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Abstract: In this work, we study the dissipative dynamics of a double-well Bose-Einstein 
condensate (BEC) out-coupled to reservoir at each side of its trap. The sub-system 
comprises of a simple Bose-Hubbard model, where the interplay of atom-tunneling current 
and inter-particle interaction are the main quantum features. The contact with two separate 
heat baths causes dissipation and drives the system into a non-equilibrium state. The 
system is well described by the Generalized Quantum Heisenberg-Langevin equation. We 
considered two Markovian dissipative BEC systems based on (i) the mean-field model 
(MF), where the internal noise has been averaged out and (ii) the noise-correlated model 
(FDT). Physical quantities, such as population imbalance, coherence and entanglement of 
the system, are computed for the models. The two-mode BEC phases, such as the quantum 
tunneling state and the macroscopic quantum-trapping state, evolved into complicated 
dynamics by controlling the non-linear interaction and dissipation strengths. We found that 
many important quantum features produced by the noise-correlated FDT model are not 
captured by the mean-field model. 

Keywords: Double-well BEC, Dissipation, Noise, Markovian, Non-Markovian, Fixed 
points. 
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1. Introduction 

Bose-Einstein Condensate (BEC) in a double-
well system exhibits quantum features 
mimicking the physics of Boson Josephson 
Junction (BJJ) dynamics in superconductors. 
Tunneling transport of atoms between the wells 
causes BEC population to oscillate even if there 
is no disparity between the number of atoms in 
each well, resulting in a modulated quantum 
collapse and revival; for instance, see [1, 2]. 
Macroscopic quantum coherence is then 
established within the system. However, stronger 
on-site boson-boson repulsive interaction 
suppresses the oscillations of population 
imbalance and goes upon a critical value, 

resulting in a novel macroscopic quantum self-
trapping state, where atoms start localizing 
within their respective wells. This phenomenon 
is known as the Macroscopic Quantum Self-
Trapping (MQST); for instance, see [2-4]. 

Experimental measurements, such as 
Josephson tunneling and thermal-induced phase 
fluctuations on the double-well BEC system, 
were reported in the monograph [5-7]. 
Measurements on the Josephson's AC and DC 
effects on the BJJ were made by Levy et al. [8] 
and interference-fringe experiments were 
performed by Hofferberth et al. [9]. Enormous 
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progress has been made following this 
experimental work.  

System-environmental interaction under 
experimental conditions complicates the study of 
the transition from the quantum regime to the 
classical regime. Dissipation caused by 
irreversible coupling of quantum state with the 
environment creates a major obstacle in the long-
time coherent control of quantum state. For a 
double-well BEC interacting with the 
environment setting, dissipation is found to be 
the major factor causing the destruction of 
MQST phases, as reported extensively in the 
theoretical literature [10-19]. On the contrary, 
researchers led by Sandro Wimberger [13, 15] 
have shown that dissipation in concurrence with 
inter-particle interaction enhances coherence 
under a specific condition. The double-well BEC 
is routinely realized with almost perfect control 
on atom-atom and external potential; for 
example in the experimental groups of Albiez et 
al. [5] and Gati et al. [6]. Resonance behaviour 
of coherence is anticipated to be realized in near 
future experiments. In the other direction, an 
experimental group led by Herwig Ott [20, 21, 
47, 48] carried out a number of successful 
experiments applying localized dissipation to 
control the dynamic evolution of BEC, making 
this line of research very exciting. 

Generally, inter-particle repulsive interaction 
[2-4, 14] cannot be neglected in any realistic 
BEC system. The physics of interacting BEC can 
be complicated in the presence of excitations. 
However, in this work, we neglect the existence 
of excitation, assuming weak-coupling 
approximation as in [22, 23]. In their works, two 
independent condensates having atoms in their 
lowest eigen-modes are merged and coherently 
out-coupled to their respective reservoirs. The 
interaction of condensate boson atoms in the 
traps with the reservoir induces dissipation in the 
system. The spectral function that couples the 
trap atoms with the reservoir modes determines 
the Markovian or non-Markovian operational 
dynamics of the system; see for instance [24-27].  

Most studies on the dissipative double-well 
BEC-reservoir system encapsulate Markovian 
dynamics, leaving vast space for research on the 
non-Markovian operational basis. The 
emergence of new problems, such as quantum 
thermometry and quantum refrigerant [49, 50], 
led to many loopholes and excitement in this line 
of research. We follow the same motivation to 

explore our dissipative model of interest 
employing the generalized quantum Langevin 
equation (GQLE) which is discussed in great 
detail in the textbooks [22, 28, 30]. The 
advantage of using the latter mathematical 
approach is its feasibility to transform 
complicated stochastic differential equations into 
ordinary differential equations. 

The paper is organized as follows. We 
describe the Hamiltonian of the double-well 
BEC-reservoir system by showing how it caters 
for Markovian or non-Markovian operational 
dynamics in Section 2. The Hamiltonian of the 
model and the dynamical equations can be found 
in our earlier works [29, 33]. Section 3 and its 
sub-section 3.1 discuss the mean-field model of 
our system. The system subjected to noise 
correlation and dissipation is described in 
Section 4. Results of the model physical 
quantities produced by the model are illustrated 
and discussed in the following sub-sections. A 
brief conclusion is given in Section 5. 

