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Abstract: The nonlinear electromagnetic wave propagation in a system consisting of a 
relativistic cold-electron beam propagating through an electromagnetic wiggler is solved. A 
set of coupled nonlinear ordinary differential equations is derived by coordinate 
transformation to the wiggler coordinates. Soliton-type solutions in the form of coupled 
electromagnetic and plasma waves are presented numerically, which may represent 
possible nonlinear saturated states of the electromagnetic wiggler free-electron laser 
instability. It is shown that the soliton solutions become an eigenvalue problem in the 
wiggler frequency ݓෝ௪, given a fixed set of parameters ݓෝ௖ ,଴ߛ , ,ߚ ܽ݊݀ ෝ߱௣ . 
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Introduction 

A significant source of mathematical 
inspiration has been and remains the study of the 
dynamical behavior of physical systems. In the 
20th century, a thorough investigation into many 
non-linear systems and their commonalities 
began [1]. Two opposites on the dynamics 
spectrum have drawn a lot of attention: chaos 
and solitons. Due to the extremely rich behavior 
that partial and ordinary differential equations 
can display, as shown by chaos theory, some 
deterministic systems can become exponentially 
unpredictable over time. The soliton hypothesis 
[2], on the other hand, offers a number of 
significant instances of non-linear systems 
behaving in a stable, quasi-linear manner. J. 
Scott Russell, riding a horse, chased a one-foot-
high, thirty-foot-long wave produced by a 
stopping canal boat traveling at eight to nine 
miles per hour for nearly two miles in its original 
form. This was the first experimental 
demonstration of stable "solitary waves"—the 
precursors of the term "soliton"—in 1834. In 
1895, the KdV problem was solved using this 

single wave solution [3]. Since then, numerous 
more nonlinear partial differential equations 
(PDEs) have featured stable solitary wave 
solutions prominently, and the techniques for 
producing soliton solutions have led to numerous 
profound concepts in both mathematics and 
science [2, 4]. 

The free-electron laser, often known as a FEL 
[5], is a type of laser that, while using some quite 
different operating principles to create the beam, 
exhibits many of the same optical characteristics 
as conventional lasers, including the ability to 
emit coherent electromagnetic radiation beams 
with high strength. The lasing medium in free 
electron lasers is a relativistic electron beam that 
is free to flow through a wiggler, or transverse 
periodic magnetic field. The free-electron laser 
has the broadest frequency range and is the most 
widely tunable of all laser types. Numerous 
investigations, including both practical and 
theoretical ones, have been conducted in recent 
years on free-electron lasers (FEL) [6]. Various 
successful findings have been obtained through 
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experimental and theoretical work at labs and 
research facilities all around the world [7]. FEL 
is notable for its unique characteristics, which 
include its high frequency, high power, and wide 
bandwidth. Different medical, industrial, and 
military applications find these properties 
appealing [8]. A magnetic device called an 
"undulator" or "wiggler" is typically utilized for 
passing an electron down, forcing it to follow a 
periodic oscillatory path in space. This produces 
the FEL radiation. There are several possible 
configurations for the wiggler field's precise 
shape, and both helically and linearly polarized 
wiggler fields have been used to build FELs [9]. 

This paper solves the nonlinear 
electromagnetic wave propagation in a system 
with a relativistic cold-electron beam moving 
through an electromagnetic field. A system of 
coupled nonlinear ODEs has been generated by 
transforming the coordinates to wiggler 
coordinates. Numerical solutions of the soliton 
type, which may reflect potential nonlinear 
saturated states of the free-electron-laser 
instability, are shown as coupled electromagnetic 
and plasma waves.  

