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Abstract: In this work, we present a detailed study of a one-dimensional Schrödinger 
equation in the presence of quantum Gaussian well interaction. Further, we investigate the 
approximate solutions by using the harmonic oscillator approximation, variational 
principle, four-parameter potential fitting and numerical solution using the finite-difference 
method. The parabolic approximation yields an excellent energy value compared with the 
numerical solution of the Gaussian system only for the ground state, while for the excited 
states, it provides a higher approximation. Also, the analytical bound-state energies of the 
four-parameter potential under the framework of the Nikiforov-Uvarov (NU) method have 
been used after getting the suitable values of the potential parameters using numerical 
fitting. The present results of the system states are found to be in high agreement with the 
well-known numerical results of the Gaussian potential. 
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1. Introduction 

The exact and approximate solutions of the 
Schrödinger wave equation with various 
potential models have attracted much interest 
since the beginning of quantum mechanics and 
are being increased due to the fabrication of 
nanodevices. Recently, one-dimensional 
potential wells have been commonly used to 
illustrate many quantum-mechanical phenomena 
due to their high relevance in nanophysics [1]. It 
is interesting to investigate the Schrödinger 
Hamiltonian with attractive Gaussian potential 
for its typical properties of short-range potentials 
[2]. Since these Gaussian potentials have no 
exact analytical solutions, many authors have 
made an approximation with parabolic harmonic 
oscillators, especially near the bottom of the well 

[3, 4]. Further, in some other works [5], many 
authors approximated the Gaussian potential to 
the so-called modified Gaussian using a 
hyperbolic function. Other authors [6] have 
discussed the existence and the number of bound 
states in a Gaussian well, tunneling through a 
Gaussian barrier, as well as the spectrum of a 
Gaussian double well. Also, the variational 
parameters of the Gaussian potential have been 
presented for the ground state as well as for the 
first and higher excited states [7]. 

Very recently, the exact solution of the 
Schrödinger equation for spectral problems with 
some solvable potential models has been the 
subject of many investigations [8-10]. Some of 
these exactly solvable potentials are exponential 
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or hyperbolic potentials of the spatial 
coordinates. These exponential potentials are 
widely used in many branches of physics, such 
as nuclear physics, atomic physics and chemical 
physics [11-13].  

Here, in general, we seek to choose the 
proposed appropriate four-parameter 
exponential-type potential [14] which may be 
reduced to the Rosen–Morse potential [15] as 
well as to the Hulthen-like effective potential 
[16]. With a special choice of parameters, the 
Eckart potential [17] may also turn to become 
the Hulthen potential and the generalized Morse 
potential.[18]. On the other hand, using 
numerical fitting for many-parameter potential 
would give an acceptable solution for our desired 
potential model. 

In this study, we consider solutions to the 
one-dimensional Schrödinger equation with an 
attractive Gaussian potential and discuss our 
results for the parabolic approximation and 
variational methods. Further, we compare our 
results with numerical solution along with a 
numerical fitting of the Gaussian potential with 
four-parameter potential (FPP), which has an 
exact analytical solution. 

This work is structured as follows. In Section 
2, we discuss the solution of the Schrödinger 
equation using an approximation of a Gaussian 
potential as a parabolic potential, use harmonic 
oscillator wave functions as trial wave functions 
in the variational method and review the 
Nikiforov- Uvarov (NU) solution to the FPP. In 
Section 3, we emphasize the numerical 
comparisons and results for parabolic, Gaussian 
and solvable four-parameter potential. We also 
use numerical fitting to find the fitting-parameter 
values to calculate the bound-state solutions of 
the Gaussian potential model. Finally, Section 4 
is devoted to our results and conclusions.  

2. Theory and Method 
We begin by solving the time-independent 

one-dimensional Schrödinger equation taking the 
simple form: 

ቀ− ℏమ

ଶ௠
 ௗమ

ௗ௫మ + ቁ (ݔ)ܸ (ݔ)߰  =  (1)          ,(ݔ)߰ ܧ

where ℏ is the reduced Planck constant, 
݉ denotes the mass of the particle, ߰(ݔ) stands 
for the wave function and ܸ(ݔ) returns to the 
confining potential which is to be taken as the 
Gaussian potential (GP) form,  

(ݔ)ܸ =  − ଴ܸ ݁
ିೣమ

ೃబ
మ ,            (2) 

where ଴ܸ  >  0. For the sake of simplicity, we 
choose units such that ℏ = 2m = 1. It is well-
known that the condition on ܸ(ݔ) is to have at 
least one bound state  

∫ ∞(ݔ)ܸ
ିஶ ݔ݀  < 0,            (3) 

which mainly depends on the shape of the 
potential and not on its strength. Thus, Eq. (3) is 
a sufficient condition for a potential to have a 
bound state, but it is not a necessary condition as 
in the case of harmonic oscillator potential. The 
main results in Ref. [6], such as the number of 
bound states, depend only on ଴ܸ  × ܴ଴.