2. Double-well BEC Out-coupled to 
Reservoirs 

The Hamiltonian of the double-well BEC out-
coupled to a dual multi-mode field (reservoirs) is 
succinctly denoted by the relation 
 ௦ି௠. The double-wellܪ+௦ି௖ܪ+௠ܪ+௖ܪ+௦ܪ=௧௢௧ܪ
(or two-mode) BEC sub-system is then 
represented by the sub-Hamiltonian: 

) ߱ = ௦ܪ ොܽற ොܽ + ෠ܾற ෠ܾ)+ Ω ( ොܽற ෠ܾ + ෠ܾற ොܽ)+ U/2     
[ ොܽற ොܽ ොܽ ොܽ + ܾற ෠ܾ ෠ܾ ෠ܾ ].           (1) 

Here, ( ොܽற, ොܽ) and ( ෠ܾற, ෠ܾ) are the set of 
creation and annihilation operators of the boson 
at traps A and B, respectively. Ω is the coupling 
strength between the two modes, ߱ is the trap 
frequency, U is the on-site interaction strength. 
We set ℏ=1; hence, all energies are measured in 
frequency units. 

The two multi-mode reservoir fields are 
represented by ܪ௖ = ∑ ߱௞௞  ܿ̂௞

ற ܿ̂௞ and ܪ௠ = 
∑ ߱௞௞  ෝ݉௞

ற ෝ݉௞, whereas they are connected at 
each side of the traps (A, B). The reservoirs are 
composed of closely spaced oscillators with 
frequencies ߱௞ with corresponding creation and 
annihilation operators (ܿ̂௞

ற, ܿ̂௞) and ( ෝ݉௞
ற, ෝ݉௞). 

They are assumed to be in thermal equilibrium, 
satisfying: 
〈 ෝܿ௞

ற (0) 〉 = 〈 ܿ̂௞  (0) 〉 = 〈 ෝ݉௞
ற (0) 〉 = 〈 ෝ݉௞  (0) 〉 = 0 



Noise-dissipation Correlated Dynamics of a Double-well Bose-Einstein Condensate-reservoir System 

 447

〈 ܿ̂௞
ற (0) ܿ̂௞   ௞௞′ ଵܰ(߱௞′)ߜ = 〈 (0)′

〈 ෝ݉௞
ற (0) ෝ݉௞   ௞௞′ ଶܰ (߱௞′)ߜ = 〈 (0)′

〈 ܿ̂௞(0) ܿ̂௞′(0)〉 = 〈 ෝ݉௞(0) ෝ݉௞′(0)〉 = 0  

〈 ෝܿ௞
ற (0) ܿ̂௞ ′

ற (0)〉 = 〈 ෞ݉௞
ற (0) ෝ݉௞ ′

ற (0)〉 = 0 

Here, ଵܰ(߱) =1/[ exp(߱/݇஻ ଵܶ) – 1] and 
ଶܰ(߱) =1/[ exp(߱/݇஻ ଶܶ) – 1] represent the 

thermal average boson numbers for reservoirs A 
and B, with Boltzmann constant ݇஻  for 
temperatures ( ଵܶ, ଶܶ), respectively. The 
interaction between the system and the reservoirs 
are denoted by the following sub-Hamiltonians 

∑ = ௦ି௖ܪ ݃௞௞  ( ොܽ௞ ܿ̂௞
ற + ܿ̂௞ ොܽ௞

ற) and ܪ௦ି௠ = ∑ ௞݂௞  
( ෠ܾ௞ ෝ݉௞

ற + ෠ܾ
௞
ற ෝ݉௞)            (2) 

where ݃௞  or ௞݂ is the bi-linear out-coupling 
function of traps A or B, respectively. The 
dynamical property of this system can be studied 
by solving the Heisenberg equation of motion 
ௗ ை෠
ௗ௧

=  − ௜
ℏ
 [ ෠ܱ, ܪ෡ ], as shown in the textbooks 

[23,30]: 
ௗ௔ො
ௗ௧

 = - i ߱ ෝܽ  – i Ω ෠ܾ- i U ොܽற ොܽ ොܽ + ܨ෠ଵ (t) - ∫ ௧′ݐ݀
଴  

K(t-t') ොܽ(ݐ′)             (3) 
ௗ௕෠

ௗ௧
 = - i ߱ ෡ܾ  – i Ω ොܽ- i U ෠ܾற ෠ܾ ෠ܾ + ܨ෠ଶ (t) - ∫ ௧′ݐ݀

଴  
M(t-t') ෠ܾ(ݐ′)             (4) 

where ܨ෠ଵ = - i ∑ ݃௞௞  ܿ௞ෝ  (0) ݁ି௜ఠೖ௧ and ܨ෠ଶ (ݐ) = 
- i ∑ ௞݂௞  ܿ௞ෝ  (0) ݁ି௜ఠೖ௧ correspond to the noise 
operators with reservoir variables. The last terms 
are the dissipation part with memory kernels 
∑ = (ݐ)ܭ ݃௞

ଶ
௞  ݁ି௜ఠೖ௧ and (ݐ)ܯ = 

∑ ௞݂
ଶ

௞  ݁ି௜ఠೖ௧ . Applying OU memory kernels in 
the form K(t)= ܳଵߛ ݁ିఊ௧ and M(t)= ܳଶߛ ݁ିఊ௧ 
(OU referred to the authors of [31] who first 
used this function as memory kernel) attributes 
to the non-Markovian operational dynamics, 
whereas using memory-less kernels in the form 
 generates (ݐ)ߜ ఋ(t)= ܳଶܯ and (ݐ)ߜ ఋ(t)= ܳଵܭ
Markovian dynamics; see for example the works 
studied in [22, 26, 29, 32, 33]. 