2. The Electromagnetic Wiggler Field 
We start with a relativistic cold fluid to 

describe the nonlinear evolution of the free 
electron laser instability [10], [11]. This applies 
to a relativistic cold electron beam of uniform 
density propagating in the z-direction through an 
electromagnetic wiggler field. The 
electromagnetic wiggler is given by [12], [13]: 

ሬ⃗ܧ ௪(ݖ, (ݐ = ෨௪ൣ−݁̂௫ܧ sin(݇௪ݖ + ( ݐ௪ݓ +
݁̂௬ cos(݇௪ݖ +  ൧          (1)( ݐ௪ݓ

ሬ⃗ܤ ௪(ݖ, (ݐ = ෨௪ൣ݁̂௫ܤ− cos(݇௪ݖ + ( ݐ௪ݓ +
݁̂௬ sin(݇௪ݖ +  ൧ ,          (2)( ݐ௪ݓ

where ܤ෨௪ = ,ݐ݊ܽݐݏ݊݋ܿ ෨௪ܧ =
௪ೢ ಳ෩ೢ 

௞ೢ௖
, and 

௪ߣ = ଶగ
௞ೢ

  is the wave length, which are derived 
from the following vector potential: 

,ݖ)௪ܣ⃗ (ݐ = ௪ൣ݁̂௫ܣ cos(݇௪ݖ + ( ݐ௪ݓ +
݁̂௬ sin(݇௪ݖ +  ൧           (3)( ݐ௪ݓ

where ݓܣ =
 ݓ෩ܤ
ݓ݇

. 

The beam density is assumed to be 
sufficiently small so that the equilibrium space-

charge effects are negligible, and the equilibrium 
self-magnetic field (Bs) is neglected. Therefore; 

ሬ⃗ܧ ଴(⃗ݎ) = ሬ⃗ܧ ௪ (ݖ, ሬ⃗ܤ ,(ݐ ଴(⃗ݎ) = ሬ⃗ܤ ௪ (ݖ,  and ,(ݐ
(ݎ⃗)଴ܣ⃗ = ,ݖ) ௪ܣ⃗   .(ݐ

We consider perturbations in which the 
spatial variations are one-dimensional in nature 
with డ

డೣ
 = డ

డ೤
= 0, and డ

డ೥
 is generally nonzero. 

The perturbed potentials and fields are:  
,ݖ)߶ (ݐ = ,ݖ)߶ߜ  (4)           (ݐ

,ݖ)ܣ⃗ߜ (ݐ = ,ݖ)௫ܣߜ ௫̂݁ (ݐ + ,ݖ)௬ܣߜ  ௬         (5)̂݁ (ݐ

ሬ⃗ܧߜ ,ݖ) (ݐ =
− ଵ

௖
 డ
డ೥

,ݖ)߶ߜ ௭̂݁ (ݐ − ଵ
௖

 డ
డ೟

,ݖ)௫ܣߜ ௫̂݁ (ݐ −
ଵ
௖

 డ
డ೟

,ݖ)௬ܣߜ  ௬                   (6)̂݁ (ݐ

ሬ⃗ܤߜ ,ݖ) (ݐ = − డ
డ೥

,ݖ)௬ܣߜ ௫̂݁ (ݐ + డ
డ೥

,ݖ)௫ܣߜ   ௬̂݁ (ݐ
(7)  

Thus, the fields become: 

ሬ⃗ܧ ,ݎ⃗) (ݐ = ሬ⃗ܧ ଴(ݖ, (ݐ + ሬ⃗ܧߜ ,ݖ)   (8)          (ݐ

ሬ⃗ܤ ,ݎ⃗) (ݐ = ሬ⃗ܤ ଴(ݖ, (ݐ + ሬ⃗ܤߜ ,ݖ)  (9)          (ݐ

The vector potential is: 

,ݖ)ܣ⃗ (ݐ = ,ݖ)଴ܣ⃗ (ݐ + ,ݖ)ܣ⃗ߜ  (10)        (ݐ

The relativistic momentum and the velocity 
are related by: 