ଶ  
2.1 Parabolic Potential  

Taking the Taylor expansion for the Gaussian 
potential (GP), see Eq. (2), it becomes:  

(ݔ)ܸ =  − ଴ܸ + ଴ܸ
௫మ

ோబ
మ − ଴ܸ

௫ర

ଶ! ோబ
ర + … ….          (4) 

Hence, in the literature, it is sufficient to use 
the first two terms of the above expansion to 
have an adequate approximation form for the GP 
as called the Harmonic oscillator. Here, the first 
term in the expansion (4) is an additional 
constant, whereas the second term is a parabolic 
potential. Comparing with the harmonic 
oscillator, one solves:  

଴ܸ
௫మ

ோబ
మ = ଵ

ଶ
 ݉ ߱ଶ ݔଶ.            (5) 

We obtain the angular frequency as:  

߱ = ට2 ௏బ
 ௠ ோబ

మ.             (6) 

Therefore, the energy of the harmonic 
oscillator becomes:  

௡ܧ = − ଴ܸ +  ቀ݊ + ଵ
ଶ
 ቁ ℏ ߱.           (7) 

To have more accuracy, we can consider the 
third and high-order terms of the above 
expansion (4) as a perturbation to the potential, 
which would somewhat improve the spectra 
result for excited states.  

If we take the mathematical point of view for 
this comparison, we notice that the GP is always 
negative, while the parabolic potential may flip 
to positive values at large x; so, it is expected to 
give a good result for low-order states only, at 
the classical limit of small x. 
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2.2 Variational Technique  
To obtain various upper bounds of the 

ground-state energy, we can calculate the 
average value of the Hamiltonian 〈ܪ〉 for 
suitably chosen trial functions. The existence of 
a variational parameter ߚ enables to minimize 
the upper bounds as much as possible. To do 
that, we shall choose normalized trial wave 
functions ߰଴(ݔ) and ߰ଵ(ݔ) for the ground state 
and the first excited state, respectively, with 
some adjustable parameters ߚ and ߛ, defined as 
follows:  

߰଴(ݔ) = ቀଶఉ
గ

ቁ
భ
ర ݁ିఉ௫మ,            (8) 

and 

߰ଵ(ݔ) = ቀଶఱఊయ

గ
ቁ

ଵ/ସ
ఊ௫మି݁ ݔ .           (9) 

After calculating the energies as functions of 
the variational parameters, one obtains:  

⟨߰଴(ݔ)|ܪ|߰଴(ݔ)⟩ = ߚ − ඥଶ ఉ ୚బ

ቆଶఉା భ
ೃబ

మቇ

భ
మ

 

,        (10) 

and 

⟨߰ଵ(ݔ)|ܪ|߰ଵ(ݔ)⟩ = ߛ3 − ඥ଼  ఊయ ௏బ

ቆଶ ఊା భ
ೃబ

మቇ

య
మ
,        (11) 

for the ground and first excited states, 
respectively, which can be minimized 
numerically to find the upper approximated 
energy. 

2.3 Four-Parameter Potential Fitting 
To have an approximation of the GP energy, 

we will apply a numerical fitting to find suitable 
parameters for the four parameter-potential 
(FPP) in the following form: 

(ݔ)ܸ =  ௏బ௘ഀೣ

஼ା௤௘ഀೣ − ௏భ௘ഀೣ

(஼ା௤௘ഀೣ)మ.         (12) 

This potential makes Schrödinger equation 
analytically solvable by using the Nikiforov- 
Uvarov (NU) method. To make the potential 
analytically solvable by the NU method, we have 
to write the Schrödinger equation in the 
following standard general form: 

ௗమట(௦)
ௗ௦మ + ఛ

~(௦)
ఙ(௦)

ௗట(௦)
ௗ௦

+ ఙ
~(௦)

ఙమ(௦) (ݏ)߰ = 0        (13) 

where (ݏ)ߪ and ߪ
 are polynomials at most of (ݏ)~

second-degree, ߬
 .is a first-degree polynomial (ݏ)~

For more details, see Ref. [19]. 

