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Abstract: We present an investigation for a particle confined in an infinite well with 
sinusoidal bottom, using the perturbation theory and numerical solution for the Schrödinger 
equation to obtain the eigen energies and wavefunctions. Potential strength and potential 
oscillation dependence of the state are examined and analyzed. It is shown that the particle 
in a box with sinusoidal bottom does not show up the Klauder phenomenon when the 
perturbations are gradually reduced to zero. The research results show that the potential 
oscillation significantly affects certain quantum states and, therefore, the ability to 
manipulate the energy difference between the states. In addition, our results for the present 
system converge to their corresponding values for the unperturbed one in the high-potential 
oscillation limit. 
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Introduction 
Since the proposal of the infinite potential 

well as a hypothetical model set up to 
demonstrate the differences between both 
classical and quantum points of view regarding 
the movement of a free particle in some 
confinement, the research in this area never 
stopped. The infinite potential well was 
extensively studied under different constraints 
and modifications [1-5]. Even though the infinite 
potential well is a hypothetical model, it remains 
a good candidate for a lot of quantum 
applications [6-7], and its analytical solution is 
still widely used for variational and numerical 
techniques in quantum mechanics [8-9]. 

 The traditional version of the infinite 
potential well (flat bottom) exhibits the well-
known energy eigenvalues and normalized 
eigenfunctions given by: 

௡ܧ  = ℏమ గమ௡మ

ଶெ௅మ , Φ௡ = ටଶ
௅

sin ቀ௡ గ ௫
௅

ቁ           (1) 

where M, L, and n denote the confined particle's 
mass, the well's width and the quantum number 
(n = 1, 2, 3, …), respectively. Changing the 
shape of the bottom of the well is expected to 
result in some modifications of the system's 
eigenvalues and the corresponding wave 
functions. 

The sinusoidal potential is considered the 
general case for any periodic potential, since one 
can use Fourier series to write any periodic 
potential in terms of sine and cosine. Very 
recently, a prototypical model of a one-
dimensional metallic monatomic solid 
containing non-interacting electrons was studied, 
where the potential energy has been considered 
to be sinusoidal [10]. Also, Sakly et al. [11] have 
investigated the electronic states using the 
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sinusoidal potential for ݀ܥଵି௫ܼ݊௫ܵ quantum dot 
superlattices with a finite barrier at the boundary. 

In 2008, Alhaidari and Bahlouli [12] studied 
the infinite potential well with sinusoidal bottom 
and proposed an ability to get the exact energy 
eigenvalues from the solution of a three-term 
recursion relation. In their work, they also 
showed a possibility of the Klauder phenomenon 
(where the system for a certain perturbation will 
not give the same states as unperturbed 
Hamiltonian when the perturbation is turned off; 
mathematically: 
limఒ→଴〈ܪ଴ + 〈′ܪ ߣ ≠  . 〈଴ܪ〉

Three years later, Dhatt and Bhattachrayya 
[13] restudied the same system for the potential 
well by perturbative and variational methods and 
concluded the non-existence of Klauder 
phenomenon as perturbation goes to zero. Their 
work was carried out for the ground-state energy 
in the lowest perturbation orders by applying the 
standard Rayleigh-Schrödinger perturbation 
theory. 

In the present work, the Schrödinger equation 
has been solved for the particle in an infinite 
well with sinusoidal bottom by using 
perturbative and numerical methods and the 
effect of the bottom potential parameters 
(potential oscillation and strength) on the energy 
and states of the particle has also been studied. 

In the rest of this article, we present the 
theoretical framework and Hamiltonian in next 
section. Then, numerical calculations and 
illustrations are presented, and the last section is 
devoted for remarks and conclusions. 