,ݎ⃗)⃗݌ (ݐ = ߛ where ,ݒ⃗݉ߛ = (1 + ௣మ

௠మ௖మ)ଵ/ଶis the 
relativistic factor and ⃗ݎ⃗)ݒ,  .is the flow velocity (ݐ

The continuity equation is given by: 
ப୬
ப୲

+  ப(୬୴౰)
ப୸

= 0,   
where n(z, t) is the number density. 
The equation of motion for a fluid element is: 

ௗ௉ሬ⃗
ௗ௧

= −݁ ቂܧሬ⃗ + ଵ
௖

ݒ⃗ × ሬ⃗ܤ ቃ,         (11) 

where the convective derivative is: ௗ
ௗ௧

= డ
డ௧

+

௭ݒ
డ

డ௭
. 

ሬ⃗ܧ = − డ 
డ௭

,ݖ)߶ߜ ௭̂݁ (ݐ − ଵ
௖

డ
డ௧

 (12)         ܣ⃗

Substituting into Eq. (11) gives: 
ௗ௉ሬ఼⃗
ௗ௧

= −݁ ቂ− ଵ
௖

డ
డ௧

ୄܣ⃗ + ଵ
௖

ݒ⃗} × (∇ ×  ቃ     (13) ୄ{(ܣ⃗

ݒ⃗} × (∇ × ୄ{(ܣ⃗ = ௭ݒ−
డ

డ௭
 (14)        ୄܣ⃗
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ௗ௉ሬ఼⃗
ௗ௧

= ௘
௖

ቂ డ
డ௧

ୄܣ⃗ + ௭ݒ
డ

డ௭
ቃ= ௘ ୄܣ⃗

௖
ௗ஺⃗
ௗ௧

       (15) 

Or, ௗ
ௗ௧

ቂ ሬܲ⃗ୄ − ௘
௖

ቃ ܣ⃗ = 0         (16) 

Now, integrating yields: 

∫  ௗ
ௗ௧

ቂ ሬܲ⃗ୄ − ௘
௖

ቃ ܣ⃗ =  (17)        ݐ݊ܽݐݏ݊݋ܿ

Assuming the constant to be zero, we 
conclude: 

ቂ ሬܲ⃗ୄ − ௘
௖

ቃ ܣ⃗ = 0 ⇒ ሬܲ⃗ୄ = ௘
௖

 (18)        ܣ⃗

The wave equation for ⃗ܣ (choosing 
Coulomb’s gauge) is written as: 

∇ଶ⃗ܣ − ଵ
௖మ

డమ

డ௧మ ܣ⃗ = − ସగ
௖

 (19)        ୄܬ⃗ 

ୄܬ⃗ = ୄݒ⃗ ݁݊− = ି௡௘ ௉ሬ఼⃗
௠ఊ

= ି௡௘మ஺⃗ 
௠ఊ௖

        (20) 

ቂ డమ

డ௭మ − ଵ
௖మ

డమ

డ௧మቃ ܣ⃗ߜ = ସగ௘మ

௠௖మ ቂ௡ 
ఊ

ܣ⃗ − ௡బ  
ఊబ

଴ቃܣ⃗  =
ఠ೛బ

మ

௖మ ቂ௡ 
௡బ

஺⃗
ఊ

− ஺⃗బ 
ఊబ

ቃ         (21) 

Back to the equation of motion with its z-
component: 
డ௣೥
డ௧

+ ௭ݒ
డ௣೥
డ௭

= −݁ ቂܧ௭ + ଵ
௖

ݒ⃗) × ሬ⃗ܤ )௭ቃ       (22) 

