As such, the new eigenvalues equation 
can be given as : 

' ''( 1)( ) ( ) 0,( 0,1,2,...)
2n

n nn s s n  
    . 

          (13)  

3. Bound-state Solution of the Klein-
Gordon Equation with Varshni 
Potential 

The Klein-Gordon equation for a spinless 
particle for 1c   in D-dimensions is given 
as [56, 57]: 

 
     

   

22

2

2

( )
, ,2 1 2 3

4
( ) , ,

M S r
rD l D l

r
E V r r

  

  

   
 
    

    
  

   (14) 

where 2  is the Laplacian, M  is the reduced 
mass, E  is the energy spectrum and n  and l  are 
the radial and orbital angular momentum 
quantum numbers, respectively. It is a common 
practice that for the wave function to satisfy the 
boundary conditions, it can be rewritten as:  

   , , ,nl
lm

Rr Y
r

     .         (15) 

However, the spherical harmonic  ,lmY    
is known in literature [58]. 

The angular component of the wave function 
could be separated leaving only the radial part as 
shown below: 

 
 
  

2 2 2 2

2

2

2

( ) ( )
( ) 2 ( ) ( ) ( ) 0

2 1 2 3
4

nl

nl

E M V r S r
d R r E V r MS r R r

dr
D l D l

r

 
   
       

           

   

           (16) 

Thus, for equal vector and scalar potentials
( ) ( ) 2 ( )V r S r V r  , Eq. (16) becomes: 

 
 

  

2 2

2

2

2

( ) ( ) ( ) 0

2 1 2 3
4

nl

nl

E M
d R r V r E M R r

dr
D l D l

r

 
 
       

           

. 

      (17) 

By substituting Eq. (1) into Eq. (17), the 
following equation is obtained: 

 

 

  

2 2

2

2

2

( ) ( ) 0

2 1 2 3
4

nl

r

nl

E M

d R r e E M R r
dr r

D l D l
r






 
 
 
          

   
      
  

 . 

             
(18)  
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The coordinate of Eq.(18) is transformed by 
setting 

 rs e  .           (19) 

Differentiating Eq. (19) and simplifying it 
yield: 

2 2
2 2 2

2 2

( )d R r d R dRs s
dsdr ds

  
 
. 

      
(20) 

Substituting Eqs. (2), (19) and (20) into Eq. 
(18), the result is: 

 
 

 
   

2

2

2 2
22

1( ) ( )
1

1 1 (s)
1

0

sd R s dR s
ds s s ds

s s s R
s s

  

 
  

         
 


           (21) 
where 

 

    

2 2

2

2

2 1 2 3
4

nl

nl

nl

E M

E M

E M D l D l














  


  

     

   
 

. 

                        (22) 

Expanding the square bracket of Eq. (21), we 
get: 

 
 

 

 
 
 

2

2

2

22

1( ) ( )
1

1 2 (s) 0
1

sd R s dR s
ds s s ds

s

s R
s s

 

 

 

 
   

   
            

.        (23) 

Comparing Eq. (23) with Eq. (3), the 
following parameters are obtained: 

 

 
   

2

( ) 1
(s) 1
( ) 1 2
(s)

2

s s
s s

s s
s

s






  

   

 


  
   
   
    




.       (24) 

By substituting Eq. (24) into Eq. (11), the 
result is: 

   2( )
2
ss A k s B k s C         (25) 

where 

  

1
4

2

A

B
C

 

 

 

   


   
  


 .         (26) 

To find the constant k , the discriminant of 
the expression under the square root of Eq. (25) 
must be equal to zero.  

  2 2k B C C C B A                 (27) 

Substituting Eq. (26) into Eq. (27), we get:  

 
12 2
4

k             .               

(28) 

Substituting Eq.(27) into Eq. (25), the result 
is:  

 ( )
2
ss C C B A S C          . 