Theoretical Framework  
The one-dimensional time-independent 

Schrödinger equation for a particle confined in 
an infinite square well with a cosine sinusoidal 
bottom is given by:  

ቆ− ℏమ

ଶ ௠ 
ௗమ

ௗ௫మ + ቇ(ݔ)ܸ (ݔ)߰ =  (2)          ,(ݔ)߰ ܧ

where  

(ݔ)ܸ = ቊ ܥ cos ቀ௞గ௫
௅

ቁ 0 < ݔ < ܮ
∞ ݁ݎℎ݁ݓ݁ݏ݈݁

 ቋ          (3) 

For the sake of simplicity, units are set such 
that ℏ = 2m = 1. 

Since the analytical solution of the above 
equation is not attainable and to obtain an 
approximate solution for this system, one can 
follow the perturbation-method steps. Dhatt et al 
provided a solution for the ground state with 
integer values of k [13] as:  

݇)ଵܧ = 1, (ܥ = ቀగ
௅

ቁ
ଶ

− ଶܥ ௅మ

ଵଶగమ +  (4)        (ସܥ)ܱ

݇)ଵܧ = 2, (ܥ = ቀగ
௅

ቁ
ଶ

− ஼
ଶ

− ଶܥ ௅మ

ଷଶగమ +

ଷܥ ௅ర

ହଵଶగర +  (5)            (ସܥ)ܱ

݇)ଵܧ ≥ 3, (ܥ = ቀగ
௅

ቁ
ଶ

− ଶܥ ௅మ

ଶగమ(௞మିସ) +             (ସܥ)ܱ
        (6) 

with the approximate ground-state wave function 
given by: 

Ψଵ(݇ = 1, (ܥ = Φଵ − ܥ ௅మ

଺గమ Φଶ + ଶܥ ௅ర

ଽ଺గర Φଷ +
 (7)             (ଷܥ)ܱ

Ψଵ(݇ = 2, (ܥ =
Φଵ − ܥ ௅మ

ଵ଺గమ Φଷ + ଶܥ ௅ర

ଶହ଺గర ቂΦଷ + ଵ
ଷ

Φହቃ +
 (8)             (ଷܥ)ܱ

where Φ௜ refers to the normalized parent box 
states given by:  

Φ௜ = ටଶ
௅

sin ቀ௜ గ ௫
௅

ቁ.           (9) 

To make a general view, we proceeded via a 
perturbative route: 

(ܥ)௡ܧ =
௡ܧ

(଴) + 〈Φ௡
(଴)|ܸ|Φ௡

(଴)〉 +

෎
ቚ〈Φ೘

(బ)|௏|Φ೙
(బ)〉ቚ

మ

ா೙
(బ)ିா೘

(బ)

௠ஷ௡

+  (10)        (ଷܥ)ܱ

and obtained a closed-form correction (up to 
second order) for any quantum state energy with 
integer values of k with the help of the following 
integral relation:  

∫ ଶ
௅

sin ቀ௡గ௫
௅

ቁ cos ቀ௞గ௫
௅

ቁ sin (௠గ௫
௅

)௅
଴ ݔ݀  =

 ൞
− ଵ

ଶ
 ݂݅ ݇ = ݉ + ݊

ଵ
ଶ

 ݂݅ ݇ = |݉ − ݊|
݁ݏ݅ݓݎℎ݁ݐ݋ 0

ൢ         (11) 

where n, k, and m are positive integers. 

The energy for any state (n) for a given 
integer (k) and strength (c) is given by:  
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,ܿ)௡ܧ ݇ ) = గమ௡మ

௅మ − ଵ
ଶ

௞ିଶ௡ߜ ܿ  − ௖మ௅మ

ସగమ(௞మାଶ௞௡) +
௖మ௅మ (ଵିఋೖషమ೙)Θ (|௞ି௡|ିఢ)

ସగమ(ଶ௞௡ି௞మ)           (12) 

where ߳ is a small positive number to avoid the 
undefined value for the step function, Θ(0). For 
the ground state (n=1), Eq. (12) has been tested 
with previously mentioned Eqs. (4 - 6). 

To be able to investigate the effect of larger 
values of C – where the perturbative 
approximated solution is not accurate – and the 
non-integer values of k, the Numerov numerical 
method was performed, and the eigen energies 
were calculated. 