while the ܧ௭ = − డ 
డ௭

,ݖ)߶   and (ݐ

൫⃗ݒ × ሬ⃗ܤ ൯௭  = ൫ݒ௫ܤ௬ − ௫൯ܤ௬ݒ = ௫ݒ
డ 
డ௭

௫ܣ −

௬ݒ
డ 
డ௭

  ௬ܣ

= ௖
௘

௫ݒ
డ 
డ௭

௫݌ + ௖
௘

௬ݒ
డ 
డ௭

 ௬         (23)݌

Then,  
డ௣೥
డ௧

= ݁ డ 
డ௭

߶ − ቂ ௣ೣ
௠ఊ

డ 
డ௭

௫݌ +
௣೤

௠ఊ
డ 
డ௭

௬݌ + ௣೥
௠ఊ

డ 
డ௭

 ௭ቃ݌

= ݁ డ 
డ௭

߶ − ݉ܿଶ డ 
డ௭

ߛ         (24) 

Differentiation with respect to t: 
డమ௣೥
డ௧మ  = ݁ డమ 

డ௧డ௭
߶ − ݉ܿଶ డమ 

డ௧డ௭
ߛ         (25) 

Now, using the axial components of 
Maxwell’s equations: 

∇ × ሬ⃗ܤߜ = ସగ
௖

ܬ⃗ߜ + ଵ
௖

డ
డ௧

ሬ⃗ܧߜ         (26) 

But, (∇ × ሬ⃗ܤߜ )୸ = ൫߲௫ܤߜ௬ − ߲௬ܤߜ௫൯ = 0 −
0 = 0. 

Then, డ
డ௧

௭ܧߜ = (଴௭ܬ−௭ܬ)ߨ4− =
௭ݒ݊)݁ߨ4 − ݊଴ݒ଴௭). 

డ
డ௧

ቀ− డ 
డ௭

ቁ߶ߜ = − డ
డ௧

ቀ డ 
డ௭

߶ቁ = − ቀ డమ 
డ௧డ௭

߶ቁ =
௭ݒ݊)݁ߨ4 − ݊଴ݒ଴௭)         (27) 

Using ⃗݌ =  .and substituting into Eq ݒ⃗݉ߛ
(27), we get: 

݁ డమ 
డ௧డ௭

߶ = − ସగ௘మ௡బ
௠

ቂ௡ 
௡బ

௣೥
ఊ

− ௣బ೥
ఊబ

ቃ        (28) 

Substituting into Eq. (25) gives: 
డమ௣೥
డ௧మ  = −݉ܿଶ డమ ఊ

డ௧డ௭
− ߱௣଴

ଶ ቂ௡ 
௡బ

௣೥
ఊ

− ௣బ೥
ఊబ

ቃ       (29) 

3. Transforming to the Wiggler 
Coordinates Frame 
݁̂ଵ = ݁̂௫ cos(݇௪ݖ + ( ݐ௪ݓ + ݁̂௬ sin(݇௪ݖ +

  ,( ݐ௪ݓ

݁̂ଶ = −݁̂௫ sin(݇௪ݖ + ( ݐ௪ݓ + ݁̂௬ cos(݇௪ݖ +
,( ݐ௪ݓ  ෝ݁ଷ = ݁̂௭  

Equation (3) becomes: 

௫ܣ = ଵܣ cos(݇௪ݖ + ( ݐ௪ݓ − ଶܣ sin(݇௪ݖ +
 (30)          ( ݐ௪ݓ

௬ܣ = ଵܣ sin(݇௪ݖ + ( ݐ௪ݓ + ଶܣ cos(݇௪ݖ +
 (31)          ( ݐ௪ݓ

௭ܣ =  ଷ          (32)ܣ

Substituting into the wave equation, we get: 

ቂ డమ

డ௭మ − ቀ݇௪
ଶ − ௪ೢ

మ

௖మ ቁ − ଵ
௖మ

డమ

డ௧మቃ ଵܣߜ − 2 ቂ݇௪
డ 
డ௭

−
௪ೢ

௖
ଵ
௖

డ 
డ௧

ቃ ଶܣߜ  =  ఠ೛బ
మ

௖మ ቂ௡ 
௡బ

஺భ
ఊ

− ஺భ
బ 

ఊబ
ቃ       (33) 