For the potential given in (12), the 
Schrödinger equation reads:  

(ݔ) ′′ ߰ + ଶ௠
ħమ ቂܧ − ௏బ௘ഀೣ

஼ା௤௘ഀೣ + ௏భ௘ഀೣ

(஼ା௤௘ഀೣ)మቃ (ݔ) ߰ =
0.            (14) 

After changing the independent variable s = 
ܥ + ఈ௫݁ݍ  and following the procedures given in 
Ref. [20], one gets the bound-state energies as 
follows:  

௡ܧ = − ħమఈమ

ଶ௠
௡ߝ

ଶ ,          (15) 

where n = 0, 1, 2, 3, … and  

௡ߝ =
మ೘ೇబ
ħమഀమ

భ
೜

൤ି(ଶ௡ାଵ)ାටଵାఴ೘ೇభ
ħమഀమ

భ
೜಴ ൨

− ଵ
ସ

൤−(2݊ + 1) +

ට1 + ଼௠௏భ
ħమఈమ

ଵ
௤஼

 ൨          (16) 

and the wave function 
߰௡௤(ݏ) =

ܥ)(ଶఋିଵ)ିݏ௡ܤ −
ଶఌ(ݏ ௗ೙

ௗ௦೙ ܥ)௡ା(ଶఋିଵ)ݏ] −  ௡ିଶఌ]      (17)(ݏ

where  

ߜ = ଵ
ଶ

ቈ1 − ට1 + ସఊమ

஼
቉, ߛଶ = ଶ௠௏భ

ħమఈమ௤
 .        (18) 

3. Results and Discussion  
In this section, we display our calculated 

results for energy spectra and the wave function 
for the Gaussian potential. We also compare the 
present approximated results with the exact ones 
which have already been obtained by 
numerically solving the Schrödinger equation 
using the finite-difference method. Knowing that 
all, the parameters have been arbitrarily unit-
scaled for the pre-assumption ℏ = 2݉ = 1.  

In Fig. 1, we have plotted the GP, FPP and 
parabolic potential as functions of the coordinate 
x, for a fixed value of ଴ܸ and different values of 
ܴ଴. This figure shows the high agreement 
between the Gaussian and parabolic potentials 
for small values of |x| (near the bottom of the 
curves), while we have noticed some difference 
as |x| tends to become larger. This result supports 
our arguments on the use of the parabolic model 
as an approximation-scheme model for GP. By 
comparing the GP and FPP, one can see the 
agreement between both curves for a larger 
range of x compared with the parabolic 
approximation. 



Article  Farout, Shaer and Ikhdair. 

 490

 
FIG. 1. GP, FPP and parabolic potential against the spatial coordinate x for a fixed value of ଴ܸ = 15 and 

different values of ܴ଴, Here, ߱ is given by Eq. (6). 
 

In Table 1, we have shown the ground-state 
and first excited-state energies of the GP system 
compared with the variational result and 
parabolic approximation. These results in Table 

1 show that the variational energies are in close 
agreement with the exact ones for the low-lying 
states (ground and first excited states) and with 
the corresponding variational parameters. 

TABLE 1. Low-lying states in comparison with GP using parabolic approximation, the variation of 
parameter method and finite-difference numerical solution. 

 ଴ܸ = 15, ܴ଴ = √3, ߱ =  √20 ଴ܸ = 15, ܴ଴ = √1, ߱ =  √60 
 ௡௨௠ܧ ௩௔௥ܧ ௕௔௥ܧ ௡௨௠ܧ ௩௔௥ܧ ௕௔௥ܧ

 ଴ −12.7639 −12.8873 -12.8896 −11.12701 −11.4934 -11.5046ܧ
 ଵ −8.29179 −8.92558 -8.93837 −3.38105 −5.30696 -5.37760ܧ

 

For ܴ଴ =  √3 (1), the corresponding values 
of various parameters, ߚ = 0.995 (1.574) and 
ߛ = 0.905(1.283), agree with the fact that for a 
larger value of ܴ଴ (smaller for ߱), the parabolic 
approximation is found to be more accurate with 
the trial wave function as it goes to be the same 
as the solution of the harmonic oscillator. On the 
other hand, for smaller values of ܴ଴, the 
parabolic deviates more and hence, the 
difference becomes more significant. 

Moreover, in Fig. 2, we plot the low-lying 
state wave functions for the three cases: the 
numerical solution, the parabolic approximation 
and the variational technique. Here, we can 
notice the slight difference between GP and 
parabolic approximation. 

In Table 2, we have presented the numerical 
values of the parameters of (FPP) concerning 
GP. If we look back to the (FPP), we can notice 
five parameters, but there is a close relation 
between these parameters (i.e., not independent 
parameters), so we used the numerical fitting to 
get their values.  

To ensure the agreement, we have plotted the 
two potentials in the same graph in Fig. 3. We 
found similarities in their behaviors and 
asymptotes. On the other hand, there is a slight 
difference at the bottom of the curves, which is 
expected to yield a small difference in the 
ground-state energy. 
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FIG. 2. The wave functions for the ground and first excited states as functions of the position for a) ଴ܸ = 15, ܴ =

√3 and b) ଴ܸ = 15, ܴ = 1, corresponding to energies reported in Table 1. 