The Numerov method is a specialized 
integration formula for numerically integrating 
differential equations of the form: 

(ݔ)′′߰ =  (13)          .(ݔ)߰(ݔ)݂

For the time-independent 1-D Schrödinger 
equation,  

(ݔ)݂ = − ଶ௠൫ாି௏(௫)൯
ħమ  .         (14) 

Choosing a grid spacing ∆ݔ = ௜ݔ  −  ௜ିଵ, theݔ
integration formula is given by:  

߰௜ାଵ = ట೔షభ൫ଵଶି∆௫మ௙೔షభ൯ିଶట೔൫ହ∆௫మ௙೔ାଵଶ൯
∆௫మ௙೔శభିଵଶ

+
 (15)           (଺ݔ∆)ܱ

And by shooting a trial energy and iteration 
over the grid domain, one can find the numerical 
energy and wavefunction. Interested readers can 
refer to [14]. 

Results and Discussion  
In this section, we present our results for an 

infinite well with sinusoidal bottom and prefer to 
use L=1 in the numerical calculations. 

To give a good picture about the sinusoidal 
bottom, we plot in Fig. 1 the infinite box for 
different values of k; so it is shown that the 
number of full waves (oscillations) equals ௞

ଶ
, and 

the even (odd) number of k exhibits a symmetric 
(antisymmetric) behavior around the middle 
point of the well (௅

ଶ
),  

 
FIG. 1. Schematic plot of the infinite box for different integer values of k. 

 
In Table 1, we provide the numerical value of 

energies for the ground state and few excited 
states for the particle in both cases, flat 
(unperturbed) and sinusoidal bottom well, for 
different values of potential amplitude (C) and 

potential oscillation (k), to show the agreement 
between the correlated energy (up to second-
order correction) and quasi-exact numerical 
energy. 

TABLE 1. Numerical values of energies (a.u) for the inner four states of the system, with L=1. 

Quantum 
number 

Energy E perturbative 
଴ܧ + ଵܧ +  ଶ E numericalܧ

Unperturbed energy C= 2 C= 10 C=20 C= 2 C= 10 C=20 

1 9.8696 K = 1 9.83583 9.02526 6.49223 9.83585 9.03972 6.70011 
K = 2 8.85694 4.55298 -1.39691 8.8571 4.57252 -1.24561 

2 39.4784 K = 1 39.4919 39.8162 40.8294 39.4919 39.8015 40.6187 
K = 2 39.4699 39.2673 38.6341 39.4701 39.2676 38.6378 

3 88.8264 K = 1 88.8322 88.9712 89.4054 88.8322 88.9714 89.4076 
K = 2 88.8328 88.9848 89.4597 88.8326 88.9652 89.3083 

4 157.914 K = 1 157.917 157.994 158.235 157.917 157.994 158.236 
K = 2 157.917 157.998 158.251 157.917 157.998 158.248 
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Results show good agreement between the 
two methods, especially for low values of C, so 
the higher perturbative corrections can be 
neglected. Meanwhile, for larger values of C 
(when the perturbation becomes comparable to 
the ground-state energy), the effect of higher-
order corrections becomes significant for ground 
state (n = 1) and less significant for higher states 
(n > 1), which agrees with the limitation of 
perturbation method. For a given value of C, the 
higher states are less sensitive to perturbation 
than the lower states. From this point of view, 
one can conclude that the perturbation method is 
suitable to investigate this problem for small 
values of C and so numerical calculations lead to 
a more reliable result for this reason, the 
Numerov numerical method has been used to 
produce all the following illustrations, while the 

perturbation analytical expressions for energy 
have been considered for some explanations. 