ቂ డమ

డ௭మ − ቀ݇௪
ଶ − ௪ೢ

మ

௖మ ቁ − ଵ
௖మ

డమ

డ௧మቃ ଶܣߜ + 2 ቂ݇௪
డ 
డ௭

−
௪ೢ

௖
ଵ
௖

డ 
డ௧

ቃ ଵܣߜ =  ఠ೛బ
మ

௖మ ቂ௡ 
௡బ

஺మ
ఊ

ቃ        (34) 

Making the traveling wave ansatz, where all 
the dynamical quantities depend on z and t by 
the combination ߦ = ݖ −  so డ ,ݐݑ

డ௭
= ௗ

ௗక
, and 

డ 
డ௧

= ݑ− ௗ
ௗక

 . 

Substituting into the wave equation, we 
obtain the following form in the wave frame: 
డ 
డ௧

݊ + డ 
డ௭

(௭ݒ݊) = 0  

ݑ− ௗ௡
ௗక

+ ݊ ௗ௩೥
ௗక

+ ௭ݒ
ௗ௡
ௗక

= 0  

௭ݒ) − (ݑ ௗ௡
ௗక

= −݊ ௗ௩೥
ௗక

  

− ௗ௡
௡

= ௗ௩೥
(௩೥ି௨)          (35) 
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Integrating: 

ln( ௡ 
௡బ

) = − ln ( ௩೥ି௨ 
௩బ೥ି௨

)         (36) 

Normalizing as follows: ߚ ≡ ௨
௖

, ௕ߚ  ≡
௩బ
௖

,  ߷ଷ ≡ ௣೥
௠௖

 : 

௡ 
௡బ

= ௩బ೥/௖ି௨ /ࢉ
௩೥/௖ି௨/௖

= ߛ ቆ  ఉ್ିఉ
ఊቀ೘ೡ೥

೘೎ ቁିఊఉ
ቇ        (37) 

௡ 
௡బ

= ߛ ቀ ఉି ఉ್
ఊఉି దయ

ቁ          (38) 

Equation (33) can be reduced to the following 
form: 

ଶݑ  ௗమ௣೥
ௗకమ  = ݉ܿଶݑ ௗమ ఊ

ௗకమ − ߱௣଴
ଶ ቂ௡ 

௡బ

௣೥
ఊ

− ௣బ೥
ఊబ

ቃ   (39) 

ௗమ(ఉ దయିఊ) ߚ
ௗఎమ + ෝ߱௣

ଶ ቂ௡ 
௡బ

 దయ
ఊ

−  దబయ
ఊబ

ቃ = 0       (40) 

where ߦ = ,௪݇/ߟ ௭݌ =  ߷ଷ݉ܿ, ߱௣଴
ଶ = ෝ߱௣  ܿ݇௪. 

And in terms of  ߷ଵ,  ߷ଶ ܽ݊݀ ܼ = ଷ߷ ߚ) −  :(ߛ

ߚߛ) −  ߷ଷ) = ඥ(ߚଶ − 1)(1 +  ߷ଵ
ଶ +  ߷ଶ

ଶ) + ܼଶ  
(41) 

We can rewrite Eq. (38) as follows: 
௡ 

௡బఊ
= |ఉି ఉ್|

ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ         (42) 

Or, ௡ దయ
௡బఊ

= ቀఉି ఉ್
ఉమିଵ

ቁ + ௡ 
௡బఊ

ቀ ఉ ௓
ఉమିଵ

ቁ        (43) 

Hence,  
௡  దయ
௡బఊ

=

ቀఉି ఉ್
ఉమିଵ

ቁ + ൬ ఉ|ఉି ఉ್| ௓
(ఉమିଵ)ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ൰  

(44) 
Substitution into Eq. (40) gives: 