3. The Dynamics of Mean-field Model 
(MF)  

In general, there is no exact remedies for such 
non-linear operator equations, but an 
approximate solution can always be obtained by 
averaging them and decorrelating higher-order 
correlation operator functions into products of 
lower ones. In the present work, we decorrelate 

the third-order moment appearing on the right-
hand side of Eqs. (3) and (4) by the relation: 
〈ܽறܽܽ〉 ∼ 〈ܽற〉〈ܽ〉〈ܽ〉 and 〈ܾறܾܾ〉 ∼ 〈ܾற〉〈ܾ〉〈ܾ〉.  
               (5) 

This means that third-order correlated 
operators are approximated by the product of 
their single-operator expectation values. This 
truncation is valid in the macroscopic limit, since 
the covariance vanishes as O(ଵ

ே
) (where N is the 

total number atom of the system) if the many-
particle quantum state is close to pure BEC [2-
4,14, 36, 37]. In other words, the mean-field 
approach is valid and well described for the 
macroscopic system (system with large number 
of atoms, ܰ → ∞). 

The breakdown of mean-field model is by 
large, due to the neglect of higher order moments 
of the quantum state and not a consequence of a 
failure of the standard semi-classical Gross-
Pitaevskii dynamics; see for example the 
discussion in the textbook of Pethick and Smith 
[34]. To overcome this problem, one has to 
truncate higher-order expectation values at a 
later stage than in Eq. (5) 

〈 ௝ܽ
றܽ௞ܽ௟〉 ≈ 〈 ௝ܽ

ற〉〈ܽ௞ܽ௟〉 + 〈 ௝ܽ
றܽ௞〉〈ܽ௟〉 +

〈 ௝ܽ
றܽ௟〉〈ܽ௞〉 − 2〈 ௝ܽ

றܽ௞ܽ௟〉           (6) 

and derive the equation of motion for the 
correlation functions 〈 ௝ܽ

றܽ௞〉 and 〈 ௝ܽܽ௞〉, as 
suggested in [35]. However, this approach also 
finds its limitations and is later improved by the 
Bogoliubov back-reaction (BBR) method 
developed by Amichay Vardi’s group [36]. 

Defining ߙ= 〈 ොܽ〉, ߙ∗= 〈 ොܽற〉, ߚ = 〈 ෠ܾ〉 and ߚ∗ = 
〈 ෠ܾற〉 with n(t)=ߙଶ+ ߚଶ= ݊஺(t) + ݊஻(t) denote the 
total particle number at a certain time t in the 
double-well. For large reservoir systems, 
averages 〈ܨ෠ଵ〉 and 〈ܨ෠ଶ〉 vanish. The Markovian 
operational dynamics of our model is obtained 
by choosing memory-less dissipation kernels 
 for Eqs. (3) (ݐ)ߜ ఋ(t) = ܳଶܯ and (ݐ)ߜ ఋ(t) = ܳଵܭ
and (4). We obtain the following set of coupled 
differential equations: 
ௗఈ
ௗ௧

 = -i (߱ − ܳଵ)ߙ- i Ωߚ-i U |ߙ|ଶ(7)          ,ߙ 

ௗఉ
ௗ௧

 = -i (߱ − ܳଶ)ߚ-i Ωߙ- i U |ߚ|ଶ(8)          ,ߚ 

Re-writing the variables (ߚ ,ߙ) as ߙ| = ߙ|exp 
(i ߠ௔) and ߚ| = ߚ|exp (i ߠ௕), the population-
imbalance parameter is defined by s = (|ߙ|ଶ- 
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 ௕. Byߠ - ௔ߠ = ߠ ଶ)/n(t) with a relative phase|ߚ|
calculating ௗ௦

ௗ௧
= ∑ డ௦

డఈೕ

డఈೕ

డ௧௝ , where ߙ௝= {ߙ,  ,{ߚ

and comparing the imaginary parts of ௗ(ఈఉ∗)
ௗ௧

 = 
ௗ(|ఈ||ఉ|ୣ୶୮ (ି௜ఏ))

ௗ௧
, one obtains the following set of 

equation: 
ௗ௦
ௗ௧

 = -2 √1 −  (9)          ,(ଶݏ - 1) ߞ - ߠ ଶ sinݏ 

ௗఏ
ௗ௧

 = ଶ ௦ ୡ୭ୱ ఏ
√ଵି௦మ  – ߯ s,          (10) 

where ߞ = (ܳଶ − ܳଵ)/Ω is the dissipation bias 
and ߯ = ܷ݊/Ω is the ratio of inter-particle 
interaction with tunneling coupling strength. The 
model equations are then governed by the latter 
control parameters. Time has been rescaled in 
unit Ω. The fixed points are obtained by setting 
ݏ̇) = 0, ߠ̇ = 0); we obtain: 

sin ߠ = ఍
ଶ
 √1 − ఞ = ߠ ଶ and cosݏ 

ଶ
 √1 −  ଶ .   (11)ݏ

Using trigonometry identity sin2 ߠ + cos2 ߠ = 

1, we find s = ± ට1 − ସ
ఞమା఍మ. Hence, we can 

identify the location of fixed points (s, ߠ) = (0, 

arcsin ఍
ଶ
arcsin ఍ - ߨ ,0) ,(

ଶ
), (ට1 − ସ

ఞమା఍మ, arccos 

ߨ − ఞ
ఞమା఍మ) and (−ට1 − ସ

ఞమା఍మ, arccos ߨ −
ఞ

ఞమା఍మ). 