     (29) 
Substituting Eq. (26) into Eq. (29) yields:  

1
4(s)

2
Ss   



 


  
          

 
  

.       (30) 

Differentiating Eq. (30), we obtain: 

1 1(s)
2 4

   

 
        

 
.       (31) 

Substituting Eqs. (28) and (31) into Eq. (12), 
the result is: 
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12 2
4

1 1
2 4

     

  


     


        

.       (32) 

with ߬(ݏ) being obtained from Eq. (9) as:  

( ) 1 2 2

12 2
4

s s s

s

  

  

   



    


.        (33) 

Differentiating Eq. (33) yields: 

 
1( ) 2 2
4

s   
 

        
 

 .       (34) 

Taking the derivative of ( )s   with respect 
to s from Eq. (24) yields:  

 '' ( ) 2s    .          (35)  

Substituting Eqs. (34) and (35) into Eq. (13) 
and simplifying yield: 

 2 12 2
4n n n n n          .      (36) 

Equating Eqs. (32) and (36) and substituting 
Eq. (22) yield the energy eigenvalue equation of 
the Varshni potential in the relativistic limit as: 

    

    

    

2 2

2
2

22

22

2

2 1 2 3
4

2 1 2 31 1
2 4 4

4 2 1 2 31 1
2 4 4

nl

nl

nl

nl

M E

E M D l D l

D l D l E M
n Q

D l D l E M
n












 

     
  

 

            
    
     

    
  

           (37) 

where 

 

   

 
2

2 1 2 3
4

nl

nl

E M
Q

D l D l

E M







 
 


    

 



 


.
       

(37a) 

 

 

3.1 Non-relativistic Limit 

In this sub-section, the non-relativistic limit 
of Eq. (37) is studied. Considering a 

transformation of the form: 2

2
nlM E 

 


, 

nl nlM E E    and substituting it into Eq. 
(37), the non-relativistic energy eigenvalue 
equation reads:  

. 
      (38) 

To obtain the corresponding wave function, 
Eq. (6) is considered and upon substituting Eqs. 
(24) and (33) and integrating, the result is: 

 
1 1
2 4(s) 1s s       .        (39) 

To get the hypergeometric function 
considering Eq. (4), the weight function is 
determined first of Eq. (8) upon differentiating 
the left-hand side to get:  

(s) (s) (s)
(s)

  
 
 

  .         (40) 

Substituting Eqs. (24) and (33) into Eq. (40), 
then integrating and simplify, we obtain:  

 
122 4(s) 1s s      .        (41) 

By substituting Eqs. (24) and (41) into Eq. 
(7), the Rodrigue’s equation is obtained as: 

 

   
1 12 22 24 41 1

n

n
nn

n n

y s

dB s s s s
ds

          



 
  

 

 

          (42) 
where nB  is the normalization constant. 

Eq. (42) is an equivalent to 

  

  

  

  

2 2

22

2 2

2 2 2 2 2

2 2

2 1 2 3
8

2 1 2 31 1 2
2 4 4

2 1 2 32 2
4

8 2 1 2 31 1 2
2 4 4

nl

D l D l
E

D l D l
n

D l D l

D l D l
n
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12 ,2
4 1 2nP s

  
 

   
   ,         (43) 

where  ,
np    is Jacobi polynomial. 

The wave function is given by: 

 

   
12 ,21 1
4

2 41 1 2

nl

nl n

s

B s s P s
  

 


 

      



 
. (44) 

Using the normalization condition, the 
normalization constant can be obtained as 
follows: 

2

0

( ) 1nl r dr


  .         (45) 

Using the coordinate transformation of Eq. 
(19), we get: 

0
2

1

1 (s) 1nl ds
s




   .         (46)  

By letting 1 2 ,y s  the result is:  
21 12 1 212 2 ,24 4

1

1 1
2 2

1

nl
n

B y y P y dy
     



       
 



                    
 

 . 

                        (47) 

Let 

 

11 2
4
11 2
4

2u

 

 

 


   


   

 



 .         (48) 

Substituting Eq. (48) into Eq. (47) yields:  

  
12 22 u, 1

1

1 1 1
2 2

u
nl

n
B y y P y dy









                . 

           (49) 

According to Onate et al. [59], the integral of 
the form in Eq. (49) can be expressed as: 

 
1 22x,2 1

1

1 1
2 2

2 ( 1) ( 1)
! ( 1)

x y
y

n
p p P p dp

x n y n
n x x y n





                


           


.     (50) 

Hence, comparing Eq. (49) with the standard 
integral of Eq. (50), the normalization constant is 
obtained as: 

 
! (u n 1)

2 ( 1) ( 1)nl
n uB

u n n
 


   


     

 .           (51)  

3.2 Application of Hellmann-Feynman 
Theorem to the Varshni Potential 

Hellmann-Feynman Theorem (HFT) is one of 
the useful means of obtaining expectation values 
of some quantum mechanical observables for 
any arbitrary values of n and l  quantum 
numbers. Assume that the Hamiltonian Ĥ for a 
particular quantum mechanical system is a 
function of some parameter q . Let (q)E  and 

( )q  be the eigenvalues and the eigenfunctions 

of the Hamiltonian ˆ ( )H q . Then, the Hellmann-
Feynman Theorem (HFT) states that: 

ˆ( ) ( )( ) ( )nl
nl nl

E q H qq q
q q

 
 

  
 

 ,       (52) 

provided that the associated normalized 
eigenfunction ( )nl q  is continuous with respect 
to the parameter q  [60-62]. 