ௗమ௓ ߚ
ௗఎమ +

ෝ߱௣
ଶ ൤ቀఉି ఉ್

ఉమିଵ
ቁ +

൬ ఉ|ఉି ఉ್| ௓
(ఉమିଵ)ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ൰ −  దబయ

ఊబ
൨ = 0  

Finally, the differential equation of Z is: 

ܼᇱᇱ + ఠෝ ೛
మఊబ|ఉି ఉ್| ௓

(ఉమିଵ)ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ +
ఠෝ ೛

మఊబ(ଵି ఉ್ఉ)
(ఉమିଵ)

= 0          (45) 

where the over prime denotes ௗ 
ௗ ఎ

.  

Again, using the combination of the variables 
z and t by ߦ = ݖ −  where u = constant is the ,ݐݑ

signal speed, డ 
డ௭

= ௗ
ௗక

, and డ 
డ௧

= ݑ− ௗ
ௗక

. 
Substituting into and simplifying Eq. (33), we 
get: 
ௗమఋ஺భ

ௗకమ − ௨మ

௖మ  ௗ
మఋ஺భ
ௗకమ − ቀ݇௪

ଶ − ௪ೢ
మ

௖మ ቁ ଵܣߜ −

2 ቀ݇௪
ௗ ఋ஺మ

ௗ క
+ ௪ೢ

௖
௨
௖

ௗ ఋ஺మ
ௗ క

ቁ =
ఠ೛బ

మ

௖మ ቂ௡ 
௡బ

஺భ
ఊ

− ஺భ
బ 

ఊబ
ቃ  

(46) 

Using ߦ = ఎ
௞ೢ

, ଵܣߜ = ௠௖మ

௘
, ଵ߷ ߜ ଶܣߜ =

௠௖మ

௘
, ଶ߷ ߜ ෝ߱௣଴

ଶ = ෝ߱௣
ଶߛ଴, ෝ௪ݓ = ௪ೢ

௖ ௞ೢ
  and in 

terms of  ߷ଵ,  ߷ଶ and ܼ = ଷ߷ ߚ) −  Eq. (46) ,(ߛ
can be reduced to the following form: 

(1 − ଵ߷ߜ(ଶߚ
ᇱᇱ − (1 − ෝ௪ݓ

ଶ ଵ߷ ߜ( − 2(1 +
ଶ߷ߜ(ෝ௪ݓ ߚ

ᇱ = ෝ߱௣
ଶߛ଴ ቂ௡ 

௡బ

 దభ
ఊ

−  దబభ 
ఊబ

ቃ        (47) 

We can reduce the above equation using: 
ଵ߷ߜ = ߷ଵ − ߷଴ଵ, ߜ߷ଵ

ᇱ = ߷ଵ
ᇱ − ߷଴ଵ

ᇱ ଵ߷ߜ ,
ᇱᇱ = ߷ଵ

ᇱᇱ −
߷଴ଵ

ᇱᇱ , and ߜ߷ଶ = ߷ଶ ଶ߷ߜ ,
ᇱ = ߷ଶ

ᇱ ଶ߷ߜ ,
ᇱᇱ = ߷ଶ

ᇱᇱ, since 
߷଴ଵ = ௉భ

௠௖
= ௘஻෠

௠௖మ௞ೢ
 then, ߷଴ଵ

ᇱ = ߷଴ଵ
ᇱᇱ = 0, 

(1 − ଶ)߷ଵߚ
ᇱᇱ − ቂ(1 − ෝ௪ݓ

ଶ ) + ෝ߱௣
ଶߛ଴

௡ 
௡బఊ

ቃ  ߷ଵ −

2(1 + ෝ௪)߷ଶݓ ߚ
ᇱ = − ෝ߱௣

ଶߛ଴
 దబభ 

ఊబ
 . 