Jacobian matrix for the non-dissipative two-
mode BEC based on Eqs. (9) and (10) is as 
follows: 

J = ቌ
డ௦̇
డ௦

డ௦̇
డఏ

డఏ̇
డ௦

డఏ̇
డఏ

ቍ = 

ቆ2ݏ sin 1√/ ߠ − ଶݏ − ݏߞ2 −2√1 − ଶݏ cos ߠ
−߯ + 2 cos ߠ / √1 − ଶయݏ ݏ2− sin ߠ /√1 −  ଶݏ

ቇ   

      (12)  
3.1 Inter-particle Interaction and Dissipation 
Effect on the Mean-field System 

We numerically solve Eqs. (9) and (10) 
[phase-space equations of the MF model] for 
appropriate initial conditions using Matlab ODE-
45 solver [39, 40], which is an efficient tool for 
solving simple non-stiff differential equations. A 
relatively small number of atoms is used to 
maintain the validity of two-mode BEC model. 

For example, 100 atoms are distributed in 
appropriate proportions among the traps initially. 

The population-imbalance invariant with 
control parameters (χ, ζ) is illustrated in Fig. 1. 
The left-most panels are evolutions for the 
dissipation free case. As the inter-particle 
interaction increases, one observes phase 
changes from Quantum Tunneling state (QTS) to 
Macroscopic Self-trapping state (MQST). In the 
transition from MQST to Josephson oscillations 
(as the atom numbers are dropping), one sees 
something like "periodic doubling" (blue curve 
in the figure). One could expect some sort of 
resonance to occur as the system's phases change 
from QTS to MQST as one sweep through from 
weak to stronger non-linearity. 

The middle and right-most panels of Fig. 1 
are the dynamics in the presence of dissipation. 
Competition between atom tunneling and atom 
losses to the reservoir is seen to be affecting the 
dynamics. Comparing the evolution of figures 
between these two sets of panels, one can deduce 
that stronger dissipation coupled with inter-
particle interaction causes dramatic changes in 
the dynamics of the system (irregular reduction 
in the population-imbalance oscillation 
amplitude). In other words, dissipation has 
perturbed the period-doubling effect and starts 
delocalizing atoms (damped oscillation) as the 
atom number drops. However, for the strongly 
inter-particle interacting case, in the last bottom 
left panels, dissipation is seen to drive back 
MQST to QTS, as the non-linearity of the system 
gets weaker in proportion to reducing atom 
number. 

Stability characteristics of the fixed points 
can be determined by finding the eigenvalues of 
the Jacobian matrix, as shown in the differential 
equations textbooks [41, 42]. It was also shown 
by the researchers in [3, 14, 43] that the 
eigenvalues of the Jacobian matrix depict the 
type of fixed points and the stability of them. For 
instance, two imaginary eigenvalues denote an 
elliptic fixed point, two real eigenvalues denote a 
hyperbolic fixed point. A saddle fixed point 
occurs when two real eigenvalues lie on the 
different sides of zeros. Complex eigenvalue 
with a negative real part depicts an attractor, 
while a complex eigenvalue with positive real 
part depicts a repeller. 
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FIG. 1. Evolution of population imbalance s as a function of Ωt in variation with dissipation strengths ߞ for 

various inter-particle interaction strengths ߯.  Phases are evolving from Quantum Tunneling state (QTS) 
(Josephson's oscillations) at ߯ = 0.2 to Macroscopic Quantum Self-trapping (partially localized oscillations) at 

߯=2.5 onward. Coloured lines correspond to initial conditions (s(0),  (0)ߠ): (-0.7,0) blue-line, (-0.3,0) green line, 
(0.3,0) red-line and (0.7,0) light-blue line. 

 

Fig. 2 shows a comparison of dissipative and 
dissipation-free phase space trajectory (s, ߠ) 
evolutions in variation with inter-particle 
interaction strengths (increasing from top to 
bottom order). Phases are evolving from 
Quantum Tunneling state (QTS) (all elliptic 
fixed points) at ߯ = 0.2 to Macroscopic Quantum 
Self-trapping (MQST) state (a combination of 
hyperbolic and elliptic fixed points) at ߯ = 2.0 
onwards. The middle and right-most panels show 
perturbation to phases shown in the left panel in 
the presence of dissipation. Top left-most panel 

of Fig. 2 depicts the phase diagram for the weak 
on-site interaction ߯ = 0.2. Three elliptic fixed 
points at locations (s, ߠ) = (ߨ ± ,0), (0,0) are 
easily noticeable for the dissipation-free case. 
The effect of dissipation is noticeable at the߯ 
middle (0.2 =ߞ) and right-most panels (0.5=ߞ) of 
Fig. 2. The presence of dissipation causes the 
pair of elliptic fixed points to be attracted to each 
other. Also, there is a slight shift in the locations 
of the fixed points. 

 
FIG. 2. Evolution of phase diagrams (s, ߠ) in variation with inter-particle interaction strengths (increasing ߯ 

from top to bottom order) subjected to three dissipation strengths 0,0.2,0.5=ߞ. Initial conditions are in the ranges 
-1 ≤ s(0) ≤ 1  and –ߨ  ≤ ≥  (0)ߠ  while the trajectories run for Ωt=3. Phases are evolving from Quantum ߨ

Tunelling state (QTS) (all elliptic fixed points) at  ߯=0.2 to Macroscopic Quantum Self-trapping state (a 
combination of hyperbolic and elliptic fixed points) at ߯=2.5 onward corresponding to Figure 2. Phase 

difference, ߠ, is plotted in unit radian. 
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Looking at the horizontal row of panels with 
߯ = 2.5, the phase diagram clearly exhibits two 
elliptic fixed points at (s, ߠ) = (ߨ- ,0), (ߨ ,0) and 
a single hyperbolic fixed point at (0,0) for the 
dissipation-free case (left-most panel). In the 
strongly interacting case without dissipation, one 
observes the splitting of one of the elliptic fixed 
points into two novel elliptic points and one 
hyperbolic fixed point; this is the famous self-
trapping effect reported by Milburn et al. [2], 
Raghavan et al. [4] and observed experimentally 
by Albiez et al. [5]. Dissipation introduced in the 
system (right-most panel of Fig. 2) generates a 
pair of attractor and repeller at (0.6, 0) and         
(-0.6, 0), respectively. There is no change of 
location for the other two fixed points, but the 
dynamics can be seen to be corrugated by the 
presence of dissipation.  