The ground-state energy has been plotted in 
Fig. 2 as a function of the bottom potential 
amplitude for different integer values of k (the k 
= 2 case has been plotted separately in Fig. 2b). 
Fig. 2a clearly shows that as k increases, the 
effect of the perturbation becomes less 
significant and the ground-state energy becomes 
closer to the unperturbed one; notice k = 60 case. 
Eq. (12) shows that the first-order correction 
equals zero for any integer value of k, except for 
(k = 2); so, it is expected that all major 
corrections come from the second-order 
correction term. As it is known, the second-order 
correction of the ground state always reduces the 
energy of the ground state. In contrast to the 
above remarks, the ground-state energy for (k = 
3) is less than (k = 1) energy. 

(a) 

 

(b) 

 
FIG. 2. Ground-state energy versus the perturbation strength c, for different values of k. 

 
For Fig. 2b, the k = 2 case, the major 

contribution comes from the first-order 
correction; so, the curve shows a linear 

dependence between the ground-state energy and 
C with a slope almost - ଵ

ଶ
.  
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FIG. 3. Ground-state energy as a function of k for different values of C. 

 
To ensure the above discussion for large 

values of k, the ground-state energy as a function 
of k for two values of C has been plotted, as 
shown in Fig. 4. The plot shows the 
independence of energy on the value of C as k 
increases. This is due to the very large number of 
oscillations (or wavelengths) in the well, which 

means that there is no enough time for the 
electron to catch up with the perturbation, 
leading to the flat bottom potential solution. 

Now, for the higher state, for example, n = 2 
(see Fig. 4).  

(a) 

 

(b) 

 
FIG. 4. Energy as a function of C for different values of k for the first excited state.
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For the sake of comparison with previously 
published work [12], we plot the total state in the 
same unit as ref. [12], where the plot exactly 
matches the previous one for k=1, which shows 
no Klauder phenomenon. From Fig. 4, in that 

reference, there are extra nodes in n = 1 and n = 
2. To ensure this here, we plotted the wave 
function for the two cases k = 1 and k = 2; no any 
further node has appeared. 

 
FIG. 5. Energy spectra as a function of C, for k = 1. 

(a) 

 

(b) 

 
FIG. 6. Normalized wave function for the ground state (a) and first excited state (b), for different values  

of k and C. 
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As a final illustration, we study the case for 
non-integer k and give 3 plots. Again, the plots 
show that the system does not feel the 
perturbation after a certain value of k, which 

means that when the number of oscillations 
becomes large enough, the system has no enough 
time to adjust itself due to perturbation. 

 
FIG. 7. The lowest eigen energies as a function of k; here k is taken from 0 up to 8, with steps of 0.1. 

 
Conclusions  

In this work, we calculated the energies and 
wavefunctions for the infinite well with 
sinusoidal bottom using numerical and 
perturbative methods. The effect of the potential 
oscillation and amplitude of the perturbation on 
the energies of the ground and excited states was 
examined. For each of the two selected 
frequencies (k = 1 and 2), it was found that the 
ground-state energy decreases as the amplitude 
of the perturbation increases, but the energy of 
an excited state increases as the amplitude 
increases, with the exception for the first excited 
state when k = 2. Our results also showed that as 
the oscillation of the perturbation increases, the 
energies of all states get closer to their 
corresponding values for the unperturbed well, 
and for very high frequencies, the energies 
converge to their corresponding values for the 
unperturbed well. In this case, the perturbed 

system does not have the time to catch up with 
the perturbation; thus, the system behaves as if 
the bottom of the well is flat. In addition, an 
important conclusion of our results is that the 
sinusoidal bottom well does show the Klauder 
phenomenon. An additive value of this work is 
the ability of exact calculations of the energy 
eigenvalues for the infinite well with sinusoidal 
bottom using numerical methods. This work is a 
constructive illustration for the application and 
usefulness of exact numerical and perturbation 
methods in studying simple but illuminating 
systems. 

It may also be interesting to know how the 
ground-state energy depends on the perturbation 
for large k. Actually, the large-k limit is 
particularly significant because we expect on 
physical ground that too many oscillations of a 
cosine function over a finite domain should 
average out to zero [15] 

  

n  = 1 

n  = 2 

n  = 3 
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