Now substituting  దబభ 
ఊబ

= ௉భ
௠௖ఊబ

= ௘஻෠
௠௖మ௞ೢఊబ

=

 ෝ௖, and ௡ݓ
௡బఊ

= |ఉି ఉ್|
ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ yields:  

(1 − ଶ)߷ଵߚ
ᇱᇱ −

൤(1 − ෝ௪ݓ
ଶ ) +

ෝ߱௣
ଶߛ଴

|ఉି ఉ್|
ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ൨  ߷ଵ −

2(1 + ෝ௪)߷ଶݓ ߚ
ᇱ = − ෝ߱௣

ଶߛ଴ݓෝ௖        (48) 

Similarly, Eq. (41) becomes: 

(1 − ଶ)߷ଶߚ
ᇱᇱ −

൤(1 − ෝ௪ݓ
ଶ ) +

ෝ߱௣
ଶߛ଴

|ఉି ఉ್|
ඥ(ఉమିଵ)(ଵା దభమା దమమ)ା௓మ൨  ߷ଶ +

2(1 + ෝ௪)߷ଵݓ ߚ
ᇱ = 0          (49) 

4. Results and Discussion 
Equations (45), (47), and (48) are the final set 

of nonlinear coupled equations that we will solve 
to study the nonlinear evolution of the 
electromagnetic wiggler FEL.  
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The equilibrium solutions ( ௗ 
ௗ ఎ

= 0) are given 
for Eqs. (45), (47), and (48) as: 

߷଴ଵ = ఊబ௪ෝ೎(ଵାఠෝ ೛
మ)

൫ଵାఠෝ ೛
మ൯ି௪ෝೢ

మ ,  ߷଴ଶ = 0, and  ܼ଴ =

ߚ௕ߚ )଴ߛ − 1). 

The small-signal analysis around the 
equilibrium [10] yields a traveling wave 
dispersion relation, which can be related 
formally to the familiar cold fluid mode 
dispersion relation for an electromagnetic 
wiggler free electron laser. It was shown by 
Davidson, Johnston, and Sen [10] that the free 
electron laser instability corresponds to the 
condition ߚ < ௕ߚ  < 1. 

The solutions can be infinite wave trains, 
solitons, or periodic chaotic. In our case, we are 
addressing the soliton solutions for which we 
solved Eqs. (45), (47), and (48) numerically. 

Such solutions for the electromagnetic wiggler 
FEL are evident in the profiles of 
, ଵ߷ ߜ ,ଶ߷ ߜ ,ܼߜ ܽ݊݀ ௡ 

௡బఊ
.  

Figure 1(a) shows a soliton-type solution for 
ෝ௖ݓ = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ෝ߱௣ =
0.501935, and ݓෝ௪ = 0.00, representing the 
case without an electromagnetic wiggler. The 
ܼߜ = ܼ − ܼ଴ profile is bell-shaped, while the 
other profiles (ߜ ߷ଵ , ,ଶ߷ ߜ ܽ݊݀ ௡ 

௡బఊ
) have a 

number of nodes, as seen in Figs. 1(b), 1(c), and 
1(d). The ܼߜ profile has a maximum amplitude 
of about -6.0, whereas the ௡ 

௡బఊ
 profile remains 

positive, as expected, with density reduced 
across most of the region but sharply increasing 
at the edges.  

  
FIG. 1(a). Profile of ܼߜ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.00 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 1(b). Profile of ߜ ߷ଵ for a soliton pulse with ݓෝ௪ = 0.00, ෝ௖ݓ = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
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FIG. 1(c). Profile of ߜ ߷ଶ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.00 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 1(d). Profile of ௡ 

௡బఊ
 for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.00 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
Figures 2(a), 2(b), 2(c), and 2(d) show a 

soliton-type solution for ݓෝ௖ = ଴ߛ ,0.50 = 10.0,
ߚ = 0.50, ෝ߱௣ = 0.501935, ෞ௪ݓ  ݀݊ܽ = 0.50  
(in the presence of the electromagnetic wiggler). 
The ܼߜ = ܼ − ܼ଴ profile retains its bell shape, 
while the other profiles (ߜ ߷ଵ , ,ଶ߷ ߜ ܽ݊݀ ௡ 

௡బఊ
) 

exhibit multiple nodes. The ܼߜ profile has a 

maximum amplitude of about -5.0 but is shifted 
to the left, as seen in the figure (appears earlier). 
Meanwhile, the ௡ 

௡బఊ
 profile remains positive, 

showing a reduction in density over most of the 
region, though the depleted region is wider in 
this case.  