The effective Hamiltonian is given as: 

 
2 2 2

2 2
ˆ 1

2 2

rd eH l l
rdr r




 



     
 

.
  

           
(53) 

3.2.1 Expectation Value of 2r   

Substituting q l  into Eq. (53) gives:  

       
ˆ

nl
nl nl

E l H l
l l

l l
 

 
  

 
.
        

(54) 

Taking the partial derivative of Eq. (53) with 
respect to l  gives: 

       
2

22 1
2

H l
l l l r

l
 




     



.
   

(55) 
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Taking the partial derivative of Eq. (38) with 
respect to l  gives: 

 

  

2 2

2

2 2

2

4
8

1
2

4

2 1 2 3 1
4 2

4
12

2 1
2

nlE l
l

n U

D l D l
U

BV
U

n U











  

                                    
              

 
 
 
 
 
 
 
 
 






(56) 

where  
2 2

8
B 





           
(57) 

  
2 2

2 1 2 31 4
4 4

D l D l
U 


   

  


   (58) 

  
2 2 2

1
2

2 1 2 34 4
4

1
2

V n U

D l D l

n U

 
 

        
    

   
 
    

  

 
.

  

(59) 

Equating Eqs. (55) and (56) yields the 
expectation values of 2r   for different orbital 
quantum numbers. Hence, 

 

 

   

2
2

2

2 2

2 2

2 1

1
2

4

2 1 2 3 1
4 2

4
4 1

2 1 2 1
2

r
l

n U

D l D l
U

B V
l U

n U









 
     

                                                   
 
 
 
 
 
 
 
    






.                  

                      (60) 

3.2.2 Expectation Values for T   and 2P̂   

Substituting q   into Eq. (52), we get: 

       
ˆ

nl
nl nl

E H 
   

 
 

  
 

.
      

(61) 

Taking the partial derivative of Eq. (61) with 
respect to   gives: 

 
2 2 2

2 2 2 2

( ) 1
2 2

H d l l
dr r


  


  


 

,         (62) 

which implies: 

 
2 2 2

2 2

( ) 1 1
2 2

H d l l
dr r


   

 
       

 
. (63) 

Eq. (63) implies: 

 1 1T H V
 

      .
         

(64) 

Hence,  

     
ˆ 1

nl nl

H
T


   

 


     


.
        

(65) 

From the relation 
2

,
2
pT


  substituting for 

T  in Eq. (64), we obtain: 

2
2

1 1 ˆ
2

T P
 

       .
         

(66) 

Substituting Eq. (66) into Eq. (65) yields:  
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      2
2

ˆ 1 ˆ
2nl nl

H
P


   

 


     


.
 
(67) 

Taking the partial derivative of Eq. (38) with 
respect to   gives: 

    

  

2 2

2

2 2 2

2

2 2

2 2

22 2

2 1 2 3
8

1 4 4
2

2 1 2 34
24

4
22

1
2

nlE D l D l

n U

D l D l

U

BV
U

n U

 
 

 
 





 



      
   

  
            
     

  
  
      
      

  
 
 
 
 
  



 







 

.

 

           (68) 

Equating Eqs. (65) and (68) yields the 
expectation values of T   for different orbital 
quantum numbers. Hence, 

 

 

  

  

2 2

2 2 2

2

2 2

2 2

22 2

2 1 2 3
8

1 4 4
2

4

2 1 2 3 2
4

4
22

1
2

D l D l
T

n U

D l D l
U

BV
U

n U




 
 













     
    

 
            
    
  
     
  
  
    

  
     

  
 
 
 
 
 
 
 
 
 



 








.  

           (69) 

Equating Eqs. (67) and (68) yields the 
expectation values of 2P̂   for different orbital 
quantum numbers. Hence, 

  

  

2 2 2

2 2 2

2

2 2

2 2
2

22 2

2 1 2 3ˆ 2
8

1 4 4
2

4

2 1 2 3 2
4

4
24

1
2

D l D l
P

n U

D l D l
U

BV
U

n U



 
 













     
    

 
            
    
  
     
  
  
    

  
     

  
 
 
 
 
 
 
 
 
 



 








 

.