Bottom-most Fig. 2 is the phase portrait for 
stronger on-site interaction ߯ = 2.9. A corrugated 
hyperbolic fixed point at (0, 0) and two elliptic 
fixed points at (0, ±ߨ) were found for the non-
dissipative case (the last row left-most panel). 
The system generates four fixed points for the 
dissipation case (last row of middle and right-
most panels). The fixed points are located at    
(± 0.72, 0) and (0, ± ߨ). Fixed points at (0.72, 0) 
are attractors, while the ones at (-0.72,0) are 
repellers. The other two fixed points at (0, ±ߨ) 
are elliptic. The above stability characteristics of 
fixed points are deduced from the eigenvalue 
result of its Jacobian matrix.  

4. The Fluctuation-dissipation Noise 
Correlated (FDT) Model 

There are shortcomings for the use of mean-
field approximation. For instance, quantum 
fluctuations are completely neglected and they 
also fail badly at dynamical instabilities [35]. 
Also, the system noise is suppressed since the 
thermal noise expectation value 〈ܨ௝

ற(ݐ)〉 = 
 .assuming a large thermal reservoir 0 = 〈(ݐ)௝ܨ〉
Hence, noise correlation effects are completely 
neglected in the system. In this work, we 
implement the double-well BEC system 
subjected to noise correlation and Markovian 
dissipation. We call this description the FDT 
model. 

Physical quantities, such as population of 
traps (݊஺ = 〈 ොܽற ොܽ〉, ݊஻  = 〈 ෠ܾற ෠ܾ 〉), coherence and 
other noise-correlated terms, are computed by 
their second-order moments using Eqs. (3) and 

(4) and applying the product rule:  ௗ〈ை෠಩ ை෠〉
ௗ௧

 = 

〈 ௗை෠
ௗ௧

 ෠ܱ〉  + 〈 ෠ܱ  ௗை෠
ௗ௧

〉. Performing some algebra, 
we obtain the following set of second-order 
moment evolution equations: 
ௗ〈௔ො಩௔ො〉

ௗ௧
 = -2 ܳଵ 〈 ොܽற ොܽ〉 + i Ω 〈 ෠ܾற ොܽ〉 – i Ω 〈 ොܽற ෠ܾ〉 + 

෠ଵܨ〉
ற ොܽ 〉 + 〈 ොܽற ܨ෠ଵ〉          (13) 

ௗ〈௕෠಩௕෠〉
ௗ௧

 = -2 ܳଶ 〈 ෠ܾற ෠ܾ〉 + i Ω 〈 ොܽறܾ〉 – i Ω 〈 ෠ܾற ොܽ〉 + 
෠ଶܨ〉

ற ෠ܾ 〉 + 〈 ෠ܾற ܨ෠ଶ〉          (14) 

ௗ〈௔ො಩௕෠〉
ௗ௧

 =  - (ܳଵ+ܳଶ )   〈 ොܽற ෠ܾ〉 + i Ω 〈 ෠ܾற ෠ܾ〉 – i 
Ω 〈 ොܽற ොܽ〉 +iU 〈ܽற ෠ܾ  〉 (݊஺ − ݊஻).       (15) 

The noise terms in the above equations 
denoted by (ܨ෠ଵ, ܨ෠ଶ) obey the two-point 
correlations relation; see for example [23, 28]: 

ᇱݐ )ߜ (߱)ଵ ଵܰܳ = 〈(′′ݐ)෠ଶܨ (ᇱݐ)෠ଵܨ〉 −  (16)   ("ݐ

ᇱݐ )ߜ (߱)ଶ ଶܰܳ = 〈(′′ݐ)෠ଶܨ (ᇱݐ)෠ଵܨ〉 −  (17)   ("ݐ

It needs to be mentioned that Eqs. (16) and 
(17) indicate Fluctuation-Dissipation theorem 
(FDT) for the Markovian system [for non-
Markovian system, we have different relations 
than those above], which reads that fluctuation-
due reservoir contributes to the dissipation in the 
system. In the above set of equations, the terms 
෠ଵܨ〉

ற ොܽ 〉 = 〈 ොܽற ܨ෠ଵ〉  = (ܳଵ/2) ଵܰ(߱) and  
෠ଶܨ〉

ற ෠ܾ 〉 = 〈 ෠ܾற ܨ෠ଶ〉  = (ܳଶ/2) ଶܰ(߱) were 
obtained using Eqs. (16) and (17) and employing 
the technique shown in the textbook [28].  