 
FIG. 2(a). Profile of ܼߜ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.50 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
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FIG. 2(b). Profile of ߜ ߷ଵ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.50 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 2(c). Profile of ߜ ߷ଶ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.50 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 2(d). Profile of ௡ 

௡బఊ
 for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.50 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
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Figures 3(a), 3(b), 3(c), and 3(d) show the 
soliton solution for ݓෝ௖ = ଴ߛ  ,0.60 = 10.0, ߚ =
0.50, ෝ߱௣ = 0.501935, ෝ௪ݓ  ݀݊ܽ = 0.60  (in the 
presence of the electromagnetic wiggler). The 
ܼߜ = ܼ − ܼ଴ is still bell-shaped, while the other 

profiles (ߜ ߷ଵ , ,ଶ߷ ߜ ܽ݊݀ ௡ 
௡బఊ

) have a number of 
nodes. The ܼߜ profile has a maximum amplitude 
of about -7.0, which is greater than that observed 
for ݓෝ௪ = 0.50, while the ௡ 

௡బఊ
 profile behaves 

almost identically.  

 
FIG. 3(a). Profile of ܼߜ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.60 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 3(b). Profile of ߜ ߷ଵ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ  ,0.60 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 3(c). Profile of ߜ ߷ଶ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.60 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
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FIG. 3(d). Profile of ௡ 

௡బఊ
 for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.60 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

Finally, Figs. 4(a), 4(b), 4(c), and 4(d) show 
the soliton solution for ݓෝ௖ = ଴ߛ ,0.60 = 10.0,
ߚ = 0.50, ෝ߱௣ = 0.501935, ෝ௪ݓ ݀݊ܽ = 0.70, (in 
the presence of the electromagnetic wiggler). 
The ܼߜ = ܼ − ܼ଴ profile remains bell-shaped, 

while the other profiles (ߜ ߷ଵ , ,ଶ߷ ߜ ܽ݊݀ ௡ 
௡బఊ

) 
exhibit multiple nodes. The ܼߜ profile has a 
maximum amplitude of about -12.0, which is 
greater than that observed for ݓෝ௪ = 0.60.  

 
FIG. 4(a). Profile of ܼߜ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.70 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 4(b). Profile of ߜ ߷ଵ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.70 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  
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FIG. 4(c). Profile of ߜ ߷ଶ for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.70 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

 
FIG. 4(d). Profile of ௡ 

௡బఊ
 for a soliton pulse with ݓෝ௪ = ෝ௖ݓ ,0.70 = ଴ߛ ,0.50 = 10.0, ߚ = 0.50, ܽ݊݀ ෝ߱௣ =

0.501935.  

5. Conclusion 
To conclude, I have obtained a soliton 

solution for the electromagnetic wiggler free-
electron laser. The one-dimensional nonlinear 
traveling wave solutions were obtained by a 
numerical solution of the relativistic equations in 
the form of isolated pulses of coupled 
electromagnetic and plasma waves. It is shown 
that the soliton solutions became an eigenvalue 

problem in the wiggler frequency ݓෝ௪ for a fixed 
set of parameters ݓෝ௖, ߛ଴ , ,ߚ ܽ݊݀ ෝ߱௣ . This new 
class of solutions has a variety of potential 
applications and may represent nonlinear 
saturated states of the electromagnetic wiggler 
free-electron-laser instability.  
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