 

           

(70) 

4. Results and Discussion 
TABLE 1. Molecular parameters for selected diatomic molecules [52]. 

Molecule 
0

( )A   amu  

2H  1.9426 0.50391 
CO  2.2994 6.8606719 

2I  1.8643 63.45223502 
HCl  1.8677 0.9801045 
TiH  1.32408 0.987371 



Expectation Values and Energy Spectra of the Varshni Potential in Arbitrary Dimensions 

 503

TABLE 2. Energy spectra  n lE e V and expectation values for 2

nl
r  , 

n l
T and 2

nl
P of the 

Varshni potential for 3D   with various n  and l quantum numbers for 2H  diatomic molecules. 

n  l   n lE e V  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

0 0  0.03579269260   
0 1  0.36962978560   
0 2  0.05920818721   
0 3  0.00123608902   
1 0  0.10200937101   
1 1  0.03668385200   
1 2  0.02520795230   
1 3  0.02139776540   
2 0  0.5426331240   
2 1  0.1832125510   
2 2  0.1127128246   
2 3  0.08346423870   
3 0  0.9361674190   
3 1  0.3140913608   
3 2  0.1908832726   
3 3  0.1389220179   

TABLE 3. Energy spectra  n lE e V and expectation values for 2

nl
r  , 

n l
T and 2

nl
P of the 

Varshni potential for 3D   with various n  and l quantum numbers for C O  diatomic molecules. 

n  l   e Vn lE  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

0 0  2.489514420   
0 1  0.8298635421   
0 2  0.4979486091   
0 3  0.3557102344   
1 0  2.540359848   
1 1  0.8468115465   
1 2  0.5081168442   
1 3  0.3629726517   
2 0  2.590492590   
2 1  0.8635219961   
2 2  0.5181425575   
2 3  0.3701332794   
3 0  2.540359848   
3 1  0.8468115465   
3 2  0.5081168442   
3 3  0.3629726517   

TABLE 4. Energy spectra  n lE e V and expectation values for 2

nl
r  , 

n l
T and 2

nl
P of the 

Varshni potential for 3D   with various n  and l quantum numbers for 2I  diatomic molecules. 

n  l   n lE e V  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

0 0  2.638248562   
0 1  0.8794171616   
0 2  0.5276514661   
0 3  0.3768951573   
1 0  2.646393504   
1 1  0.8821321334   
1 2  0.5292804395   
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n  l   n lE e V  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

1 3  0.3780586989   
2 0  2.654493607   
2 1  0.8848321597   
2 2  0.5309004451   
2 3  0.3792158351   
3 0  2.662549139   
3 1  0.8875173285   
3 2  0.5325115362   
3 3  0.3803666034   

TABLE 5. Energy spectra  n lE e V and expectation values for 2

nl
r  , 

n l
T and 2

nl
P of the 

Varshni potential for 3D   with various n  and l quantum numbers for HCl  diatomic molecules 

n  l   n lE e V  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

0 0  1.473532445   
0 1  0.4914243720   
0 2  0.2951505825   
0 3  0.2111383936   
1 0  1.600333990   
1 1  0.5336755706   
1 2  0.3204821440   
1 3  0.2292118785   
2 0  1.600333990   
2 1  0.5336755706   
2 2  0.3204821440   
2 3  0.2292118785   
3 0  1.835403060   
3 1  0.6120030134   
3 2  0.3674439523   
3 3  0.2627189638   

TABLE 6. Energy spectra  n lE e V and expectation values for 2

nl
r  , 

n l
T and 2

nl
P of the 

Varshni potential for 3D   with various n  and l quantum numbers for T iH  diatomic molecules. 

n  l   n lE e V  2

nl
r  2

A
 

 
 

  e V
n l

T   22 eV
n l

P c  

0 0  0.7302912690   
0 1  0.2435742016   
0 2  0.1463168492   
0 3  0.1046963051   
1 0  0.7988103264   
1 1  0.2664039745   
1 2  0.1600028318   
1 3  0.1144593050   
2 0  0.8637003948   
2 1  0.2880247719   
2 2  0.1729642548   
2 3  0.1237056446   
3 0  0.9251749007   
3 1  0.3085076864   
3 2  0.1852437113   
3 3  0.1324656811   
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TABLE 7. Bound-state energy eigenvalues of the Varshni potential as a function of the screening 
parameter with 2 1   , 1    , 3D  . 