The fourth-order moments generated in 
deriving Eqs. (13) - (15) have been de-correlated 
by a basic relation 〈ܣመ ܤ෠ܥመܦ෡ 〉  The .〈෡ܦመܥ〉〈෠ܤመܣ〉 ≈
set of dynamical equations above are governed 
by the trap frequency ߱, tunneling coupling 
constant Ω, inter-particle interaction strength U, 
dissipation strengths (ܳଵ, ܳଶ) and the reservoir 
temperatures ( ଵܶ, ଶܶ).  
4.1 Comparison between the MF and FDT 
Models and Their Illustrations 

We compare the FDT model Eqs. (13) - (15) 
with MF model Eqs. (7) and (8) in terms of their 
physical quantities, such as population 
imbalance, coherence and entanglement. Again, 
we distribute 100 atoms in appropriate 
proportions among the traps as their initial 
condition. The trap frequency is set at ߱/Ω = 5. 
Dissipation strengths (ܳଵ, ܳଶ) and the ratio 
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between inter-particle interaction with tunneling 
strength ܷ/Ω are treated as control parameters 
for the system dynamics. Reservoir temperatures 
are fixed at ݇஻ ଵܶ/Ω = ݇஻ ଶܶ/Ω = 2, while the 
trap frequency is set at ߱/Ω = 5. 

4.1.1 Population Imbalance  

The non-dissipative two-mode BEC exhibits 
quantum tunneling state (QTS) at weaker inter-
particle interaction as can be noticed in Fig. 3(a), 
while a macroscopic self-trapping state (MQST) 
is realized in Fig. 3(b) for a stronger interaction 
regime [2, 4]. The population imbalance at QTS 

displays Rabi Josephson oscillation, whereas 
MQST shows partially localized oscillation. 

Fig. 3(b) shows decaying oscillation and 
continuous reduction of population amplitude. 
The QTS phase is destroyed by dissipation in 
both models. Fig. 3(d) indicates a drive back 
from MQST to QTS. The MF model drives the 
system quicker to its equilibrium state compared 
to the FDT model. As the atom numbers are 
dropping, one sees something like a "period 
doubling" for the FDT model. The slower decay 
into the equilibrium for the FDT model is due to 
noise and dissipation in the system, sustaining 
the dynamics. 

 
FIG. 3. Population imbalance as a function of Ωt. Top panels are for weak inter-particle interaction strength   
U/Ω = 0.1, while lower panels are for its stronger counterpart U/Ω = 2.5. Figs. (a) and (c) correspond to non-

dissipative dynamics representing QTS and MQST, respectively. Figs. (b) and (d) are their corresponding system 
with dissipation strength ܳଵ/Ω=0.1 and ܳଶ/Ω=0.2. Other fixed parameters are trap frequencies ω/Ω=5 and 

reservoir temperatures ݇஻ ଵܶ/Ω=2 and ݇஻ ଶܶ/Ω=2 . Initial atom distribution for traps (A, B) is (64, 36). The blue 
line corresponds to the noise-correlated (FDT) model, while the green line is for the MF model. 

 
4.1.2 Coherence in the System 

The coherence of the many-body quantum 
state can be determined using the first-order 
correlation function between wells ݃௔௕

(ଵ) =
ൣ 〈 ොܽற ෠ܾ〉 +  〈 ෠ܾற ොܽ〉 ൧/݊(ݐ) [13]. We compare the 
coherence produced by the two models (FDT vs. 
MF) in Fig. 4 for various inter-particle 
interaction strengths. 

The MF model shows a sharp exponential 
decay of coherence in the traps for this weak 
inter-particle interaction limit ܷ ≤ 2Ω. The FDT 
model, however, sustains stable coherence for 
this range of interaction strength, maintaining 
pure condensate state. This interesting feature, 
we believe, is due to the balance between noise 
and dissipation factor that is peculiar to the 
system, supporting fluctuation dissipation 
theorem. 



Article  Rajagopal et al. 

 452

 
FIG. 4. Coherence dynamics as a function of  Ωݐ computed in variation with the inter-particle interaction 

strength ܷ/Ω. Trap frequencies, reservoir temperatures, dissipation strengths and initial atom distribution at traps 
(A,B) are the same as in Figure 3. Blue and green lines correspond to the noise-correlated Markovian model and 

the mean-field model (MF), respectively. 
 

We found that dissipation drives the initial 
state of the system to a different quantum state 
for the stronger inter-particle interaction regimes 
ܷ ≥ 2.5 Ω. In this limit, both models show a 
decrease in the first-order coherence, indicating 
the destruction of the condensate. The initial 
state of the systems is unstable; they fragmented 
into a meta-stable equilibrium state, similarly 
reported by Kordas et al. [44]. The sudden jump 
to a local maximum coherence after a short 
transient period is understood to be a stochastic 
resonant (SR) effect reported by Witthaut et al. 
(2008) [13]. Such phenomena occur for 
dissipative systems at a stronger non-linear 
interaction only. 

The MF model also exhibits similar transient 
BEC fragmentation and formation of resonant 
state, but cannot sustain it, as the coherence 
decays sharply. However, the FDT model based 
on noise and dissipation balancing supports the 
meta-stable equilibrium for longer sustainable 
periods. The oscillatory dynamics in Fig. 4 (c) 
and (d) for the FDT model is due its competition 
between dissipation and atom losses, which 
eventually creates the meta-stable state. 

4.1.3 Entanglement  

To investigate the inter-modal entanglement 
between BEC atoms, we use the Hillery-Zubairy 

criteria [45, 46] defined by the following 
relations, 1ܼܪ =  〈 ො݊஺ ො݊஻〉 − උ〈 ොܽற ෠ܾ〉ඏ

ଶ  or 
2ܼܪ =  〈 ො݊஺〉〈 ො݊஻〉 − උ〈 ොܽ ෠ܾ〉ඏ

ଶ
 for which 1ܼܪ < 0 

or 2ܼܪ < 0, indicating entanglement. HZ1 
criterion is the suitable candidate for our models; 
therefore, it is plotted in Fig. 5. 