TABLE 2. Numerical values for the fitted parameters of FPP at given values for Gaussian parameters. 
 ଵܸ ଶܸ ܥ ݍ ߙ 

଴ܸ = 20 
ܴ଴ =  √3 

0.018137 9.275333 −1.29788 0.33512 0.336243 

଴ܸ = 35 
ܴ଴ =  √5 

0.022753 4.470902 −1.00451 0.17574 0.17654 

 

Also, we have displayed the spectra and wave 
function of GP and FPP in the same graph for 
different values of ଴ܸ and ܴ଴ in parts a, b, c and 
d. Here, we also see the good agreement between 
both potentials in their solutions. 

Further, in Table 3, we have numerically 
listed our results of Fig. 3 to show the 

differences in energy. We notice the significant 
differences at small values of ܴ଴ for higher 
excited states. This is mainly attributed to the 
significant role of larger values of |x| due to the 
behavior of the potential.  
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FIG. 3. The energy eigenfunctions and the corresponding eigenvalues for ( ଴ܸ, ܴ଴) taken to be in a, b, c and d, 

(15, 1), (15, √3), (20, √5) and (35, √3) respectively. The solid (dashed) lines return to GP (FPP). 

TABLE 3. The energy spectra of the GP and FPP for various values of the potential parameters. 
 ܴ଴ =  1 ܴ଴ =  √3 ܴ଴ =  √5 
 Gaussian FPP Gaussian FPP Gaussian FPP 

଴ܸ = 15 

-11.5046 11.5852 -12.8896 -13.0659 -13.3433 -13.5595 
-5.3776 -5.18818 -8.93837 -8.79198 -10.1886 -10.109 
-1.2209 -1.32315 -5.55479 -5.36029 -7.36325 -7.16311 

--- --- -2.81231 -2.77086 -4.8946 -4.72171 
--- --- -0.85774 -1.02372 -2.82405 -2.78485 

଴ܸ = 20 

-15.9053 -16.0464 -17.5436 -17.8105 -18.0753 -18.3917 
-8.56120 -8.29402 -12.8974 -12.7501 -14.3834 -14.3317 
-3.08391 -3.0736 -8.80737 -8.53193 -11.016 -10.7763 
-0.15052 -0.38525 -5.32892 -5.15602 -7.9950 -7.72536 

--- --- -2.54899 -2.62238 -5.34937 -5.17897 

଴ܸ = 35 

-29.4610 -29.825 -31.7098 -32.2753 -32.4295 -33.0677 
-19.2012 -18.7962 -25.3917 -25.3176 -27.444 -27.5379 
-10.6823 -10.2995 -19.6133 -19.2021 -22.7762 -22.5126 
-4.19329 -4.33473 -14.4095 -13.9289 -18.4406 -17.9919 
-0.38543 -0.90205 -9.82653 -9.49795 -14.4548 -13.9757 

 

Finally, Fig. 4 plots the vibrational bound-
state energy ܧ௡ versus the principal quantum 
number ݊, where we have shown the three cases 
of GP, FPP and parabolic approximation for the 
sake of comparison. As percentage errors, the 
parabolic approximation ground-state energy is 
0.23% higher than the numerical solution of GP, 

where the FPP yields 1.97% lower as previously 
mentioned, for the first excited state (n = 1). The 
parabolic potential (FPP) result is 1.39% higher 
(0.34% lower) and by comparing the 4th excited 
state (n = 4), the parabolic energy is 22% and 
FPP is 3.32% and both potentials give a higher 
approximation for the energy. 
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FIG. 4. The energy eigenvalues for different states (n) obtained for GP, parabolic approximation and FPP. 

 
4. Conclusions  

In this work, we have solved the one-
dimensional Schrödinger equation to obtain the 
solutions of the bound states for the Gaussian 
well potential. Further, the wave functions as 
well as the vibrational eigenvalues are obtained 
by various methods. The parabolic 
approximation of the Gaussian potential is in 
excellent agreement with the exact energy for 
low-order states only. However, for higher 
states, it exhibits a significant difference. Using 
the well-known solution of the harmonic 

oscillator as a wave function with an 
undetermined parameter provides a very close 
result to the exact solution. On the other hand, 
the four-parameter potential having an analytical 
solution is also used as screening potential to be 
fitted using Gaussian information. Besides, the 
analytical solution of FPP was obtained using the 
Nikiforov Uvarov (NU) method. Finally, the 
presented results show that the fitting method 
provides a chance to compare with the available 
numerical energies and wave functions within an 
acceptable accuracy. 
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