State Screening parameter ( ) Present work nlE  [39] 

2P 
0.001 -1.061750235 -1.0617502 
0.050 -1.025625010 -1.0256250 
0.100 -0.991000001 -0.9900000 

3P 
0.001 -1.027168072 -1.0271680 
0.050 -1.000645080 -1.0006250 
0.100 -0.980278864 -0.9802778 

4P 
0.001 -1.015065656 -1.0150656 
0.050 -0.995156336 -0.9951563 
0.100 -0.992000008 -0.9900000 

4d 
0.001 -1.014939102 -1.0149391 
0.050 -0.985156474 -0.9851563 
0.100 -0.962500063 -0.9625000 

4f 
0.001 -1.014750243 -1.0147502 
0.050 -0.972500081 -0.9725000 
0.100 -0.930625006 -0.9306250 

 

 
FIG. 1. Plots of Varshni potential with inter-nuclear distance r in (fm-1). 
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FIG. 2. Energy eigenvalues' variation with parameter a  for various vibrational quantum numbers. 

 

 
FIG. 3. Energy eigenvalues' variation with potential parameter b for various quantum numbers. 
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FIG. 4. Energy eigenvalues' variation with screening parameter for various vibrational quantum numbers. 

 
4.1 Discussion of Results 

The numerical values of five diatomic 
molecules were computed with spectroscopic 
parameters adopted from Oluwadare and 
Oyewumi (2017) [52] for energy spectra and 
expectation values of 2 2ˆ,  and r T p      , 
respectively. Equation (38) was used for energy 
spectra, while Eqs. (60), (69) and (70) were used 
for expectation values. The diatomic molecules 
considered in this work are H2, HCl, TiH, I2 and 
CO as presented in Tables 2-6.The 
constants, 1 amu = 931.494028 MeV ܿ2⁄  and 

ℏܿ = 1973.29  eVA
°

 are adopted from Ituen et 
al.  [62] for the computation. Equation (38), was 
also used to compute for bound state of Varshni 
potential as presented in Table 7. 

Table 1 is the spectroscopic constant used in 
the numerical computation of the energy spectra 
and expectation values. Tables 2-6 show 
numerical energy spectra and expectation values 
of 2 2ˆ,    r T and P      , respectively for the 
five selected diatomic molecules. The results 
show that the energy spectra  n lE e V  of these 
diatomic molecules increase as the principal 
quantum number n  and orbital angular 
momentum quantum number l  increase. The 

tables also show that some of the expectation 
values increase with an increase in quantum 
state, while some decrease with an increase in 
quantum state. For instance, it is observed that as 
n  and l  increase, the expectation values of 

2r   decrease. Also, it is observed that the 

expectation values of T  and 2P̂   increase as 
n  and l  increase. The bound-state energy for 
Varshni potential is generated with 1     
and 3D   for different states with three 
different values of the potential range. It is 
observed that as the potential range increases, 
the energy of the system increases, as shown in 
Table 7, which agrees with the work of 
Ebomwonyi et al. [39]. We plotted the energy 
eigenvalues with the potential-strength 
parameters and screening parameter of Varshni 
potential, as shown in Figs. 2-4, for various 
values of quantum numbers. In Fig. 2, a decrease 
in energy eigenvalues is noticed as n and l  
increase. In Fig. 3, energy eigenvalues increase 
as n  and l  increase and converge at zero. 
Finally, in Fig.4, the increase in energy tends to 
spread out from zero for different vibrational 
quantum numbers. 
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5. Conclusion  
In this work, analytical solutions have been 

obtained of the Klein-Gordon equation for the 
Varshni potential with an approximation to the 
centrifugal term using the Nikiforov-Uvarov 
method. The energy eigenvalues are obtained 
both in relativistic and non-relativistic regimes 
and the corresponding normalized 
eigenfunctions. Energy spectra and expectation 
values of the square of inverse position 2r  , 

kinetic energy T  and square of momentum
2P̂  for five selected diatomic molecules are 

computed using Hellmann-Feynman Theorem, 
as presented in Tables 2-6. Bound-state energy is 
obtained for Varshni potential, which agrees 
with Ebomwonyi et al.  [39], proving the success 
of the formalism. The variation in the energy 
eigenvalues with potential parameters was also 
plotted and discussed. 
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