Interestingly, the domain of non-classicality 
(entanglement) detected through HZ1 criterion 
depends on the ratio of non-linear interaction and 
coherence. The MF model does not show 
entanglement, because equation HZ1 is zero 
based on its decorrelation approximation and 
mean-field definition. In this situation, the 
system remains close to pure BEC throughout its 
evolution. FDT model is highly entangled even 
at weak interaction. For weak interaction, higher 
atom-tunneling rate enhances coherence in the 
system. However, the atom-density fluctuations 
at each trap weakened by atom losses to the 
reservoir (referring to equation HZ1). We have 
mentioned earlier that coherence is sustained by 
the FDT model, which supports our argument. 
The BEC was fragmented into meta-stable 
equilibrium state for stronger inter-particle 
interaction (ܷ ≥ 2.5 Ω). Such phenomena are 
also captured by the entanglement evolution 
shown in Fig. 4 (c) and Fig. 4 (d). 
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FIG. 5. HZ-1 criterion in the time domain Ωݐ for various inter-particle interaction strengths. Caption is still the 

same as in Figure 3. 
 

5. Conclusion 
We have studied the dynamical properties of 

a double-well BEC out-coupled to a dual- 
reservoir system. Dissipation in the system arises 
from the interaction of condensate atoms with 
the out-coupled multi-mode reservoirs. The 
macroscopic dynamics of BEC modes are 
described within the mean-field and noise-
correlated models.  

We started by analyzing the dynamics 
induced by the mean-field model (MF) subjected 
to Markovian dissipation. We have shown how 
the system evolved from its initial equilibrium 
phases (QTS and MQST) and perturbed in 
variation with the applied control parameters 
(non-linear interaction and dissipation strengths). 
Later, we considered the noise-correlated model 
(FDT) and computed the physical quantities, 
such as population imbalance, coherence and 
entanglement. The FDT model obeys the 
fluctuation dissipation theorem, which 
recognizes fluctuation in the reservoir as the 
main source of dissipation in the system. 
However, the noise correlation is suppressed in 
the MF model.  

We have shown that noise correlation and 
dissipation have crucial effects on computing 
physical quantities, such as population 

imbalance, coherence or entanglement of the 
system. Dissipation destroys the two-mode BEC 
phases; namely, QTS and MQST, which occur at 
the opposite interacting regimes (weak versus 
strong). Coherence of the system is enhanced for 
weaker non-linear interaction strength (due to 
increasing tunneling rate), hence promoting non-
classical (quantum) behavior. Dissipation drives 
back MQST to QTS phase reaching a meta-
stable state before being destroyed, as the non-
linearity of the system gets weaker in proportion 
to reducing atom number. The mentioned 
process is much weaker and slower in the FDT 
model compared to the MF model. 

The present work opens up a new research 
direction to analyze possible formation of non-
linear structures, like the breather state 
(especially at stronger non-linear interaction and 
dissipation regime) similar to the system studied 
by Kordas et al. [44]. We have shown that the 
mean-field model (where noise correlation is 
suppressed) is not able to detect quantum 
properties, like coherence and entanglement, 
especially at the stronger non-linear interaction 
and dissipation regime, where new quantum 
features emerge. We hope that the formation of 
breather state is also realized in experiment using 
a simple system like our double-well BEC-
reservoir models.  
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Appendix: The Mean-field Non-
Markovian Dynamics 

The non-Markovian operational dynamic 
model is obtained by choosing memory 
dissipation kernels ܭଵ (t) = ܳଵ exp (-ߛ t) and 
 .for Eqs. (3) and (4) (t ߛ-)ଵ(t) = ܳଶ expܯ
Following the prescribed steps in Section 3, we 
obtain the mean-field set of coupled differential 
equations: 
ௗఈ
ௗ௧

 =−i߱ߙ − iΩߚ −iU |ߙ|ଶߙ − 

ܳଵ ∫ ݐ]ߛ−) ᇱexpݐ݀ − ௧(′ݐ)ߙ ([ᇱݐ
଴ ,       (A1) 

ௗఉ
ௗ௧

   =− i(߱)ߚ − iΩߙ − iU|ߚ|ଶߚ − 

ܳଶ ∫ ݐ]ߛ−) ᇱexpݐ݀ − ௧(′ݐ)ߚ([′ݐ
଴ .       (A2) 

The following are the set of phase-space 
dynamical equations for our non-Markovian 
system: 
ௗ௦
ௗ௧

 = -2 √1 − ଵା௦] - (ଶݏ - 1) ߞ - ߠ ଶ sinݏ 
௡

ܻ∗ߚ][ +

ଵି௦] - [∗ܻߚ
௡

ܺ∗ߙ][ +  (A3)        [∗ܺߙ

ௗఏ
ௗ௧

 = ଶ ௦ ୡ୭ୱ ఏ
√ଵି௦మ  - ߯ s - ℑ ቄ௒∗

ఉ∗ +  ௑
ఈ

ቅ,        (A4)  

where ॅ stands for the imaginary part. In the 
above equations, the non-local memory kernel 
terms are represented by new variables: 

X(t) = −ܳଵ ∫ ݐ]ߛ−) ᇱexpݐ݀ − ௧(′ݐ)ߙ ([ᇱݐ
଴      (A5) 

Y(t) = − ܳଶ ∫ ݐ]ߛ−) ᇱexpݐ݀ − ௧(′ݐ)ߚ([′ݐ
଴      (A6) 

Satisfying  

 (A7)         (t)ߙ ଵܳ ߛ - X(t) ߛ = ̇ܺ

 (A8)         .(t)ߚ ଵܳ ߛ - Y(t) ߛ = ܻ̇

The phase-space variables (s, ߠ) are not in 
closed form; they require extra variables (ߚ ,ߙ,X, 
Y). Hence, we need to solve a higher-
dimensional non-linear problem now. The six-
dimensional equilibrium point is determined by 
setting (̇ߙ = 0, ߚ̇ = 0, ݏ̇ = 0, ߠ̇ = 0, ܺ̇ = 0, ܻ̇ =

0). We start by solving the simplest equation 
first. Eqs. (A7) and (A8) lead to the solution ௝ܺ = 
− ܳଵߙ௝ and ௝ܻ  = −ܳଶߚ௝. Substitution into Eq. 
(A3) and Eq. (A4) leads to obtain the following 
relations: 

sin ߠ௝  = ఍
ଶ
 ට1 − ௝ݏ 

ଶ         (A9) 

cos ߠ௝  = ఞ
ଶ
 ට1 − ௝ݏ 

ଶ       (A10) 

ට1 ± = ±ݏ − ସ
ఞమା఍మ        (A11) 

where the control parameters are ߞ = (ܳଶ −
ܳଵ)/Ω and ߯ = ܷ݊/Ω. The four fixed points (in 
six-dimensional space) are ௝ܲୀଵ,ଶ,ଷ,ସ = 
,௝ߙ) ,௝ߚ ௝ܺ, ௝ܻ , ,௝ݏ   :(௝ߠ

ଵܲ= (ߙଵ, ,ଵߚ −ܳଵߙଵ, −ܳଶߚଶ, 0, sinିଵ ఍
ଶ
),  

ଶܲ= (ߙଶ, ,ଶߚ −ܳଵߙଶ, −ܳଶߚଶ, 0, ߨ − sinିଵ ఍
ଶ
),  

ଷܲ= (ߙଷ, ,ଷߚ −ܳଵߙଷ, −ܳଶߚଷ, ට1 − ସ
ఞమା఍మ , ߨ −

 cosିଵ ఞ
ఞమା఍మ)  

and  

ସܲ= (ߙସ, ,ସߚ −ܳଵߙସ, −ܳଶߚସ, −ට1 − ସ
ఞమା఍మ , ߨ −

 cosିଵ ఞ
ఞమା఍మ)  

where (ߙ௝,  ௝) are obtained by solving theߚ
following non-linear coupled equations: 

(−i ߱ − ܳଵ −i U หߙ௝หଶ) ߙ௝ − i Ω ߚ௝ = 0     (A12) 

−i Ω ߙ௝ + (−i ߱ − ܳଶ −i U หߚ௝หଶ) ߚ௝ = 0.  (A13) 

The above set of equations was derived from 
 of Eqs. (A1) and (A2). The 0 = ߚ̇ and 0 = ߙ̇
stability characteristic of the system has to be 
solved by 6 × 6 Jacobian matrix applying fixed 
points ௝ܲ. The Jacobian matrix is: 

Z = 

⎝

⎜
⎜
⎛

ଵଵݖ −݅ 1 0 0 0
−݅ ଶଶݖ 0 0 0 0

−ܳଵߙ 0 ߛ− 0 0 0
0 −ܳଶߚ 0 ߛ− 0 0

ହଵݖ ହଶݖ ହଷݖ ହସݖ ହହݖ ହ଺ݖ
଺ଵݖ 0 ଺ଷݖ 0 ଺ହݖ ⎠଺଺ݖ

⎟
⎟
⎞

  

    (A14) 

where ݖଵଵ = −݅߱ − ଶଶݖ ,ଶ|ߙ|2ܷ݅ = −݅߱ −
ହଵݖ ,ଶ|ߚ|2ܷ݅ = ଵି௦

௡
ହଶݖ ,∗ܺ  = − ଵା௦

௡
ܻ∗, 
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ହଷݖ = ଵି௦
௡

ହସݖ ,∗ߙ = − ଵା௦
௡

ହହݖ ,∗ߚ =
ଶ௦

√ଵି௦మ sin ߠ − ఈ∗௑ାఈ௑∗

௡
−  ఉ∗௒ାఉ௒∗

௡
ହ଺ݖ , =

ିଶ௦ ୡ୭ୱ ఏ
√ଵି௦మ ଺ଵݖ , = −ॅ ቀ− ௑

ఈ∗ቁ, ݖ଺ଷ = ॅ ቀଵ
ఈ

ቁ, 
଺ହݖ =  ଶ ୡ୭ୱ ఏ

√ଵି௦మయ −  ߯ and ݖ଺଺ =  ିଶ ௦ ୱ୧୬ ఏ
√ଵି௦మ . 

For example, we can test the above result for 
interaction-free (߯= 0), dissipative (0.1 = ߞ) 
systems, with other given parameters ߱ = 2.0, ߛ 
= 10, ܳଶ = 0.2 and ܳଵ =0.1, which takes a fixed 
point ଵܲ = (0, 0, 0, 0, 0, 0.05); thus, we have: 

ܼ௉ଵ = 

⎝

⎜⎜
⎛

−2݅ −݅ 1 0 0 0
−݅ −2݅ 0 0 0 0
−1 0 −10 0 0 0
0 −2 0 −10 0 0
0 0 0 0 0 0
0 0 0 0 2 0⎠

⎟⎟
⎞

  

   (A15) 

which gives a set of eigenvalues (-0.19 - 3.06i,        
-0.20 - 1.02i, -9.80 + 0.02i, -9.81+ 0.06i, 0, 0) 
that verifies a damped oscillatory motion of the 
system. 
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